Setting Baselines and Dynamic Thresholds
Introduction
Product: CA Nimsoft Monitor
Release: 7.5
A baseline expresses normalized QoS levels on an hour-of-day and day-of-the week basis. The baseline_engine probe follows QoS messages on the Nimsoft bus and samples this data up to 30 times during each one-hour interval. This sampling rate provides a statistically accurate baseline while minimizing system resource use.
At the top of each hour, a baseline data point is calculated for each QoS monitor and sent to the qos_processor probe, which, after processing, writes this data to the NIS database. This first baseline approximation for the hour interval is available after the hour has concluded, and is improved with succeeding baseline data points from corresponding intervals gathered over a four-week period.
Baselines are displayed with their associated QoS monitor data in dashboards and reports in UMP.
This Knowledge Base Article constitutes a portion of the official CA product documentation for this CA product. This Knowledge Base Article is subject to the following notices, terms and conditions.
[bookmark: o2130233]Prerequisites
The baseline_engine probe depends on the qos_processor probe for data storage. The baseline_engine probe is distributed as part of your CA Nimsoft Monitor Solution (NMS)--it requires the version of qos_processor included with NMS (qos_processor saves the baseline data), and will not install or operate on versions of NMS earlier than 6.5.
The baseline_engine probe stores four weeks of historical QoS metric and baseline data on the local disk of the system that hosts it.
[bookmark: o2272160]Features
The baseline_engine probe has the following features:
· Scalable, low-memory footprint for calculating baselines across enterprise-class IT environments
· Baselines are figured according to a time-of-day / day-of-week algorithm over a twenty-eight day period
· The baseline_engine's logging detail can be controlled at a fine level of granularity, with individual settings for logging max limit overages, caching, calculation performance, script handling components, etc.
· Dynamic alarm thresholds can be configured within your NMS environment
Important Note: The baseline_engine probe is designed to be deployed with minimal configuration.
[bookmark: o2272176]baseline_engine Probe Deployment
The baseline_engine probe package is deployed on the primary hub in a standard NMS installation. It starts automatically. The baseline_engine probe also enables dynamic thresholds within your NMS environment.
If you want to calculate baselines for your QoS metrics you must configure the calculate baseline setting in the individual monitoring probe configuration.
If you upgrade your NMS from version 7.1, the baseline_engine will inherit the metric set list and calculate baselines after the upgrade is complete.
[bookmark: o2272194]Configuration
The baseline_engine probe is configured using the Raw Configure option in the probe.
The Raw Configure GUI provides these configurable key-value pairs in the setup folder:
logfile
Defines the log file name
loglevel
Sets the overall root log level (from 0 (minimum) to 5(maximum))
scriptloglevel
Sets the log level for messages tracking operation of the scripts that perform the baseline calculations
performance
Switches a lightweight performance monitor process on (true) or off (false). The performance monitor checks every minute on the rate of execution of queuing and calculation, etc. and logs this information to performance.log.
The following keys can be added to the setup folder. For all below, the default level is set to 1 (levels 1 through 5 allowed):
messagestorelog
Sets the log level for the messagestore sub-process
demartialpdslog
Sets the log level for the process that disassembles PDS messages from the bus
metricrunner
Sets the log level for the metricrunner process
metricfactory
Sets the log level for operation of the metricfactory (limited to whether or not the metricfactory successfully started)
metriccalculator
Sets the logging level for the metric calculator, which executes scripts that perform the baseline calculations.
useprevioushour
If there is no historic baseline data available in the current hour it will use the previous hour's data.
[bookmark: o2272242]Sample Configuration
The settings listed below are the typical values for the keys:
<startup>
	<opt>
	java_mem_init = -xms64m
	java_mem_max = -xmx2048m
	java_opts - -XX:+UseConcMarkSweepGC -XX:+ScavengeBeforeFullGC -XX:+UseParNewGC
	</opt>
</startup>

<setup>
	logfile = baseline_engine.log
	loglevel = 1
	scriptloglevel = 3
	messagelimitlog = 2
	performance = true
</setup>

