nimbus

S OFTWARE AS

NimBUS

Perl extension for the
NimBUS Message Bus

Nimbus Software as

1/20

Perl

extension for NimBUS Nimbus Software AS

Contents

1. INtroducCtioncceeee e ————— 5
2 0 o ¢ 7Y o 35N 5
21 L0 1Y =Y =P 5
3. NIimbus — APl 7
4. NimMBUS —PDS ... 11
5. NIimMBUS — SeSSioN......ccoiiiieeiiiiiiirrrrres s 12
6. Nimbus CFG. ... s 15
7. Terminologycccccccciiiiiiiinnin s 18
71. License SyStem........ccocceceeircerrrrrcr e rsrmr e s s e 18
7.2. NIimbus Manager.........ccccoiiiiiiccisecerrre s csssee e e e sssse e e e s s s ssnmnenes 18
7.3. Nimbus Service Controller ... s 18
7.4. NIimBUS domain.........cccooceiiiiiiiirnres e 18
7.5. o] o1 18
7.6. L0 o 411 o | =T N 18
7.7. SPOOIEE ...t ———————————————— 19
7.8. o [o 19
7.9. g o] o1) N 19
7.10. NIimBUS AdAress........cccocminimminemmniniessss s s ssssssssssses 19
711. Message Model.........oiiiiiiiiiirr e ———— 19
712, Prog. Interfaces.........cccoueeeerrrcsserrrssererrsssr s ssssr e ss s e sme e ennan 20
75 X TR € T =7 YL 20
7.14. =Y N 20

2/20

Perl extension for NimBUS Nimbus Software AS

Nimbus Software AS

Nimbus Software AS is an independent software consulting and development
company located in Oslo, Norway. The company has an extensive knowledge of
managing systems, applications and networks in client/server environments. All
consultants and system developers are specialists in advanced UNIX and
Windows NT technologies and have an in depth understanding of the core
technical foundation of these platforms.

Nimbus Software AS
Olaf Helsets vei 6
N-0621 Oslo, Norway
Phone: +47 2262 7160
Fax: +47 2262 7161

e-mail: nimsoft@nimsoft.no
http://www.nimsoft.no

3/20

Perl extension for NimBUS Nimbus Software AS

Nimbus Design Strategies

Based on years of development experience and installations of systems
management solutions world-wide, spanning global enterprises to small and
medium sized companies, we have focused on the following areas when
developing the Nimbus Technology:

e Minimum impacts on system resources like CPU, disk and memory.

e Intelligent message handling to avoid unnecessary networks traffic, i.e.
message suppression.

e 100% guaranteed message transfer - no lost messages. Lost messages is
typically a problem using unreliable network management protocols like
SNMP or in situations where there is network failure.

e Secure message transfer between Robot and receiver by use of
cryptographic tools like kerberos or other proprietary protocols.

e The ability to communicate across Firewalls.
e Support for dialled-up ISDN communication.
e Fast and easy deployment, providing rapid return on investment.

e Preserves technology investments by leveraging existing enterprise
management solutions as well as integrating existing in-house developed
management solutions.

e Scalability, both horizontally and vertically.

e Ease of customisation and development of in-house Robot Probes without
having to learn complex, inadequate and proprietary languages.

4/20

Perl extension for NimBUS Nimbus Software AS

1. Introduction

Nimbus Software AS has designed the message-bus (NimBUS) to be as open as
possible with respect to the various (and specific) user needs. In order to be able
to interface the NimBUS, extensions to existing programming environments are
available. The following programming languages/environments are currently
supported:

e Perl5 (WIN32,UNIX)
e C/C++ using dynamic shared libraries (or as a COM object for WIN32)
e Visual Basic or VB Scripts

This document describes how you can build your own NimBUS Probes using
Perl.

2. Concept

This section describes the NimBUS Concept.

