
1 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

IUA/CA IDMS™ Technical Conference

May 16-20, 2016

SQL Virtual Foreign Keys Simplify
Hibernate Access to Your Existing
CA IDMS™ Databases

Jean-Paul De Feyter
CA Technologies

2 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Abstract

 Users need to enhance developer productivity as they
leverage and extend their investment in CA IDMS. Hibernate
is a popular open source object to relational mapping
framework for developing Java applications that access and
store objects in relational databases. This session shows how
you can use SQL Virtual Foreign Key feature introduced in CA
IDMS 19.0 with CA IDMS Server to improve developer
productivity by using Hibernate reverse engineering to
generate Java objects that access and update records in your
existing network databases.

2 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

3 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

 Object-Relational Mapping Concepts

 Java Persistence API

 Relational-Network Mapping

 Sample JPA access to Employee database

 Hibernate HQL Demo

Agenda

Object-Relational Mapping Concepts

3 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

5 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

 From wikipedia.org:
– “a programming technique for converting data between incompatible

type systems in object oriented programming languages”

– “virtual object database” used within the programming language

 Persistence
– Objects stored, somewhere

– Serialization

– Database

What is object-relational mapping?

6 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

 Programmer concentrates on business logic

 Programmer works with application objects

 Provider takes care of persistence

 No need to code database interface calls

 Limited or no need to know and code SQL

Why use object-relational mapping?

4 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

7 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Object-relational mapping concepts

 Class

 Object

 Attribute

 Relationship

 Table

 Row

 Column

 Referential constraint

Object (Java) Relational (SQL)

8 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Object-relational mapping software components

 Provider run time
– Generates SQL

– Reflection

– Mapping definitions

 Object definition tools
– Schema definition

– Reverse engineering

5 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

9 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Schema generation

 Automatically generates DB schema from objects

 Most useful for prototyping DB

 Physical tuning always manual

 Over-reliance on ORM can lead to poor DB design

 DBA should do final design

10 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Reverse engineering

 Create object definitions from database

 Most application databases already exist

 Not biased toward a single application

 Most ORM frameworks provide reverse engineering tool

 Uses database metadata API’s to discover
– Entities

– Attributes

– Relationships

6 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

JPA Java Persistence API

12 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA Java Persistence API

 Application Programming Interface
– Defined in Java 5 SE and EE

– javax.persistence package

 JPA specification came as part of EJB 3.0

 Service Provider Interface (SPI)

 Providers
– Hibernate (Jboss, Red Hat)

 also has own API

– OpenJPA (known as Kodo, BEA, Oracle)

– TopLink (Oracle)

– Others

7 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

13 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA architecture

Application

JPA Provider

JDBC Driver

SQL DBMS

14 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA entities

 Entity
– Represents application object

– May represent database table

– POJO

 EntityManager
– Manages state and life cycle of entity

 Persist

 CreateEntityGraph

 Remove

 Find (uses primary key)

 Query

 Transaction

8 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

15 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Reflection and annotations
How JPA works

 Reflection
– Discover classes, fields, methods in code

– Depends on coding conventions (get, set, etc.)

 Annotations
– Metadata in code about classes, fields, methods

– Relate Java objects to database tables

– Language feature introduced in J2SE 5

– @<name>(optional arguments)

– Extensive use of defaults

– Alternative to XML descriptor files

16 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA annotations

 @Entity

 @Table

 @Column

 @Id

 @OneToMany

 @ManyToMany

 @Inheritance

 Many more…

9 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

17 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA and CA IDMS SQL databases

 CA IDMS is like most other relational databases

 Schema generation
– With CA IDMS 19.0 IR3 or later

 DDL standard, including referential constraints

 Most CA IDMS databases are not SQL defined
– Reverse engineering also complete for network DBs with CA IDMS 19.0

IR3 Virtual Key schema

Relational-network mapping

10 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

19 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Relational-network mapping

 Table

 Row

 Column

 Referential constraint

 Record definition

 Record occurrence

 Field

 Set

Relational (SQL) Network (CA IDMS)

