
Successfully Integrating Best of
Breed Development Tools

Dave Tomkins
Jumar Solutions
Session Number 33
Tuesday, 13 June

http://www.ca.com/

Session Abstract
• The presentation will discuss the reasons for integrating different model-based

development tools from the same or different vendors into the same development
lifecycle and some of the practicalities of automatically exchanging model objects
between tool repositories in a managed and seamless way.

• Adopting other proprietary UML analysis tools need not be a challenge when
customers also wish to use them together with AllFusion Gen's enterprise code
generation and delivery capabilities. The presentation will focus on data modeling
and UML modeling in an AllFusion Gen-centered development process.

• The need for effective lifecycle management, and demands for better quality and
productivity, make automated integration of 'best of breed' tools a necessity.

Agenda

• Why Integrate Tools?
• The Big Picture
• Object Mapping and Model Transformation
• Data Modeling
• UML Modeling
• Demonstration of XMI Interchange with AllFusion

Gen
• The Need for Standards
• Managing Change, and Practical Considerations

Why Integrate Tools?

• Development lifecycles are complex. Different stages
and tasks have different requirements

• Different types of user have different requirements
– Front end analysts demand more visualisation
– Coders tend not to use a lot of diagrams

• Objects created during one development stage are
used in another

• No single tool can be the best at everything

The Big Picture

• A development architecture diagram which shows
how various development tools and technologies
relate to one another, with AllFusion Gen at the core

• Shows where Jumar’s technologies help by enabling
integration and easing transition from one phase or
technology to another through automation

Data modelling and
AllFusion Gen

UML modelling and
AllFusion Gen

Connecting Tools - Object Mapping

Transformer Requirements
• Must deal with all major objects on both sides
• Must deal with the issues of change and configuration

management
• Must be flexible to support in-house standards
• Must show quality and productivity gain in the development

cycle
• Must be intelligent - more than a simple metadata bridge
• Must be simple to use on a daily basis

API or
interface

Gen API

1. Read tool data via
exposed object
hierarchy or
interchange file

1. 2. 2.

3. Update Gen data via
proprietary ActiveX interface
which calls Gen API functions

3.

Code-based
transformation

rulesmodel data
exposed

Gen data
generatedModelling

Tool Advantage
Gen

ActiveX
layer

FRAMEWORK FRAMEWORK

BUSINESS OR
MAPPING RULES

Model Transformer

2. Main application
performs all object
mapping and
transformation

Jumar:Links Features
• Simple GUI interface, easy to use
• Bi-directional
• Direct AllFusion Gen model manipulation
• Common transformation engine
• Slot-in business/mapping rules module
• Flexible options
• Supports change management

Data Modelling

• Data Modelling is supported in a minimalistic way by
Gen

• Dedicated data modelling tools such as CA’s AllFusion
ERwin Data Modeler are full-featured data and database
modeling tools with many more features

• Combination of Gen and ERwin allows rapid
development of new web/J2EE applications based upon
existing data stores

• Improves user and analyst communication
• Allows the DBA function and the Gen development

world to be properly integrated

ERwin Features
• Design layer architecture
• Full physical property support
• Datatype mapping facility
• Naming Standards and Glossary
• Complete Compare bi-directional synchronization

across models
• Database design generation
• Forward and reverse engineering
• Large model management via Subject Areas and Stored

Displays
• Drawing objects
• Data Warehouse design

Object Mapping Rules
How to map ERwin
model objects to Gen?

Mapping Rules - Examples

An ERwin Entity becomes a Gen Entity. Its attributes
and relationships are also transformed

The ERwin attribute properties are mapped to the Gen
attribute. Datatype mapping is user-customisable

Validation Rules in ERwin become Permitted Values or
Ranges in Gen

ERwin Subtype relationships are converted to Gen
Entity/Subtype hierarchies

Classifying attributes, values and partitionings are
automatically created in Gen where needed for subtypes
(optional)

UML Modelling
• Promotes the robust and scalable architectures

critical for enterprise applications
• Component design for reuse
• Use Case technique popular and powerful
• Visualisation
• Maintenance and documentation
• Openness
• Future proofing - part of OMG’s MDA* strategy
• Resource availability

* Model Driven Architecture

Different Paradigms?

– Class
– Attribute
– Association
– Component
– Interface
– Operation
– Parameter

UML AllFusion Gen
– Entity Type / Spec Type
– Attribute
– Relationship
– Component Spec Type
– Interface Type
– Action Diagram
– Information View

Some things map relatively easily…

Different Paradigms?

– Generalisation and
Specialisation

– Package
– Dependency
– Datatype
– Stereotype
– TaggedValue
– …

UML AllFusion Gen

– Subtype
– Subject Area
– Attribute Properties
– Identifier
– Info View Properties
– Work Set
– …

Some not so easily…

UML Tools
Dozens to choose from

Popkin
System Architect

AllFusion
Component

Modeler
Rational Rose

Component Architect

Borland Together

Compuware
OptimalJ

Simply Objects
Oracle JDeveloper

Model Transformation
Creating a starter UML Model from AllFusion Gen

AllFusion Gen to
XML file

XML file
to UML Tool

XMI import

Model Transformation
Creating an AllFusion Gen model from UML Tool

XML file
to AllFusion Gen

UML Tool to
XML file

XMI export

Demonstration
AllFusion Gen and UML

Flexibility

Many click-to-select
rules allow fine tuning
for the result you
desire.

Some rules, such as
Apply CBD naming
standards, can save a
massive amount of
manual effort.

Change Management

ERwin: Custom Properties

UML:TaggedValues

used to store object ids and
names

Required to support round-
trip transformations

Practical Considerations
• Development life cycle and model management

strategies must be extended
• Roles and responsibilities must be defined – central

vs distributed
• Model transformations must be controlled
• Decide which is the master model. Try to transform

in one direction only
• Standards at both ends are key to maximum

efficiency of the transformation process
• Some compromises may be required

Summary
• There are significant benefits to the IT department from taking

advantage of best of breed tools
• Well-defined object mapping rules are the key to successful tool

integration
• Integration can be direct via APIs or via common interface

exchange mechanisms such as XML/XMI
• It is possible and practical to model data with ERwin, model

components with UML and realise applications with AllFusion
Gen within the same development life cycle

• More than just a bridge is required. Intelligent, configurable
transformation checks, changes, adds

• High automation means high quality and productivity, in-line
QA and standards enforcement

• Maximum benefits come from a managed implementation into
an amended development lifecycle

Questions

	Session Abstract
	Agenda
	Why Integrate Tools?
	The Big Picture
	Connecting Tools - Object Mapping
	Transformer Requirements
	Jumar:Links Features
	Data Modelling
	ERwin Features
	Object Mapping Rules
	Mapping Rules - Examples
	UML Modelling
	Different Paradigms?
	Different Paradigms?
	UML Tools
	Model TransformationCreating a starter UML Model from AllFusion Gen
	Model TransformationCreating an AllFusion Gen model from UML Tool
	DemonstrationAllFusion Gen and UML
	Flexibility
	Change Management
	Practical Considerations
	Summary
	Questions

