Implementing Metrics with Function Points

Session 240

Frank Mazzucco Texas Instruments

1

© Texas Instruments 1996

Agenda

> • Measurement drivers

- Function Points
- Using Composer Function Point report
- Metrics implementation techniques

			_	
_	Methods & Techniques	Languages	Data Management	Computing Platforms
1995	① Information	<u>ن</u>		Client/ Server
1990		Action Diagrams	Entity Model	ſ
1985	⊔ Entity Modeling	仓	Access Relational	PC's
1980	分 分 Structured	4GL's	DBMS	Mini's
1975	Techniques	行 COBOL	DBMS	Ŷ
1970	Flowcharts	Assembler	Flat Files	Mainframes
© Texas Instrum	ents 1996	3		- Up

Evolution of I/S Development

Quality and Productivity Trends

- Annual software productivity improvement: 4 7%
 - Barry Boehm
- Less than one company in five measuring software productivity and quality
 - Howard Rubin
- 76% of assessed software organizations at the initial (ad hoc / chaotic) level of software maturity
 - Software Engineering Institute, Carnegie-Mellon University)
- Many well-publicized "software disasters"

© Texas Instruments 1996

<u></u>

Measuring Productivity and Quality

- Historically, very little to measure
- Drivers for a new emphasis on measurement
 - Application of TQM techniques to software
 - » e.g., Malcolm Baldrige Criteria, ISO 9000-3
 - Software process improvement
 - » e.g., Software Engineering Institute (SEI)
 - Maturity and acceptance of model-based development tools
 - » e.g., Composer by IEF
 - Objective, non-technical, reproducible measures of size
 - » e.g., Function Points

© Texas Instruments 1996

Agenda

5

- Measurement drivers
- > Function Points
 - Using Composer Function Point report
 - Metrics implementation techniques

Function Points

- Measure of *work-product* (or, relative size) of a software application or project
 - Based on IBM study of key project variables
 - Originally proposed by Allan Albrecht in 1979
- Synthetic metric based on user functionality
 - Measure functions requested/received
 - » Inputs, Outputs, Inquiries, Files, Interfaces
 - Components weighted by complexity
 - Total adjusted by system-level factors
 - » 14 General Systems Characteristics

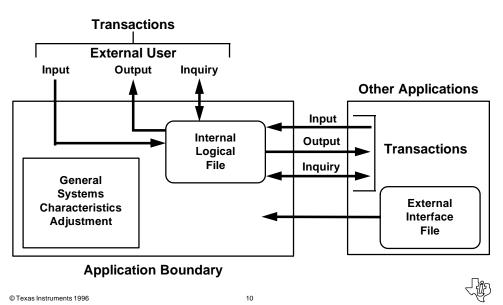
© Texas Instruments 1996

Applications of Function Points

- As a technology-independent component of software metrics
 - Development productivity (function points per person-month)
 - Maintenance productivity (function points supported per full-time maintenance staff)

8

 Defect density (defects per function point), etc.


Applications of Function Points (cont.)

- To validate project estimates
 - Can be measured early in the project lifecycle (early measures are estimates which must be updated at project completion)
 - Early use allows validation based on project history (or, with caution, industry averages) on projects with *similar attributes* of the estimate developed from the *detailed project plan*
 - As a standard means of communication among project managers, software users, and management

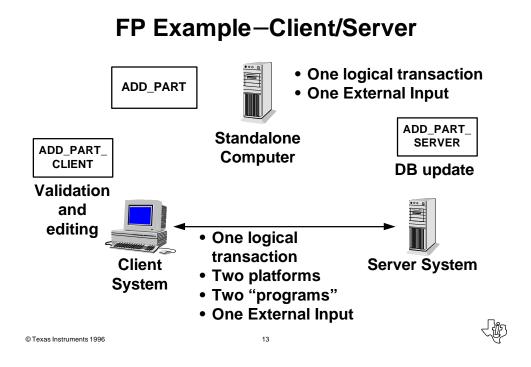
9

© Texas Instruments 1996

Components of Function Point Analysis

Applicability of Function Points

- FPs count "logically, from the user's point of view"
- Logical user data and transactions-not dependent on implementation technique
- Can be easily applied to new development technologies
 - GUI's
 - Client/Server
 - Object-Oriented
- Logical user data ≈ Entity type (Files, Interfaces)
- Logical user transaction ≈ Elementary process (Inputs, Outputs, Inquiries)


© Texas Instruments 1996

FP Example-GUI

11

Ŀ

-	- Human Resources System					
<u>E</u> m	<u>Employees</u> Jobs Assignments Locations					Help
	Employee Assignments					
	- c	reate Employee	lob Assignm	ients		
	Employee ID	123-45-6789	Name	John Q. Doe		
	Job Number	REC5536378	Desc	Welder - Jouri	neyman	
	Eff Date	02/16/95			Ok	
	Salary	18.50			Clear	
	Rating	Satisfactory	V		Cancel	
					Exit	

Why Function Points?

