

CA Release Automation

Shared Components

Best Practice & Coding Standards

Author : Walter Guerrero – walter.guerrero@ca.com

Version: 1.7

Filename: CA-RA-SharedComponents-Coding-Standards.docx

Date: 4/6/2015

Page 2 of 20

Table of Contents
Introduction .. 4

What is a Shared Component ... 4

How to create shared component .. 5

Step 1 – Shared Component Planning .. 5

Step 2 – Actions to be used... 6

Step 3 – Flows to be used ... 6

Step 4 – Software Artifacts to be used ... 7

Step 5 – Server Types Assignment .. 7

Step 6 – Using shared component s in applications ... 8

Coding Naming Conventions ... 10

Components Names .. 10

Flow Names ... 11

Actions Name .. 11

Parameters Names .. 11

Internal .. 12

Environment.. 12

Release .. 12

User Input ... 13

Collection Names .. 13

Artifacts ... 13

Exporting Shared Components ... 13

Documentation Conventions .. 14

Release Doc ... 14

Descriptions in Shared Components ... 14

Best Practices .. 16

Shared Components .. 16

Multiple Revisions ... 16

Mapped Artifact Types .. 17

Shared Component’s Actions .. 17

Shared Component’s Flows .. 17

Generic Flows .. 18

Number of actions in flows ... 18

Loops in Flows ... 19

Page 3 of 20

Setting Booleans as result of flow ... 20

Copyright Notice ... 20

Page 4 of 20

Introduction

This document will focus on the Best Practices, How To’s and coding standards that will
provide guidance to create reusable shared components. This new capability allows users
the ability to create workflows much faster with pre-built, tested workflows that follow
coding standards.

These coding standards will make the Release Automation flows created easier to
understand, modify, and debug.

What is a Shared Component

Shared components provide users with the ability of creating deployment logic once and
share the deployment logic across multiple Release Automation applications. Version
control is an integral part of shared components, where you can have multiple revisions
available to the Release Automation application. This is very critical, when you would like to
maintain application a at the shared component revision b and application b at the shared
component revision 4. Shared components help organizations establish best practices by
defining standards regarding common deployments.

Using shared components ensures that all teams follow the same guidelines and workflows.
For example, if you have multiple applications that use a Tomcat server, define the flows in
a shared component and use it in all of these Release Automation applications.

Page 5 of 20

How to create shared component

The creation of a shared component needs to follow a very methodical process; we have created a

best practices list (shown below) to help in the proper “flow” to follow for a successful development

of a shared component.

 Step 1 – Shared component planning

 Step 2 – Actions to be used

 Step 3 – Flows to be used

 Step 4 – Software Artifacts to be used

 Step 5 – Server type assignment

 Step 6 – Using shared components in applications

After the above steps have been completed (which will be expanded below) , you will package the

shared component for distribution or make the shared component available to the necessary

applications in the present Release Automation installation.

Step 1 – Shared Component Planning

Prior to the creation of the shared component, you need to plan out what exactly is the shared

component going to be doing, as well as the number of action packs that you will be utilizing as part

of this shared component.

Part of this planning will be the creation of a flow chart showing how the different actions and flows

will be interacting for the creation of the given shared component.

The objective is once the shared component has been created and a “release” version is made

available, you will be able to build out processes based off these flows in an application within 10

minutes (based on complexity).

The above flow chart shows an example of the types of steps that you will need to take for the

powering on/off of a VMware VM image.

If VM is

Powered ON

If VM is

Powered OFF

If VM is

Suspended

Power Off

Shutdown Guest

Reset Guest

Suspend

Power On

Power Off

Power On

Get Current

Power State

Select VM Flow

Get List of

Virtual Machines

User Input

Select VM

Page 6 of 20

Step 2 – Actions to be used

Once you have planned out the purpose of the shared component and what exactly you need the

shared component to accomplish. Follow the procedure below.

 Look at the generic actions that you will need, for example set parameters, find files,

manipulate files, etc.

 Select the correct action pack(s) that will be needed in the shared component.

 Under the “Actions”, it is recommended that you define the following categories, these

categories represents the capabilities associated for each section, for example for the

“Getters”, you will add actions that get a value, i.e. “Get file status”. You need to also

include a section in relation to the exclusive actions for this shared component, such as

JBoss.

o Getters

o Setters

o Checkers

o Generic

o <SharedComponent>

 Defined the parameters that you will be using, it is recommended that you setup the proper

environment and release variables to be used as the main interaction via the deployment

phase.

 Look at values that are constantly being used and create the parameters based on the

parameter conventions listed below.

