

CA Release Automation

CDE Plug-in Creation

Best Practices Guide

Author : Walter Guerrero

Version: 2.0

Filename: CA-Release-Automation-CDE-Plug-in-Creation-Best-Practices-GuideV2.0.docx

Date: 12/7/2016

Page 2 of 21

Table of Contents
Overview ... 3

RA CDE Plug-in Framework ... 3

Manifest Definition ... 6

WAR Specification ... 9

Best Practices .. 11

Planning .. 11

Portable Manifest ... 11

Sensitive Information .. 11

Packaging .. 11

Naming and Versioning ... 12

Tools .. 12

Using the proper version of the API calls .. 12

Using the correct parameter method ... 12

Recommended Tools .. 12

RA CDE —SLACK Plug-in .. 13

Slack Eclipse Project .. 16

Adding Plug-in to RA CDE .. 18

Copyright Notice ... 21

Useful Links ... 21

Page 3 of 21

Overview

Customers in their Continuous Delivery journey that is part of their Agile maturity have a
new tool called Release Automation Continuous Delivery Edition, which permits customers
the ability to build “releases”; and these releases can be part of a sprint, program
increments, or milestones.

These releases are composed of multiple applications’ contents (which is what is going to be
delivered at the end of the sprint or program increment). It becomes important as part of
these releases that the different tools being used by the customer can be called directly by
tasks that make up the RA CD Edition release.

Release Automation CDE provides the customers with the ability of creating additional plug-
ins.

This document will take you thru the process that it will take for the creation of a RA CDE
plug-in based off an offline JAVA project, which is built utilizing Maven as the build
infrastructure.

The flow for the creation of RA CDE plug-in is as follows:

 Design the plug-in by selecting the proper Restful/SDK/client API calls to be used.

 Test the API calls independently.

 Setup the JAVA project utilizing Eclipse or IntelliJ.

 Convert the JAVA project in the IDE to a Maven project or any other build
infrastructure.

 Implement the RA CDE plug-in JSON manifest

 Add the plug-in to the RA CDE implementation by importing the JSON manifest.

 Add an endpoint pointing to the desired remote component implementation.

 Add a task to a RA CDE release.

RA CDE Plug-in Framework

The RA CDE plug-in implementation follows the steps listed above, now we are going to
start the detailed explanation of this process.

The steps below will help you understand how a RA CDE HTTP service based plug-in is
developed and the steps that you need to take.

The plug-in code is based off an HTTP service that listens and processes a HTTP POST
request from RA CDE. The HTTP service can execute any type of HTTP request at the remote
endpoint.

The setup of the plug-in is very flexible:

 You can use any programming language.

 Network API of the remote endpoint (HTTP, TCP, or other network protocol).

Page 4 of 21

 Packaging.

All packaged plug-ins are JAVA based web applications that are package as Tomcat * WAR
files, which can be deployed locally or remotely from the core product installation. You can
also deploy plug-ins on a private or public cloud as needed. You could also host plug-ins
using online services such as http://hook.io, especially for online or cloud based remote
components.

The diagram below shows how the interface between RA CDE, plug-in, and remote
component interact:

 The CDE Server makes an HTTP POST request to the plug-in when the invocation of a plug-in

service occurs.

 The plug-in uses the information in the POST request to format the appropriate call to the

remote component.

 The CDE Server makes repeated HTTP POST requests for the service until it receives a

response.

 The plug-in sends an HTTP POST response with the service status to the CDE Server when

the service is complete.

The RA CDE plug-in framework supports he following capabilities:

 Configuring endpoint connections to the remote component

 Creating automated tasks that instrument operations in the remote endpoint

 Importing application and environment models

 Importing content items [like defects, features, user stories]

 Performing connectivity tests to remote endpoints

The JSON scheme in the plug-in framework provides the following inputs:

externalTaskExecutionStatus

Provides a high-level status for the task. Set this input to one of the following values:

http://hook.io/

Page 5 of 21



o RUNNING



o FAILED



o FINISHED

executionContent

Provides a field in which to store the service execution content. The task execution context

data might include a collection of key/value pairs of runtime information for this specific task

execution. CA Release Automation Continuous Delivery Edition persistently stores this context

as an opaque data object and delivers the object at the next invocation of this API for

this specific task execution.