- Independent of the technology used
 - Well-suited to measuring impact of new technology
- Can be used early in project lifecycle
- Can be used to validate project estimates
- Reproducible
 - ±10% accuracy verified by MIT research
 - Accuracy can be much higher in controlled environments

14

Supported by active, worldwide user group (IFPUG)

International Function Point Users Group

- Non-profit organization promotes and supports Function Points and related metrics
 - 600+ member companies worldwide
 - 11 international affiliate organizations
- Membership services
 - Counting practices and case studies
 - Certification
 - Management reporting
 - Measurement start-up
 - Conferences and workshops
 - Hotline support
 - WWW home page (http://www.ifpug.org/ifpug)

Contact IFPUG, (614) 895-7130, for additional information 15

© Texas Instruments 1996

Agenda

- Measurement drivers
- Function Points
- > Using Composer Function Point report
 - Metrics implementation techniques

Using the Composer Function Point (FP) Report

- Composer counting rules (simplified)
 - Elementary processes (or action blocks) counted as Inputs, Outputs, or Inquiries
 - Entity types counted as Files or Interfaces based on usage
 - Classification and complexity based on actual usage in action diagrams
- Matches the spirit of IFPUG 4.0 rules quite well
- Must be adjusted to account for:
 - Differences in development methods
 - Objects unknown to Composer
 - General systems characteristics

© Texas Instruments 1996

Using the Composer FP Report (cont.)

- Adjusting for development method differences
 - Composer assumes:
 - »Action block (w/entity actions) = Business function (EI, EO, or EQ)
 - "Elementary process level or equivalent" for both Analysis and Design report options (Note: Design is used most often)

Using the Composer FP Report (cont.)

- Adjusting for development method differences (cont.)
 - Consistent with Composer Method, but implementation variants can cause discrepancies
 - Examine action block hierarchy
 - Remove (manually) non-business function AB's
 - »e.g., paging commands
 - Aggregate (manually) partial business function AB's into single inputs, outputs, or inquiries

く心

»e.g., "modular I/O," validation routines

© Texas Instruments 1996

FP Report–Activities

19

MODEL NAME:	CORPORATE_C	DRDER_PROCESSING
BUSINESS SYSTEM:	ORDER_MAINTENANC	CE
ACTION BLOCKS: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	NE LLINE }	Paging commands– should be deleted Validation routine - delete or combine with add/update functions

FP Report–Activities (cont.)

MODEL NAME:	CORPORATE_ORDE	R_PROCESSING
BUSINESS SYSTEM:	ORDER_MAINTENANCE	
ACTION BLOCKS: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TENANCE _WITH_ORDER	Typical "modular I/O" action blocks–should be combined with other AB's or deleted (<i>Note</i> : If the entire model has been built this way, it may be preferable to do a manual function point count.)
		- Air
© Texas Instruments 1996	21	

Using the Composer FP Report (cont.)

- Adjusting for development method differences (cont.)
 - Examine entity types for possible aggregation
 - »Files (ILFs) and interfaces (EIFs) must be maintained independently and may consist of multiple entity types
 - » Examine attributive and associative entity types and combine (manually) where necessary

FP Report–Data

MODEL NAME: BUSINESS SYSTEM: ORDE	CORPORATE_ORDER_PROCESSING MAINTENANCE	
FILES/ENTITY TYPES:	FILES INTERFACES S A C S A C	
CUSTOMER ORDER_LINE ORDER_LINE_DESCRIPTIC PRODUCT XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX	This is likely an attributive entity type of ORDER_LI and not maintained independently–should be combined with ORDER_LINE as one internal logical file	NE,
© Texas Instruments 1996	23	- UP

Using the Composer FP Report (cont.)

- Adjusting for unknown objects
 - External databases
 - »e.g., DL/1 database referenced by external action block
 - Activities implemented outside Composer
 - »e.g., reports produced with a 3GL or 4GL
- Including 14 general systems characteristics
 - Calculate adjusted function point count

Spreadsheet option can be helpful - but be aware of missing procedure step indent!