<threshold>
	useprevioushour = true
	alarmcheckers = 4
</threshold>
The alarmcheckers value can be increased to 16 if needed. If the alarmcheckers option is equal to 0 then the dynamic thresholds feature is not enabled.
[bookmark: o2273336]Dynamic Alarm Thresholds
In order to create dynamic alarm thresholds you must have the baseline_engine probe version 2.00 installed on the robot and configured. Dynamic thresholds are configured at the QoS metric level in each probe that publishes an alarm for a QoS metric.
For each QoS metric you must select the Publish Data and Compute Baseline options in order to view the Dynamic Alarm Thresholds section of the configuration.
Example:
[image: http://docs.nimsoft.com/prodhelp/en_US/Library/2273339.png]
There are three algorithms allowed for dynamic alarm thresholds:
Note: You must indicate the direction for each algorithm, either increasing or decreasing.
· Scalar: Each threshold is a specific value from the computed baseline.
· Percent: Each threshold is a specific percentage of the computed baseline.
· Standard Deviation: Each threshold is a measure of the variation from the computed baseline. A large standard deviation indicates that the data points are far from the computed baseline and a small standard deviation indicates that they are clustered closely around the computed baseline.
If you are using baseline_engine 2.1, you can also change the Subsystem ID using the Subsystem (override) field. This is only required if the Subsystem ID shown in the Subsystem (default) field is not correct for your configuration.
[image: BASELINE--Subsystem_ID]
[bookmark: o2143254]Recommended Multiple Hub (tiered) Probe Deployment
The baseline_engine has been designed to be horizontally scalable. The recommended deployment approach is to install it on secondary or sub-hub(s) to distribute the processing. You can distribute the probe using drag and drop with Admin Console or Infrastructure Manager.
Note: The qos_processor probe must be running on the primary Hub to store the QOS_BASELINE messages in the NIS database.
QOS_BASELINE messages (where subject ID is QOS_BASELINE) must be forwarded from the baseline_engine probe on the secondary hub(s) to the qos_processor probe running on the primary Hub. To enable this message forwarding, create a new hub queue or amend existing hub queues to forward the new QOS_BASELINE messages to the primary hub--just as is done for QOS_MESSAGE and QOS_DEFINITION messages.
To amend or augment existing hub queues, edit your existing post (or attach) queues and add the "QOS_BASELINE" subject. Alternatively, create a new post (or attach) queue with just the "QOS_BASELINE" subject.
Example: Configure an Existing Queue
This example shows how to configure and existing hub queue in Infrastructure Manager.
Follow These Steps:
1. In Infrastructure Manager, double-click the hub probe to open its GUI.
2. In the Hub configuration GUI, under the Queues tab, select the queue that forwards messages with QOS_MESSAGE and QOS_DEFINITION subjects:
[image: http://docs.nimsoft.com/prodhelp/en_US/Library/2146614.png]
3. Edit this queue by appending the additional subject ",QOS_BASELINE":
[image: http://docs.nimsoft.com/prodhelp/en_US/Library/2146615.png]
4. Click OK and then Yes when prompted to enable changes. The hub will refresh its configuration (perform a soft restart).
Additional help with setting up queues can be found in the section "The Queues Tab" in the Hub probe online help document.
[bookmark: o2277329]Create Baselines for Specific QoS Monitors
To set up baselines for specific QoS monitors, use the following command:
<baseline_engine dir> java -cp .;bin/* com.nimsoft.threshold.cmd.BaselineSetter -user <user> -pwd <password> -probe <probepath> -o <add or delete> -ids <metric_id...>
Note: For linux or unix the path is .:bin/*
The options are:
· user: The user name
· pwd: The password
· probe: The probe path. This is required.
· id: The metric id of the QOS that thresholds are being defined.
· o: The operator. which can be add or delete.
· ids: The metric id's of the QOS that baselines are being defined, must be last parameter, 100 metricids max, 1 id minimum
Baselines can be obtained by retrieving the metric id from the ci_metric_id field of the s_qos_data table by building an id from the source, target, and qos.

[bookmark: _GoBack]
image2.png
Algorithm

[incressng

[io0

Crtical Level 5

Major Level 4

Minor Level 3

Warn Level 2

Info Level 1

image3.png
Edit Queue

¥ Active

Name:

Tope:

Address:
Subject:

Buk Size

AL

attach

[005_MESSAGE.005_DEFINITION

[cdetaut>

Cancel

th

image4.png
¥ Active
Neme L Cancel

Howe oo, =B
[||

e [attach E

Address:

Subiect: £, 005 _DEFINITIONIE

Buk Size [<defauli: E

image1.png
Compuite Baseline

Dynamic Alarm Thresholds

—{oyame

Algorithm o

Scaar

Percent

Standard Deviation
o

Minor Level 3

T
[
Warn Level 2 [
Info Level 1 [

Subsystem (cisfauit) [11

Subsystem (override) [11

