CA Gen and Excel 2010
Abstract
[bookmark: _GoBack]This paper will discuss the details on how to use the Excel 2010 OLE object with CA Gen to read data from one Excel document into another. The techniques described in this paper should prove to be useful for other types of Gen applications that need to use Excel.
Introduction
I recently needed to move data from one Excel document to another in order to have an Excel document that was formatted correctly to be imported into another program. Although it would have been possible to perform this task using Visual Basic Assistant (VBA) script in Excel, I decided to use this task as an opportunity to learn how to use the Excel OLE object in a Ca Gen action diagram.
Note that I did indeed use VBA in Excel to determine the necessary commands to do the task and then duplicated those tasks in Gen. This technique may prove useful when trying to create other types of applications in Gen that need to access Excel documents.
Fetch the Excel Application Object
To access Excel documents, you must first get a pointer to the Excel OLE object. To do this in Gen, you will set an attribute view whose type is GUI object to the return value of the CreateObject action diagram function. For example, the following statement sets the view excel ole obj to the return value of the CreateObject function:
SET excel ole obj TO CreateObject("Excel.Application")

Note that for Excel 2010, this will create a pointer to the object that is identified in the Gen object viewer as Microsoft.Office.Interop.Excel, Version 14.0.0.0. Subsequent action diagram statements that set GUI object views will reference this object.
Fetch the Source and Destination Worksheet Objects
As I was copying data from one Excel spreadsheet to another, I needed to create GUI object pointers to the specific spreadsheets in each document. In the following statements, I open the SOURCE.xls and TARGET.xls spreadsheets and fetch the GUI object pointers to the sixth worksheet in the source document and the second worksheet in the destination document:
SET source file name TO "c:\temp\SOURCE.xls"
SET source_workbooks ole obj TO excel ole obj.Workbooks.Open(source
file name)
SET source_worksheet ole obj TO excel ole obj.Worksheets.Item(6)

SET target file name TO "c:\temp\TARGET.xls"
SET target_workbooks ole obj TO excel ole obj.Workbooks.Open(target
file name)
SET target_worksheet ole obj TO excel ole obj.Worksheets.Item(2)

Note that for each document, I first got a GUI object pointer to the set of workbooks associated with that document and then fetched the GUI object for the specific worksheet inside that workbooks. Also note that Workbooks (plural) and Worksheet (singular) are the names of the objects that will be selected from the Gen object browser window when the Excel 14 library is selected.
Read and Write the Data
For this application, I fetched the data from the source document into export views on a window so that I could watch the progress of the application as it executed. I then used the data in the source export views to populate the destination document. The data on rows 4 through 200 in the source document were written to rows 2 through 198 of the destination document. A sample of the code to fetch a Title field in the source document and write it to a Name field in the destination document is shown here:
+= FOR source ief_supplied count FROM 4 TO 200 BY 1
|
| NOTE ***
| Fetch the SOURCE Title (column W, row ief_supplied count)
| ***
| SET work cell TO concat("W", NumberFormat(source ief_supplied count,
|							"999", "", "", ""))
| SET out source title TO source_worksheet ole obj.Range(work
|							cell, work cell).Value(10)
|
| NOTE ***
| Populate the TARGET Name column (column B, row ief_supplied
|										count - 2)
| ***
| SET out target name TO out source title
| SET work cell TO concat("B", NumberFormat(source ief_supplied count
|							- 2, "999", "", "", ""))
| SET target_range ole obj TO target_worksheet ole obj.Range(work
|							cell, work cell)
| SET target_range ole obj.Value(10) TO out target name
| SET target_range ole obj TO NOTHING
| REFRESH
+--

The first statement sets the value of the work cell local view to a concatenation of the character ‘W’ (representing column ‘W’ in the source document) with the current row formatted as a three digit number. This creates a string that will look something like ‘W004’ which represents the cell ‘W4’. The function NumberFormat was used (as opposed to something like concat) as it does a nice job of formatting the results.
The second statement uses that cell designation to fetch the value of the cell into the export view out source title. Note that it uses the GUI object representing the source worksheet and uses the Range method on that object and the Value method on the result of the Range to fetch the value of the cell. Also note that in order to get the GUI object for the cell, the cell designation is specified twice to indicate that it represents a single cell rather than a range of cells and that the typical parameter value used for the Value method is normally “10” (as discussed in the Summary).
The next set of statements move the source Title export view value to the target Name export view so that the value may be seen in the window. They then set the value of the work cell local view to the appropriate value for the cell in the destination document, fetch a GUI object pointer to that cell and then use the Value method on that cell to set the value to the appropriate value. Note that after the destination cell has been set, the GUI object that pointed to that cell is set to NOTHING in order to ensure that the memory is reclaimed during the execution of the loop.
Cleanup
After populating all of the data in the destination document, the two documents must be closed, the Excel application exited and the GUI object pointer memory reclaimed. This is done in the following statements:
NOTE **
 Close the SOURCE and TARGET worksheets
 **
INVOKE source_workbooks ole obj.Close()
INVOKE target_workbooks ole obj.Close()

NOTE **
 Clear GUI objects
 **
SET source_workbooks ole obj TO NOTHING
SET source_worksheet ole obj TO NOTHING
SET target_workbooks ole obj TO NOTHING
SET target_worksheet ole obj TO NOTHING

NOTE **
 Close the Excel application
 **
INVOKE excel ole obj.Quit()
SET excel ole obj TO NOTHING

Summary
So the basic steps for using the Excel 2010 OLE object in a Gen action diagram are as follows:
1. Fetch a pointer to the Excel OLE object using the CreateObject action diagram function. Use the version independent program identifier Excel.Application as the parameter to the function.
2. Fetch a pointer to the Workbooks object using the Excel object Workbooks.Open method to open the Excel document file.
3. Fetch a pointer to the Worksheet object using the Workbooks object Worksheets.Item method with the worksheet number of the desired worksheet. The worksheets are numbered according to the worksheet tabs in the document starting with 1.
4. Read data from a cell in a worksheet by first creating a string containing the reference to the cell (for example, “W123” for column ‘W’, row number 123) and then using the Worksheet object Range(start-cell, end-cell).Value(10) method to retrieve the value of the cell. Note the the start-cell and end-cell values will both be the same in order to fetch the value of a single cell. Also note that the parameter to the Value method is normally set to the number 10. The possible values for this parameter are as follow:
· 10 Default. If the specified Range object is empty, returns the value Empty (use the IsEmpty function to test for this case). If the Range object contains more than one cell, returns an array of values (use the IsArray function to test for this case).
· 12 Returns the recordset representation of the specified Range object in an XML format.
· 11 Returns the values, formatting, formulas, and names of the specified Range object in the XML Spreadsheet format.
5. Set the value of a cell in a worksheet by using the same method used for reading the data: Create the string cell reference and use that reference to get a pointer to the specific cell using the Worksheet object Range(start-cell, end-cell) method. Then use the Value(10) property of that object as the destination for the data to be placed in the cell.
6. Always clear the OLE pointers after each use within a loop to ensure that there are no memory leaks or problems with the Excel application remaining in memory after your application is complete.
7. Close the Workbooks object by INVOKE’ing the Close() method on that object.
8. Clear the OLE pointers for any other objects that have not been cleared except for the Excel application object.
9. Use the Excel application object and INVOKE the Quit() method to shut down Excel.
10. Clear the Excel application OLE pointer.
 Hopefully, the information provide here will help you to use the Excel OLE interface in your own action diagrams.