20 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA and CA IDMS Network databases

 Includes most CA IDMS applications

 Access via SQL

 With CA IDMS 19.0 IR3 or later
– Reverse engineering

– Equivalent SQL Schema generation

 Before CA IDMS 19.0 IR3
– Reverse engineering

 requires customization

– “Impedance mismatch”

 Elements

 Sets without primary/foreign key specification

11 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

21 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Relational-network mapping
Techniques to overcome impedance mismatch

 Not needed if using Virtual Foreign Keys in CA IDMS 19.0 IR3
– Syntax extensions

– Views

– Table procedures

– Embedded Virtual foreign keys

Sample JPA access to Employee database

12 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

23 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

JPA example on network defined DB using VFK schema

 Hibernate reverse engineering
– Entity classes generated for all

records & sets of EMPDEMO

 EMPSCHM WITH VIRTUAL KEYS

 No manual modifications

 With annotations

 Employee database
– EMPLOYEE

– COVERAGE

 Entity classes
– Employee

– Coverage

EMPLOYEE

415

EMP-ID-0415

EMP-DEMO-REGION

F 116 CALC

DN

COVERAGE

400

EMP-COVERAGE

INS-DEMO-REGION

F 16 VIA

EMP-COVERAGE
NPO MA FIRST

24 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Reverse engineered Employee class
has primary key ROWID and set Coverage …
@Entity

@Table(name = "EMPLOYEE")

public class Employee implements java.io.Serializable

{

private byte[] rowid;

private short empId;

private String empFirstName;

private Set<Coverage> coverages =

new HashSet<Coverage>(0);

// remaining private member vars for each column

public Employee() {}

...

@Id

@Column(name = "ROWID")

public byte[] getRowid() {

return this.rowid;

}

13 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

25 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

… and is related to Coverage in a OneToMany relationship

...

@OneToMany(fetch = FetchType.LAZY, mappedBy =

"employee")

public Set<Coverage> getCoverages() {

return this.coverages;

}

public void setCoverages(Set<Coverage> coverages) {

this.coverages = coverages;

}

// access methods for each member variable...

}

26 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Reverse engineered Coverage class
contains reference to owning Employee class …

@Entity

@Table(name = "COVERAGE")

public class Coverage implements

java.io.Serializable {

private byte[] rowid;

private Employee employee;

private byte selectionYear0400;

// private member variables for each column...

public Coverage() {}

@Id

@Column(name = "ROWID")

public byte[] getRowid() {return this.rowid;}

public void setRowid(byte[] rowid) {

this.rowid = rowid;}

14 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

27 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

… and is related with employee in ManyToOne relationship

@ManyToOne(fetch = FetchType.LAZY)

@JoinColumn(name = "FKEY_EMP_COVERAGE")

public Employee getEmployee() {

return this.employee;

}

public void setEmployee(Employee employee) {

this.employee = employee;

}

@Column(name = "SELECTION_YEAR_0400“

, nullable = false, precision = 2, scale = 0)

public byte getSelectionYear0400() {

return this.selectionYear0400;

}

// access methods for each member variable...

}

28 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

 Add reference to member object Coverage

 Use set specification instead of foreign key
@SqlResultSetMapping(

name = "EmpCoverageResult", entities = {

@EntityResult(entityClass=Coverage.class)})

@NamedNativeQuery(

name="GetEmpCoverage",

query="SELECT c.ROWID, c.* FROM " +

"EMPSCHM.EMPLOYEE e, EMPSCHM.COVERAGE c " +

"WHERE EMP_ID_0415 = :empID " +

"AND \"EMP-COVERAGE\"",

resultSetMapping="EmpCoverageResult")

Not using VFK schema requires
modifying Employee class …

15 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

29 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

 Add ROWID as primary key

 Add reference to owner object

… and modifying Coverage class …

30 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

… and populating set occurrence objects in business logic

EntityManagerFactory emf =

Persistence.createEntityManagerFactory("NonSqlJPA");

EntityManager em = emf.createEntityManager();

Employee e = em.getReference(Employee.class, 23);