 In a shared component, you will need to utilize parameter values to interact with the actions

and flows that make up the given shared component. This become more important, since

you can only pass parameters and you can only update the parameters at the action level,

you cannot update parameters or entries at the flow level.

 Once you have added the shared component to a given application, you can update the

values associated with the given shared component parameters.



Step 3 – Flows to be used

Once you defined and named the actions that will become part of the shared components, it is

recommended that you also create categories for the flows as well. This improves readability and

maintainability of the flows.

 Create the following categories

o Generic

o Management

o Configuration

 Based on what the shared components will be performing, you can create additional

categories as needed.

 Create generic flows that perform commonly used tasks, for example a flow that will provide

the JBoss home dir, instead of having to enter this value via an environment or release

Page 7 of 20

parameter, this value is determined at runtime and provided to all the other flows as

needed.

 For the processing of global artifacts, it is recommended that you create a sub-flow that will

be using a loop based off the collection of the given artifact.

Step 4 – Software Artifacts to be used

Shared components1 can also use artifacts. Below is a definition of global artifact.

A global artifact is an artifact that has been mapped to a shared component, where it can be

ported to different applications in different Release Automation installations.

The importance of global artifacts is its portability and the processing of the artifacts defined within

the global artifact.

As shown in the image above, you can see that the “mapped” artifact type has been assigned to the

JBoss shared component. The recommendation here is to look at the type of artifacts that will be

generic enough to all the flows that make up the shared component.

For example, “jbossApps” and “jbossConfig” are the defined global artifact types for this shared

component.

If the global artifact does not exist, when you import the shared component into a Release

Automation installation, the global artifact will be created for you. You still need to populate the

definition types and release versions.

Step 5 – Server Types Assignment

Once you have added the necessary artifact definition to the global artifact that was installed as part

of the shared component, and you have made the shared component part of an application, it is

important that assigned the necessary server type to those artifact definitions, below is an example

of what this would look like.

1
 Available starting with RA version 5.5.1.

Page 8 of 20

Step 6 – Using shared component s in applications

Once the shared component has been created, you will have two methods that you can follow.

 Using the shared component in the same Release Automation installation, this is

accomplished by assigning the shared component to the application as shown below.

In the design process, you will “assign a shared component” as shown in the image above.

Page 9 of 20

The working revision should the highest version listed, in the image above that will be revision 0.4.

Finally, you are going to see the shared component that is now part of the application, you are now

ready to either utilize the pre-built shared component’s flows/actions or use them to create

additional flows in the application’s processes.

Now, if you need to distribute this shared component, you will have to export the shared

component as described in the “Export Shared Component” section below.

 Once you have the created zipfile, you need to login to the new Release Automation

installation.

 Go to the DesignerImport/Export link.

 Click the “Import” button and proceed to import the shared component zipfile.

See the image below to see what this would look like.

Page 10 of 20

Coding Naming Conventions

It is important that meaningful names be used to name the actions, flows, parameters, and

collections that will make up the shared components libraries.

We are going to use lower camel-casing, where the first letter of each embedded word is lower

case, with the exception of the technology that we are writing the component for.

For the components and workflows, the names will be starting with “<CompanyName> _”. For

parameters, this will become a suffix as shown “_<CompanyName> <paramaterScope>.

Components Names

The component name will start with “CA_” for CA technologies provided shared

components, and then we will add the technology for which this component is being

written. “CA_Componentname”. For customers, this will be “CompanyName_”.

Page 11 of 20

If additional sub-components are needed, the naming convention will be as follows: “CA_

Componentname_subcomponent”.

Flow Names

Flows will be named as follows “CA_flow_Componentname_flowname”.

Actions Name

The actions that make up the shared components to be created by the CA team or other
teams (these teams could be CA services on behalf of a customers, partners, or customers)
need to retain their default names as much as possible; this is being done to avoid confusion
by the support, pre-sales teams, partners, and customers that will be using these shared
components libraries.

There is going to be a need to have the actions named based on what they are going to be
accomplishing.

Parameters Names

All parameters will have a suffix of “_<CoName><parameterScope>”; the scope will be
based off the following scope values in Release Automation.

 Internal  no entry

Page 12 of 20

 User Input  u

 Environment  e

 Release  r

It is recommended that a parameters folder be created and include all the shared
component’s parameters in this newly created folder. This will help with maintainability
issues.

The parameter folder needs to be named as “componentName_CA”.

A typical view of the component’s parameter folder with multiple parameters added. Notice
that the parameter type is already listed for each of the parameters in this particular folder.

Internal

Since the internal parameter will be the most common parameter being utilized, it needs to have a

suffix as follows: “name_CA”.