Type: Map <String,Sting>

Context Key Limit: 230 characters

Context Value Limit: 4000 characters

Notes:



o If the response does not include the context element, CA Release Automation

Continuous Delivery Edition keeps the context as is.

o If the response includes an empty context element, CA Release Automation

Continuous Delivery Edition clears the context for this task execution.

taskState

Provides a summary of the task status. This status appears on the UI next to the task status

icon.

The status is returned at the statusDescription field of the Task REST API response and

displayed on the UI.

Type: String

Limits: 255 characters

Example: Task Failed

detailedInfo

Provides a detailed summary of the task status. The status is returned at

the detailedStatusDescription field of the Task REST API response. This detailed status

appears when you click on the high-level status in the UI.

Type: String

Limits: 10,000 characters

Example: Endpoint value is incorrect. Provide valid endpoint details.

Page 6 of 21

progress

Provides a progress indicator to display.

Type: Float

delayTillNextPoll

Specifies when CA Release Automation Continuous Delivery Edition initiates the next

invocation of this API for this specific task execution (if at all).

Type: Long

Manifest Definition

The capabilities of the RA CDE custom plug-in are defined in a manifest JSON file, and the
manifest file is broken down in the following sections:

 Basic plug-in information.

 Endpoint template information.

 Service information.

 Service parameter information.

Sample manifest.json file.

 "name": "Sample",

 "vendor": "CA Technologies",

 "uniqueId": "CA Technologies Sample",

 "description": "Sample Plug-in for CA Continuous Delivery Edition",

 "version": "1.0",

 "iconUrl": "CA.svg",

 "endpointTemplate": {

 "uniqueId": "Endpoint",

 "name": "Sample Endpoint",

 "description": "A Sample plug-in endpoint",

 "serviceType": "ENDPOINT",

 "endPointType": "Endpoint",

 "url": "Endpoint",

 "parameters": [{

 "uniqueId": "URL",

 "name": "URL",

 "displayName": "URL",

 "type": "string",

 "isOptional": false,

 "defaultValue": null,

Page 7 of 21

 "description": "URL"

 }, {

 "uniqueId": "username",

 "name": "username",

 "displayName": "Username",

 "type": "string",

 "isOptional": false,

 "defaultValue": null,

 "description": "Username"

 }, {

 "uniqueId": "password",

 "name": "password",

 "displayName": "Password",

 "type": "password",

 "isOptional": false,

 "defaultValue": null,

 "description": "Password"

 }]

 },

 "services": [{

 "uniqueId": "Task1",

 "name": "Task1",

 "description": "Description of the first task",

 "serviceType": "TASK",

 "url": "tasks/task1",

 "parameters": [{

 "uniqueId": "parameter1",

 "name": "parameter1",

 "displayName": "Parameter1",

 "type": "string",

 "isOptional": false,

 "defaultValue": null,

 "description": "Description of the first parameter of the first task",

 "url": "tasks/task1/parameter1/values"

 }, {

 "uniqueId": "parameter2",

 "name": "parameter2",

 "displayName": "Parameter2",

 "type": "string",

 "isOptional": false,

 "defaultValue": "GET",

Page 8 of 21

 "description": "Description of the second parameter of the first task",

 "possibleValues": [

 "GET",

 "POST",

 "PUT",

 "DELETE",

 "PATCH",

 "HEAD"

]

 }, {

 "uniqueId": "parameter3",

 "name": "parameter3",

 "displayName": "Parameter3",

 "type": "textarea",

 "isOptional": true,

 "defaultValue": null,

 "description": "Description of the third parameter of the first task",

 "url": "tasks/task1/parameter3/values",

 "dependencies": [

 "parameter1"

]

 }]