Ľ

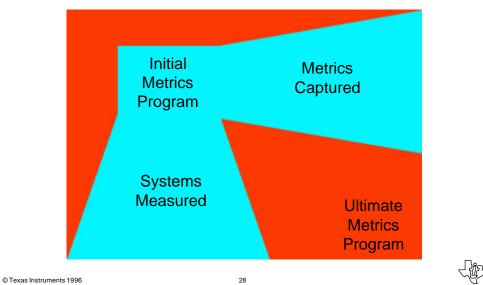
Using the Composer FP Report (cont.)

Model Characteristic	User function elementary process	elementary others split into		Structured programming AB 'modules'	
FP Report Discrepancy	10-25%	30-7	0%	70-200%	
FP Report Useful?	Yes	Probably	Maybe	No	

© Texas Instruments 1996

25

© Texas Instruments 1996


Ŀ

Ŀ

Agenda

- Measurement drivers
- Function Points
- Using Composer Function Point report
- > Metrics implementation techniques

Metrics Implementation

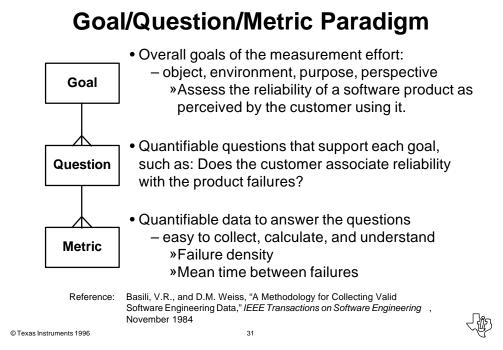
Metrics Implementation Plan

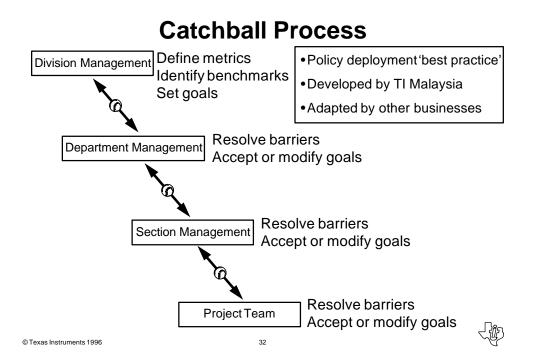
<u>Near-term</u> (≈ 6 months)

- Obtain management commitment
- Join IFPUG and/or local user group
- Train 1-2 people in function point analysis
- Count 1-3 new applications as metrics pilots
- Measure:
 - Development and enhancement productivity (FP/person-month)
 - Maintenance productivity (FP/full-time equiv. maintenance staff)

29

- -Defect density (defects/FP @ release + 6 months)
- > Demonstrate results to management


© Texas Instruments 1996


Metrics Implementation Plan (cont.)

Intermediate Term (≈1-2 years)

- Train additional staff in function points
- Deploy metrics program to all new development
- Begin counting existing systems for a baseline
- Consider a software process assessment
- Add one or more metrics
 - Cycle time (elapsed time/FP)
 - On-time project completion (actual vs. plan)
 - Customer satisfaction (user survey)
- \Box Demonstrate results to management
 - Use best practices to align metrics with business goals and objectives, such as:
 - » Goal-Question-Metric paradigm, Catchball process

Metrics Implementation Plan (cont.)

Long-term (≈ 3-5 years)

- Establish a metrics repository
- Initiate metrics benchmarking with other companies
- Deploy all metrics to all projects, all systems
 - Milestone completion (% on-time)
 - Return on investment
 - Risk analysis

→ Demonstrate results to management

© Texas Instruments 1996

Implementation FAQs

33

- Centralized or distributed metrics function?
 - How are other, similar functions in your company organized?
- How many people should be trained?
 - Distributed function 1-2 per project team
 - Centralized function \approx 2 4% "overhead"
 - Note: phase implementation allows phased training
- How many hours in a person-month?
 - Varies by company based on HR policies, overtime, etc.
 - Typically 130 to 140 hours

© Texas Instruments 1996

Implementation FAQs (cont.)

- No formal time-reporting system?
 Use equivalent person-months
- Lacking support, resources, infrastructure for a baseline study?
- Compare new projects against industry averages (with some caution)
 - $-e.g., \approx 8$ FT/PM for new MIS development
- Build baseline gradually as projects complete

35

© Texas Instruments 1996

Summary

- Model-based development can be successful if you:
 - -Manage the implementation
 - Measure the results (implementing gradually, if necessary)
- Function points are a useful and industry-accepted technique for software size measurement
- Composer function point report <u>may</u> be useful; but, if not, counting manually is a valid alternative
- You may already be a success story!

-So, why not find out?

Implementing Metrics with Function Points

Session 240

Frank Mazzucco Texas Instruments

37

© Texas Instruments 1996

Ŀ