2.1. Overview
The NimBUS

& a A F,
g g ey g

‘Robot -

s

active

pazzive

Probe

A program designed specifically towards a certain task, such as monitoring an
application, a filesystem, a database etc. or by providing services as a traditional
server. The probe may be designed to behave as a timed probe by running once
and terminating upon completion of the task, or it may be designed as daemon
probe by running constantly with some kind of waiting mechanism built into it. The
daemon probes are monitored by the robot controller, and is restarted if it
terminates. Probes ca be developed using Perl, Visual Basic or C/C++

5/20

Perl extension for NimBUS Nimbus Software AS

Robot

The entry-point for a system (host) into NimBUS. The Robot contains all
necessary infrastructure. Its primary task is to maintain and manage as set of
probes, and to collect messages sent (published) by its clients. The Robot
consists of a controller and a spoolerspooler . A Robot will attempt to establish
contact with a hub during startup-time. The NimBUS robot will automatically
detect hubs in the network segment, and connect to one of these (unless
specifically specified) during its initialisation process.

HUB

Is the central connection point for a set of robots. It receives all messages posted
(sent) by any client (usually via the spooler) and distributes these messages to a
set of subscribers of the publishing-subject. It keeps track of the NimBUS
addresses in the domain of hubs, as well as information about all its robots.

6/20

Perl extension for NimBUS Nimbus Software AS

3. Nimbus - API

Nimbus::API - Perl extension for the Nimbus Message Bus

SYNOPSIS
use Nimbus::API;

niminit(iFlag);
nimEnd (iFlag);

nmy($i Ret, $szl p, $i Port) = ni mGet NaneTol p($szNane) ;
ny($i Ret, $szNane) = ni nGet | pToNane($szl p, $i Port);

ny ($szSup)

ny($i Ret, $szl d)
my($i Ret , $sz1 d)
ny($i Ret, $r dat a)
my ($ni ns)

ni nBuppToSt r ($bHol d, $i Nunber , $i Seconds, $szSuppKey)
ni mAl ar m($i Level , $szMsg[, $szSub[, $szSup[, $szSrc]]]
ni nPost Message($szSubj ect, $i Level , $szSup , $udat a) ;
ni nRequest ($szAddr, $i Port, $szCnd, $udata [, $i Sec]);
ni mBessi on ($szAddr, $iPort);

ni nSessi onFree ($ni ns);

)i

ny($i Ret, $rdat a) ni mBessi onRequest ($ni s, $szCnd, $udata [, $i Sec]);

ny($i Ret) = ni nBessi onSend ($ni ns, $szCnd, $udat a) ;
nmy($i Ret) = ni mRegi st er Probe ($szProbeNane, $i Port);
ny($i Ret) = ni mJnRegi st er Probe ($szProbeNane);

my($rc, $val ue) = ni nGet Var I nt ($synbol) ;

ny($rc) = ni nBet Var I nt ($synbol , $val ue);

ny($rc, $val ue) = ni mGet Var Str ($synbol) ;

ny($rc) = ni nBet Var St r ($synbol , $val ue) ;

ny ($l ogi n) = ni mLogi n($user, $password) ;

ni mLogSet ($szFil e, $szPrefi x, $i Level , $i Fl ags) ;
ni mLogSet Level ($i Level);

ni mLog ($iLevel, $szString);

ni mLogdC ose();

ny($cf g) = cfgQpen ($szFil e, $bReadOnl y) ;

nmy($i Ret) = cfgC ose ($cfg);

my($i Ret) = cfgSync ($cfg);

ny($list) = cfgKeyLi st ($cfg, $szSection);

nmy($i Ret) = cfgKeyWite ($cfg, $szSection, $szKey, $szVal ue);
ny($szVal ue) = cfgKeyRead ($cfg, $szSection, $szKey);

ny($i Ret) = cf gKeyRenane ($cfg, $szSection, $szA d, $szNew) ;
nmy($i Ret) = cfgKeyDel ete ($cfg, $szSection, $szKey);
nmy($list) = cfgSectionList ($cfg, $szSection [, $bRecurse]);
ny($i Ret) = cfgSectionDel ete ($cfg, $szSection);

nmy($i Ret) = cfgSectionRenane ($cfg, $szA d, $szNew) ;

ny($i Ret) = cfgSecti onCopy ($cfg, $szFrom $szTo);

ny($list) = cfgLi stRead ($cfg, $szSection);

nmy($i Ret) = cfgListWite ($cfg, $szSection, $szKey, $list);
ny($i Ret) = csl Mat chRegExp ($szTarget String, $szMatchExpr);