Environment

For environment parameter the naming suffix will be “name_CAe”

Release

For release parameter the naming suffix will be “name_CAr”

Page 13 of 20

User Input

For user input parameter the naming suffix will be “name_CAu”

Collection Names

Collections represent a special case, where collections can be defined under the following
scopes: environment or release.

The naming suffix will follow this format:

Environment scope  “name_CAce”

Release scope  “name_CAcr”

Artifacts

The global artifacts that are part of the shared component, it is recommended that they be named

as follows.

<sharedcomponent>artifact Type  jbossApps

Exporting Shared Components

When creating an export file of the shared components, the following naming convention needs to

be followed: “componentName_CA_vxxx”, where the ‘xxx’ represent the version number in Release

Automation. It is recommended that the exported zipfile be password protected as well, the default

password to be used would be “CARA_$haredComponent*”

Page 14 of 20

 JBoss_CA_v1

It may be necessary that multiple shared components will need to be exported in a single zipfile

package.

Documentation Conventions

The following documentation guide lines need to be followed.

Release Doc

The release documentation will be based off a PDF format for portability purposes, at the

same time the release document will also include a table of contents and be setup with the

following sections:

 Introduction

 What’s New

 Fixes

 Workflows

o Listing of flows by component

 Environment variables

o Generic

o Listing by component

 Artifacts

Descriptions in Shared Components

In the description for the shared component, add a short description of what this shared

component would be covering.

The flows need to be document for maintenance and usage. All actions added need to have

a description of what the action will be doing within this given flow.

Page 15 of 20

The description for the parameters needs to be completed describing what the parameter

will be used for.

Page 16 of 20

Best Practices

It is recommended that the following best practices be followed for the creation of the shared

components. These practices will improve the quality and portability of the shared components.

Shared Components

Part of the planning of the shared components that need to be created, it is important that you

defined what type of work each of the components will be performing, below is a typical view,

where you can see the default shared component for JBoss, which will mostly perform basic flows

for deploying/removing applications to the JBoss application server. There is also another

component designed to perform flows for the JBoss application server’s configuration requirements.

Multiple Revisions

To avoid confusion after the creation of the distributable zipfile package, it is recommended that you

export all the versions that you have been working on, afterwards remove all the older versions, and

create a new distributable that contains just one revision (the latest version). You can then re-import

the older versions for historical purposes.

That is one method to follow another method to follow, after the first release of your shared

component is to include only the released revisions in upcoming shared components zipfile.

Page 17 of 20

Mapped Artifact Types

The global artifact type that is part of the shared component will be created during the import

phase, if the artifact types are not present already. You will need to add in the release doc for the

shared component on the global artifact type that the shared component needs to use.

Shared Component’s Actions

To improve readability of the actions that will make up a given shared component is recommended

that categories be part of the actions, the following list of generic categories will provide you with a

logical representation of the different actions and you can at a glance determine which action to use

based on these generic categories.

 Checkers

 Getters

 Setters

 <component’s technology>  In this case, this will be i.e. JBoss

Below is a representation in how the generic categories will look like.

Shared Component’s Flows

The flows need to be named and setup based on the work to be performed, this will reduce

confusion, and provide the developers with a quick glance on the available flows.

Page 18 of 20

Generic Flows

Create generic flows that will be performing repetitive activities, for example in a JBoss installation is

necessary to know the JBoss Home directory location, this is a necessary information prior to

executing any JBoss actions. The results obtain by these generic flows needs to be placed in internal

parameter variables as needed.

Number of actions in flows

To reduce the complexity of the flows, it is important that the number of actions be limited. This can

be accomplished by including other flows within a flow and keep the number of actions to a

minimum. For example use four actions and another generic flow.

Page 19 of 20

Loops in Flows

Loops will become very important when operating on global artifact types, therefore when you are

creating a flow that will need to loop thru the global artifact type, it is recommended that the flow

contains generic flows and another flow that will loop thru the global artifact type and perform the

necessary actions.

For artifact type, the loop type will be collections.

Page 20 of 20

Setting Booleans as result of flow

As a best practice, it is recommended that you setup Boolean values for the different flows as a

mechanism defining if the actions within the flow has completed successfully, or has failed.

For example in the image below, there is an action that checks the results of the status of the

application in the JBoss application server, based on the this check, a Boolean value will be set

accordingly and this value can be used to launch another flow as necessary.

Copyright Notice

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective
companies. This document does not contain any warranties and is provided for informational
purposes only. Any functionality descriptions may be unique to the customers depicted herein and
actual product performance may vary.