Query q = em.createNamedQuery("GetEmpCoverage");

q = q.setParameter(1, 23);

List<Coverage> l = List<Coverage>)q.getResultList();

e.setCoverage(l);

Iterator<Coverage> ci = e.getCoverage().iterator();

while (ci.hasNext()){

Coverage c = ci.next();

c.setEmployee(e);

}

16 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

31 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Set occurrence mapped to objects

c.ROWID c.YEAR c.TYPE

08010202…08 2008 F

08010204…08 2009 F

08010210…08 2010 M

08010303…08 2011 F

EMP
23

COV
2008

COV
2009

COV
2010

COV
2011

Database Set
Occurrence

Named Query Result Set

Java Objects

Employee e = {0920…08, 23, Joe, …}

List<Coverage> coverage = {08010202…08, e, 2008, F, …}

{08010204…08, e, 2009, F, …}

{08010210…08, e, 2010, M, …}

{08010303…08, e, 2011, F, …}

32 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Sample business logic
Update member set

Employee e; // e is an EMPLOYEE object

... // Code to retrieve e

...

EntityTransaction tx = em.getTransaction();

tx.begin();

Iterator<Coverage> ci = e.getCoverage().iterator();

while (ci.hasNext()) {

Coverage c = ci.next();

if (c.getType() == 'M') {

em.lock(c, LockModeType.PESSIMISTIC_WRITE);

c.setType0400('F');

}

}

tx.commit();

17 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

33 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Update implementation

 Varies by provider and DBMS
– versioning

 Concurrency and locking
– Optimistic

– Pessimistic

34 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Optimistic locking

 Supported by Hibernate

 Checks all columns for changes

@org.hibernate.annotations.Entity(

dynamicUpdate = true,

optimisticLock =

org.hibernate.annotations.OptimisticLockType.ALL)

UPDATE EMPSCHM.COVERAGE SET TYPE_0400=?

where ROWID=?

AND INS_PLAN_CODE_0400=?

AND SELECTION_DAY_0400=?

AND SELECTION_MONTH_0400=?

AND …

18 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

35 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Pessimistic locking

 Use with JPA

 Uses positioned update, sort of

em.lock(c, LockModeType.PESSIMISTIC_WRITE);

c.setType0400('M'); // update one column

tx.commit();

SELECT T0.ROWID FROM EMPSCHM.COVERAGE T0

WHERE T0.ROWID = ? FOR UPDATE

UPDATE EMPSCHM.COVERAGE SET TYPE_0400 = ?

WHERE ROWID = ?

36 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Sample business logic
Delete

 The remove object method generates SQL to delete the row:

em.remove(c);

DELETE FROM EMPSCHM.COVERAGE WHERE ROWID = ?

em.remove(e);

DELETE FROM EMPSCHM.EMPLOYEE WHERE ROWID = ?

19 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

37 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Insert member

 Usually need (virtual) foreign keys

 Alternative is use of a procedure

38 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Sample business logic
Insert Coverage member
em.getTransaction().begin();

Query query = em.createQuery("select emp FROM

Employee emp where emp.empId415 = :empID");

query.setParameter(“empID", 23);

List<Employee> arr_cov = (List<Employee>)

query.getResultList();

Employee emp = (Employee)arr_emp.iterator().next();

Coverage coverage = new Coverage();

byte[] Rowid00 = new byte[]

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

coverage.setRowid(Rowid00);

coverage.setType0400(‘F’);

coverage.setselectionYear(2016);

... // Other attributes

coverage.setEmployee(emp);

em.persist(coverage);

em.getTransaction().commit();

20 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

39 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Relational to network mapping
Tradeoffs