7/20

Perl extension for NimBUS Nimbus Software AS

DESCRIPTION
This nmodule will wap the N nbus Message Bus (N nBUS), easing

t he devel opment of probes witten in Perl. The functions available in this
nodul e are data mani pul ating routines (pds - Portable Data Strean) and the

functions for sending an Alarm posting a nmessage and sendi ng a request
taken fromthe N nmbus API.

Conventi ons used when prototyping the functions:

sz - prefix for string
i - prefix for integer (numnber)
b - prefix for boolean (true(l)/false(0))

iRet is the Return Code (integer)

The client functions:

Initialize the N nBUS

nimnit(iFlag);

(This nmethod is called upon | oading, and is therefore not
necessary.)

. Create suppression definition string.
ny($szSup) = ni nBuppToStr ($bHol d, $i Nunber, $i Seconds, $szSuppKey) ;

$szSup
$szSup

= ni nBuppToStr (0,0, 0, "Fil eSyst en| $nane");

= ni nBuppToStr(1,0,60,"");

. Post al arm nessage

ny($i Ret, $szld) = ni mAl ar m($i Level , $szMsg[, $szSub[, $szSup[, $szSrc]]]);

iLevel is the alarmlevel (see Level constants).

szMsg is the al arm nessage.

szSub is the subsystemidentifier eg. 1.2.3 (default: 1.1).
szSup is the suppression definition (default: none).

szSrc is the alarmsource (default: Iocal host).

. Post user defined nessage
ny($i Ret, $szl d) = ni nPost Message ($szSubj ect, $i Level , $szSup , $udat a) ;

szSubj ect is the post channel.

i Level is the post priority (see Level constants).
szSup is the suppression definition.

udat a is a PDS record with user-data.

8/20

Perl extension for NimBUS Nimbus Software AS

. Map Ni nBUS name to host-ip and port
nmy($i Ret, $szl p, $i Port) = ni nCGet NaneTol p ($szNane);

szNane is the official N nBUS name (of probe, hub,...).

. Map host-ip and port to N nBUS nanme
ny($i Ret, $szNanme) = ni nGet | pToNane ($szlp, $i Port);

szlp

s the hostname or host-ip address of target system
iPort is

i
is the port number of the targeted service.

. Send request over the NinBUS to a server.

ny($retdata) = ni nRequest ($szAddr, $iPort, $szCnd, $udata, $i Sec);

szAddr is the host-nane or host-ip.

iPort is the service port (see ni nGet NaneTol p) .

szCnd is the service conmand.

udata is the PDS record with user data (see pdsCreate).
i Sec is tine in seconds to wait for reply.

retdata is the return PDS record.
The constants:

Level constants
NI ML_CLEAR (
NI M._I NFO (
NI ML_WARNI NG (
NI ML_M NOR (
NI M._MAJOR (
NI ML_CRI TI CAL (

The 1 og functions:

. Initialize the 1og system
ni mLogSet ($szFile, $szPrefix, $ilevel, $iFlags);

szFile is the logfile nane (or "stdout").

szPre is the nmessage prefix (incase of multiplexed |og).

i Level is the current |oglevel (levels <= ilLevel are |ogged).
i Flags is currently not supported...

. Set new | ogl evel
ni mLogSet Level ($iLevel);

i Level is the new | ogl evel .

e Wite to log
ni mLog ($iLevel, $szString);

i Level is the loglevel (0 is systemerrors).
szString is the nessage to | og.

. Cl ose current | og.
ni mLogCl ose ();

The config-file functions:
. pen config-file
ny($cfg) = cfgOpen ($szFile, $bReadOnly);

. Close config-file
nmy($i Ret) = cfgC ose($cfg);

. Synchroni ze the config-file (buffer) to disk.
ny($i Ret) = cfgSync($cfg);

e Wite value to config-file.
ny($i Ret) = cfgKeyWite ($cfg, $szSection, $szKey, $szVal ue);

. Read val ue fromconfig-file.
ny($szVal ue) = cfgKeyRead ($cfg, $szSection, $szKey);

e List array of keys in section fromconfig-file.
nmy($list) = cfgKeyList ($cfg, $szSection);

9/20

Perl extension for NimBUS Nimbus Software AS

. Renane key in section fromconfig-file.
ny($i Ret) = cfgKeyRenane ($cfg, $szSection, $sz0 d, $szNew) ;

. Del ete key in section fromconfig-file.
ny($i Ret) = cfgKeyDel ete ($cfg, $szSection, $szKey);

. Read array of values fromconfig-file.
ny($fsList) = cfgListRead ($cfg, $szSection);

e Wite array of values to config-file.
nmy($i Ret) = cfgListRead ($cfg, $szSecti on, $szKeyBody, $Li st);

. Read array of sections in config-file.
my($list) = cfgSectionList ($cfg,"setup");

e Delete naned section
nmy($i Ret) = cfgSectionDel ete ($cfg, $szSection);

. Renane naned section
nmy($i Ret) = cfgSecti onRenane ($cfg, $sz0A d, $szNew) ;

. Copy naned section to a new section
ny($i Ret) = cfgSectionCopy ($cfg, $szFrom $szTo);

. Check string with pattern nmatching or reg.exp string
i f (csl MatchRegExp("help ne now', "*me*")) {

print "Found match...";
}

The data mani pul ati on functions:

PDS *pdsCreate ();

int pdsDel ete (PDS *pds);

i nt pdsReset (PDS *pds);

int pdsRewi nd (PDS *pds);

void pdsDunp (PDS *pds);

i nt pdsSearch (PDS *pds, char *key);

i nt pdsPut _I NT (PDS *pds, char *key, int i);

i nt pdsPut _PCH (PDS *pds, char *key, char *s);
i nt pdsPut _PDS (PDS *pds, char *key, PDS *p2);
i nt pdsCGet _I NT (PDS *pds, char *key);

char *pdsGet _PCH (PDS *pds, char *key);

PDS *pdsCGet _PDS (PDS *pds, char *key);

ny($rc, $key, $type, $si ze, $data) = pdsGet Next (PDS *pds);

AUTHOR
Ni mbus Software AS. mailto: ni msoft @i nsoft. no,
http://ww. ni nsoft. no

SEE ALSO
perl (1).

10/20

Perl extension for NimBUS

Nimbus Software AS

4. NimBUS - PDS

Nimbus::PDS - Object interface wrapping the PDS

SYNCPSI S

use N nbus: : PDS
ny $pds = Ninbus:: PDS->new([$pdsData]);

$pds->data();

$pds- >dunp() ;

$pds->rewi nd();

$pds->reset () ;

$pds- >renove($nane) ;

$pds- >stri ng($nane, $val ue) ;
$pds- >nunber ($nane, $val ue) ;
$pds->put St ri ng($nane, $val ue) ;
$pds- >put Nunber ($nane, $val ue) ;
$pds->put ($nane, $val ue [, $type

]
$pds- >put Tabl e ($nane, $value [, $

$val ue = $pds->get Tabl e ($nane [, $type]);
$val ue = $pds->get ($nane [, $type]);
$hptr = $pds- >asHash();
DESCRI PTI ON
The PDS object is a class wapper around the N nbus:
functions.
CLASS METODS

get the get nethod....

Put The put nethod....

Dunp The dunp net hod. . ..