SQL Extensions Views Table Procedures Foreign Keys Virtual Foreign Keys

– Non-standard

SQL

– No new

programs

– No application

changes

– No restructure

– Set support

limited to

SELECT,

UPDATE,

DELETE

– Use standard

SQL

– No new

programs

– No application

changes

– No restructure

– Set support

limited to

SELECT,

UPDATE,

DELETE

– Use standard

SQL

– New programs

required to

implement

procedures

– No application

changes

– No restructure

– Full set support

encapsulated in

procedure DML

statements

– Use standard SQL

– No new

programs

– Limited

application

changes usually

required

– Targeted

restructure

usually required

– Full set support

as referential

constraints in

SQL statements

– Use standard SQL

– No new

programs

– No application

changes

– No restructure

– Full set support as

referential

constraints in SQL

statements

– Use of ROWID as

primary key

40 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Tips for using JPA

 Exceptions can be vague, use logging for details

 Use SLF4J (Simple Logging Facade for Java) logging api
– See sample log4j.properties

 For JPA on Hibernate
– Add hibernate.show_sql=true to properties file

– SQL statements and parameter bindings are logged

 Alternatively use IDMS log facilities
– Use Type 2 driver for debugging

– Can use Type 4 for production

– Enable SQL trace

– Use ODBC Administrator

21 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

41 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Tips for using JPA
Sample log4j.properties

Direct log messages to a log file
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=C:/tmp/Hibernate.log
log4j.appender.file.MaxFileSize=100MB
log4j.appender.file.MaxBackupIndex=1
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n

Direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n

Root logger option
log4j.rootLogger=INFO, file, stdout

Log everything. Good for troubleshooting
log4j.logger.org.hibernate=INFO

Log all JDBC parameters
log4j.logger.org.hibernate.type=ALL

Hibernate HQL Demo

22 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

43 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Hibernate HQL Editor – Sample EmpDemo session

44 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

HQL Expand Database

23 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

45 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

HQL Enter & Run HQL query

46 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

HQL Select Department

24 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

47 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

HQL Explore Department property

48 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

HQL Explore Employee property

25 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

49 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Summary

 Object-Relational Mapping Concepts

 Java Persistence API

 Relational-Network Mapping
– Use Virtual Foreign Key feature of CA IDMS 19.0

 Sample JPA access to Employee database

 Hibernate HQL Demo

50 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

This presentation was based on current information and resource allocations as of May 2016 and is subject to change or
withdrawal by CA at any time without notice. Notwithstanding anything in this presentation to the contrary, this presentation
shall not serve to (i) affect the rights and/or obligations of CA or its licensees under any existing or future written license
agreement or services agreement relating to any CA software product; or (ii) amend any product documentation or
specifications for any CA software product. The development, release and timing of any features or functionality described
in this presentation remain at CA’s sole discretion. Notwithstanding anything in this presentation to the contrary, upon the
general availability of any future CA product release referenced in this presentation, CA will make such release available (i)
for sale to new licensees of such product; and (ii) to existing licensees of such product on a when and if-available basis as part of
CA maintenance and support, and in the form of a regularly scheduled major product release. Such releases may be made
available to current licensees of such product who are current subscribers to CA maintenance and support on a when and
if-available basis. In the event of a conflict between the terms of this paragraph and any other information contained in this
presentation, the terms of this paragraph shall govern.

Certain information in this presentation may outline CA’s general product direction. All information in this presentation is for
your informational purposes only and may not be incorporated into any contract. CA assumes no responsibility for the accuracy
or completeness of the information. To the extent permitted by applicable law, CA provides this presentation “as is” without
warranty of any kind, including without limitation, any implied warranties or merchantability, fitness for a particular purpose, or
non-infringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document,
including, without limitation, lost profits, lost investment, business interruption, goodwill, or lost data, even if CA is expressly
advised in advance of the possibility of such damages. CA confidential and proprietary. No unauthorized copying or distribution
permitted.

FOR INFORMATION PURPOSES ONLY

Terms of this Presentation

26 CA World 2011, Las Vegas, NV, USA , November 13-16, 2011 | Copyright © 2011 CA. All rights reserved.

MI340SN

modern application development with CA IDMS

Questions and Answers

52 © 2016 CA. ALL RIGHTS RESERVED.IUA/CA IDMS™ Technical Conference

Please Complete a Session Evaluation Form

 The number for this session is A07

 After completing your session

evaluation form, place it in the

envelope at the front of the room