Put Tabl e The put Tabl e nethod. ...

asHash

1 APl PDS

The asHash nethod wi |l produce an associative array (hash) by

traversing the PDS. If the PDS contains other

hi earchy will be preserved by nesting.
Exanpl e:
use Ni nbus: : PDS;
my $pds = Ni nbus: : PDS- >new() ;
$pds->put String("nanme", "Donal d Duck");
$pds->put String("age", 60);

my $h = $pds->asHash();

print "nane: $h->{nane}, age: $h->{age}\n";

AUTHOR

Ni nbus Software AS.
mai | t o: ni neof t @i nsoft. no
http://ww. ni nsoft. no

SEE ALSO

Ni mbus:: AP, perl(1).

PDS' s,

then the

11/20

Perl extension for NimBUS Nimbus Software AS

5. NimBUS - Session

Nimbus::Session - Object interface ontop of the NimBUS

SYNOPSI S
use Ni nmbus:: Sessi on

ny $ni m = Ni nbus:: Sessi on->new($i d, [$session]);

$ni m >subscri be ($subj ects [, hubip [, hubport]]);

$ni m >attach ($queue [, hubip [, hubport]]);

$ni m >di spat ch ($timeout _ns [, $breakOnEvent]);

$ni m >addCal | back ($command [, $format [, $security_level]]);
$ni m >server ([$port, [$tinmeoutCB [, $restartCB]]]);
$ni m >setlnfo ($version, [$conpany]) ;

$ni m >set Retryl nterval ($interval AsSeconds);
$ni m >set Post Cal | back ($functi on_nane);

DESCRI PTI ON
The Session object is a class wapper around the N nbus:: API
nmodul e, and raises the abstraction layer fromthe | owlevel
Ni nBUS API. You may create a server (TCP/IP), that accepts
commands over the port(s) registered by the $ni m>*server*
met hod. The command will be di spatched by the command di spatcher
to the function with the sane name as the command. A conmand
wi t hout a matching function causes an abort situation. Another
feature of this class is the connection possibilities to a
Ni mBUS hub. The functions $ni m>*attach* and $ni m >*subscri be*
both connects to the hub and receives postings over the
hubpost function, see the CALLBACKS manpage.

12/20

Perl extension for NimBUS Nimbus Software AS

subscri be
The subscribe nethod.. ..

attach
The attach nethod....

di spatch
The di spatch nethod. ...

addCal | back
The addcCal | back net hod. ...

server
The server nethod....

When cal l ed without paranmeters the constant NI MPORT_ANY will be
used. An arbitrary port will be tied to the session. The exanple
below illustrates a server that responds to various events

di spat ched by N nBUS.

Exanpl e:
use Ni nbus: : Sessi on

BHHBHHBHH B H R H B H R R R R R
Various call backs. .
HHHBHHHHHHHHHHHH B H B H B R H R AR
sub testit {
nmy ($hMsg, $l evel , $nane, $age) = @;
nimog(1,"(testit) - level: $level, name: $nanme, age: $age")
ni nSendRepl y($hMsQ) ;

sub debug {
nmy ($hMsg, $level) = @;
i mLog(1, " (debug) from $debug to $l evel ");
ni nSendRepl y($hMsg) ;

sub tinmeout {
ni mLog(1, "(timeout) - got kicked");

sub restart
nimLog(1l, "(restart) - got restarted");

HIH R R R R R

MAIN ENTRY

FHEHF I R P R T
sub testit {
$sess = Ninbus:: Sessi on->new("perl");
$sess->setInfo("1.0", "N nbus Software as.");

if ($sess->server (N MPORT_ANY,\ &t inmeout,\&estart)==0) {

$sess->addCal | back ("testit","level, nane, age%d");
$sess->addCal | back ("debug", "level %d");
telse {

ni mLog(0, "unabl e to create server session");

$sess->di spat ch();
get Sessi onLi st
The get Sessi onLi st net hod. . ..

CALLBACKS
The "hubpost" cal |l back function synopsis:

Whenever 'attach' and 'subscribe' sessions are created, the
postings will be delivered over the hubpost function. It nust be
decl ared. This exanple shows a *very* sinple callback function

| ooks like, it merely dunps (using pdsDunp) the user-data bl ock
of the posting. It would be normal to extract the values from
the *$udat a* paraneter, as 'subject'. The paraneters passed to
the *hubpost* function are

13/20

Perl extension for NimBUS Nimbus Software AS

$hisg - Message handl e used by ni nSendReply.
$udata - User data bl ock (PDS).
$ful | - Conpl ete nmessage bl ock, with enbedded udata (PDS).

sub hubpost {
ny ($hMsg, $udata, $full) = @;

$subj ect = pdsGet _PCH($ful |, "subject");
print "The user-data posted under subject: $subject\n”;
pdsDunp($udat a) ;

ni mSendRepl y($hMsg) ;
}

The command cal | back function synopsis:

Every comrand added by the addCal | back method requires a

cal | back function such as the one defined below. The $parl to
$parN are specified by the *format* el ement in the addCal |l back
paranmeter |ist. The $hMsg is the nmessage handle, and is required
by the N nmbus:: API::ni nSendReply function.

sub <comand>
ny ($hMsg, $parl,..., $parN) = @;
ni nBendRepl y($hMsg) ;

}
Exanpl e:
sub debug {
ny ($hMsg, $Slevel) = @;
ni mLog(1, " (debug) from $debug to $l evel ");
ni mBendRepl y($hMsg) ;
ni mLogSet Level ($l evel);
}
$ni m >addCal | back("debug", "I evel %d");
CHANGES
Pl ease note that the interface has changed for the follow ng
nmet hods:
new([$sesslist]) -> new([$id [, $sesslist]])
server ([$port[, $nane[, $cpny[, $vers]]]1]) ->

server ([$port[, $tout CB[, $restCB]]])

The changes may cause problenms for scripts using the
Ni mbus: : Sessi on nmodul e prior to version 1.05

AUTHOR

Ni mbus Sof t ware AS.
mai | t o: ni msof t @i nsoft. no
http://ww. ni nsoft. no

SEE ALSO

14/20

Perl extension for NimBUS Nimbus Software AS

6. Nimbus CFG

SYNOPSI S
use Ni nbus:: CFG

ny $cfg = Ninbus::CFG >new(["ny.cfg" [, $hptr]]);

$cf g->open("ny.cfg" [, $hptr]);
$cf g- >get Val ues($hptr);
$cf g- >get Keys($hptr);
$cf g- >get Sect i ons(S$hptr);
$cf g- >set Converter(\&rc [,\&dst]);
$cf g- >debug($bool ean) ;
$cf g- >dunp($cf g) ;

DESCRI PTI ON
The CFG object is a class wapper around the functions targeted
agai nst configuration files. The relevant functions are
Ni mbus: : APl : : cf g*

When a new CFG object is constructed the constructor takes one
required argunment (the configuration filenane), and one optiona
(a 'private' hash). It would be normal to maintain the hash
within the CFG object, but some cases could occur where it woul d
be useful to add the configuration data to a private hash. Eg.
when 2 or nore configuration-files are referenced by one hash!

Lets call this configuration 'test.cfg'

<set up>
logfile = stdout
| ogl evel =2
<nanes>
nane_0 = | uke
name_1l = leia
nane_2 = r2d2
</ names>
</ setup>

The follow ng code will access the values fromthe setup section

use N nbus:: CFG

ny $cfg = Ninbus::CFG >new("test.cfg");

print "The logfile : $cfg->{setup}->{logfile}
e

\'n
print "The | oglevel: $cfg->{setup}->{loglevel}\n";

15/20

Perl extension for NimBUS Nimbus Software AS

CLASS METHODS
open

The open nethod takes a filenanme/path as a required paraneter,
and a hashptr as an optional paranmeter. This method i s used when
a postponed parsing is needed, due to setting eg. the nane
converter prior to parsing the file. In result it deliveres the
sane as a 'new does.

get Val ues
The get Val ues nethod takes a hashptr as its input paraneter, and

returns an array of the values taken from each key/value pair in
the section.

We're using the configuration file "test.cfg' fromthe DESCRI PTI ON.
And the following code segnent to extract and access the data:

use Ni nmbus:: CFG

use strict;
ny $cfg = Ninbus:: CFG >new("test.cfg");
ny @anes = $cfg->get Val ues($cf g- >{ set up}->{nanes});

@anes now hol ds 3 nanes. ..
set Convert er

The set Converter nmethod takes a reference to a function as
paraneter. This function is called whenever a new section is
parsed. The default converter substitutes every hash(#) in a
section nane with a slash(/). This is useful when eg. using the
slash (/) character as part of the section/key nane, such as a
filename or equal. Consider the follow ng code and configuration
file:

ny.cfg:

<fil esystens>
<#dev#dsk#cOt 3d0s4>
nane = /usr
hi gh = 99
low = 70
</ #dev#dsk#cOt 3d0s4>
</fil esystens>

16/20

Perl extension for NimBUS Nimbus Software AS

nmy_wo_converter. pl:
WA H A A A R A A A A
Script using the standard/builtin converter

use Ni nbus:: CFG
my $cfg = N mbus:: CFG >new("ny.cfg");

ny $fsl = $cfg->{filesystens}->{"'/dev/dsk/cOt3d0s4'};
print "filesystenl: $fsl->{nane}, high:$fsl->{high} \n";
==> will print 'filesysteml: /usr, high:99'
nmy_w_private_conv. pl:
HHHT P P OO T
Script using a private converter
use Ni nbus:: CFG
sub nyconv {

ny $s = shift;

$$s =~ s/\#/\>/g; # convert from hash(#) to GI(>)
ny $cfg = Ni nbus:: CFG >new();

$cf g- >set Converter (\ &myconv);
$cf g- >open("ny. cfg");

ny $fsl = $cfg->{filesystens}->{' >dev>dsk>cOt 3d0s4' };
print "filesysteml: $fsil->{nanme}, high:$fsl->{high} \n";
==> wll print 'filesysteml: /usr, high:99
AUTHOR
Ni mbus Sof tware AS.
mai | t o: ni neof t @i nsoft. no
http://ww. ni nsoft. no
SEE ALSO

Ni nbus:: API, perl (1).

17/20

Perl extension for NimBUS Nimbus Software AS

7. Terminology

7.1. License System

The license information consists of the following parameters:

Product: Name and version of product or component installed

Info : Description, name of product, licensee etc..
IP : IP-address of the system. * means a site-license
: Number of clients

Expire : Date of expire
Code :License key

In order to use the Nimbus system, a valid License Certificate including a
License Key is required.

NOTE: The product comes with a 30 days valid License Key.

The license information can be changes from the HUB Configure program.

7.2. Nimbus Manager

The Nimbus Manager is the main application for administration and configuration
of all the nimBUS components. The application has a GUI and is run under
Windows.

7.3. Nimbus Service Controller

There is one Windows NT Service running called Nimbus Watcher.
The service startup parameters are: Login on as 'System account’ and Startup
type as’ Automatic’.

The application called Nimbus Service Controller is a GUI which makes it easy to
start and stop this service. An alternative is to use Services from Control Panel.

7.4. NimBUS domain

7.5. Robot

The robot is the clients (and servers) entry-point into the NimBUS system. Its
primary task is to maintain and manage as set of probes, and to collect messages
published by its clients. The Robot consists of a controller and spooler . A Robot
will attempt to establish contact with a hub during startup-time. The NimBUS
robot will automatically detect hubs in the network segment, and connect to one
of these (unless specifically specified) during its initialization process.

7.6. Controller

The contact point of a robot seen from other NimBUS components, such as the
hub and other clients of the NimBUS. It maintains a set of probes that it starts and
stops according to a configuration. The probes may be started in a timed fashion

18/20

Perl extension for NimBUS Nimbus Software AS

or in a standalone mode called daemon. It responds to requests on the tcp/48000
port.

7.7. Spooler

The spooler receives messages published by the probes (clients) and delivers
these messages to the hub, unless its configured to spool (hold) the message
until a certain criteria is met. The spooler responds to requests on the tcp/48001
port.

7.8. Hub

As the name implies the hub is a connection point of a collection of robots. It
receives all messages posted by any client (usually via the spooler) and
distributes these messages to a set of subscribers of the publishing-subject. It
keeps track of the NimBUS addresses in the domain of hubs, as well as
information about all its robots.

7.9. Probe(s)

A probe is a task-oriented program designed specifially towards a certain task,
such as monitoring an application, a filesystem, a database etc. or by providing
services as a traditional server. The probe may be designed to behave as a timed
probe by running once and terminating upon completion of the task, or it may be
designed as daemon probe by running constantly with some kind of waiting
mechanism built into it. The daemon probes are monitored by the robot controller,
and is restarted if it terminates. A probe may be active in the sense of registering
itself within the NimBUS system, and responding to commands issued by clients
understanding the protocol of the probe. Or it may be passive, meaning it doesn't
make itself available by the NimBUS addressing scheme.

7.10. NimBUS Address

A NimBUS address consists of four basic elements, the domain, hub, hostname
and probe. For example, the address /nimbus/oslo/wscase/nas will resolve into
the ip-address of the host wscase and the port-number of the probe/service
called nas.

7.11. Message model

The NimBUS message model are based on the request/response and the
publish/subscribe models. Request/Response are the standard ways of
communicating over the network. A client issues a request to a server and the
server responds to the request. The publish/subscribe model is useful when a
client wishes to send of some kind of data without a designated receiver. This
could be messages containing performance-data, an alert, data to be inserted
into some database, or messages targeted for gateway servers. The servers on
the other hand merely listens on a one or more specific subjects (registered by
the hub), and is notified by events when data is available on the subject.

19/20

Perl extension for NimBUS Nimbus Software AS

7.12. Prog. Interfaces

It is possible to interface the NimBUS by using many of the industry-leading
programming languages, such as C/C++,Perl,Visual Basic, VB Script and JAVA.
The interfaces makes it possible to quickly and seamlessly integrate the NimBUS
with existing tools, or by tailoring the ie. surveillance system for your specific
needs.

7.13. Gateways

A service (an active probe) used to interface other environments, such as other
Enterprise management tools, SNMP based management tools, paging systems,
mail (SMTP) etc.

7.14. Perl
From the net:

- Perlis an interpreted high-level programming language developed by Larry
Wall. According to Larry, he included in Perl all the cool features found in
other languages and left out those features that weren't so cool.

- Perl has become the premier scripting language of the Web, as most CGI
programs are written in Perl. However, Perl is widely used as a rapid
prototyping language and a "glue" language that makes it possible for
different systems to work well together.

- Perl is popular with system administrators who use it for an infinite number of
automation tasks.

- Perl's roots are in UNIX but you will find Perl on a wide range of computing
platforms. Because Perl is an interpreted language, Perl programs are highly
portable across systems.

- Finally, Perl is more than a programming language. It is a part of the Internet
culture. It is a very creative way of thinking about almost anything.

For more detailed information see:
- http://www.perl.com
- http://www.ActiveState.com

20/20

http://www.perl.com/
http://www.activestate.com/

	NimBUS
	Perl extension for the
	NimBUS Message Bus
	Contents
	Introduction
	Concept
	Overview
	
	
	
	
	The NimBUS
	Probe
	HUB

	Nimbus – API
	NimBUS – PDS
	NimBUS – Session
	Nimbus CFG
	Terminology
	License System
	Nimbus Manager
	Nimbus Service Controller
	NimBUS domain
	Robot
	Controller
	Spooler
	Hub
	Probe(s)
	NimBUS Address
	Message model
	Prog. Interfaces
	Gateways
	Perl