 }, {

 "uniqueId": "Import Application Model",

 "name": "Import Application Model",

 "description": "Description of import application model",

 "serviceType": "APPLICATION",

 "url": "application-sources/application-source",

 "parameters": null

 }, {

 "uniqueId": "Import Content Items",

 "name": "Import Content Items",

 "description": "Description of import content items",

 "serviceType": "CONTENT",

 "url": "content-sources/content-source/content-items",

 "parameters": [{

 "uniqueId": "parameter1",

 "name": "Parameter1",

 "displayName": "Parameter1",

 "type": "string",

 "isOptional": false,

Page 9 of 21

 "defaultValue": null,

 "description": "Description of the first parameter of the first import content items"

 }]

 }, {

 "name": "Connectivity Test",

 "description": "Connection Test",

 "serviceType": "CONNECTIVITY_TEST",

 "url": "connectivity-tests/connectivity-test",

 "uniqueId": "Connectivity Test"

 }

]

}

WAR Specification

To provide flexibility in how a RA CDE plug-in is delivered, which can also be accomplished
via Tomcat8 based JAVA WAR file. This WAR file will be created based off a JAVA dynamic
web project for a Tomcat 8 installation.

You will use the methods defined at the beginning of this section, and you might need to
pay close attention to the following condition. Where the plug-in might need to continue
running, this is accomplished by setting the “delayTillNextPoll” to a given duration to poll
again by the RA CDE plug-in.

The following are the pre-requisites needed to create this WAR file.

 JAVA JDK 1.8 (64-bit)

 Tomcat 8 (64-bit)

 Eclipse EE (64-bit)

 Maven 3.x (64-bit)

 Create a dynamic web project in Eclipse EE for Tomcat 8.0

 The following library is needed: “Plug-ins-dto-1.11-SNAPSHOT.jar”, which is part of
the %TOMCAT_HOME%\webapps\cdd\lib

The following libraries need to be added via Maven dependencies:

Page 10 of 21

To add the “Plug-ins-dto-1.11-SNAPSHOT.jar”, you need to do the following:

 Create the following POM file

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.ca.rp.plug-ins</groupId>
 <artifactId>plug-ins-dto</artifactId>
 <version>1.11</version>
</project>

Run the following Maven command as shown below:

Page 11 of 21

Best Practices

The following best practices will help you in creating a Release Automation CDE plug-in.

Planning

As in any development project, it is important that you plan how the RA CDE plug-in will interface

and interact with the targeted tool, as well as availability of the plug-in’s resources.

Portable Manifest

Keep the content of the manifest portable and agnostic to the exact location of the server container.

A portable manifest lets the administrator relocate and deploy the plug-in on any server. Avoid hard

coding specific server addresses and ports inside the plug-in manifest. The plug-in manifest should

not be tightly coupled to its server container.

For example, all URL values in the sample plug-in manifest should use relative values such as

tasks/task1.

Sensitive Information

Store all sensitive information, such as passwords, as endpoint parameters. Do not store sensitive

information in task or content source parameters. The endpoint is a central location that plug-in

tasks and content sources share. This best practice prevents the repeated entry of sensitive data.

This practice also prevents the replication of sensitive data across release tasks and content sources.

Example: If a password value is updated for a remote component, you only have to update one

location (endpoint details) in CA Release Automation Continuous Delivery Edition. This best practice

also lets you implement different security levels for the endpoint creator and the task creator. The

endpoint creator can hide the concrete password value from all task creators that use this endpoint.

Store the network connectivity details of remote components as endpoint parameters. Do not store

network connectivity information in task or content source parameters. Use this best practice for

central management and maintenance of all remote servers that plug-ins access over the system

network.

When you use this best practice, the ENDPOINTS page lists all remote servers that the plug-ins

access. You do not have to inspect all tasks to detect which network elements CA Release

Automation Continuous Delivery Edition accesses.

Example: If an IP address of a remote component changes, you would only need to update one

location (endpoint details) in CA Release Automation Continuous Delivery Edition.

Packaging

Ensure the manifest is part of the plug-in package. We do not recommend that you store the

manifest separately from the rest of the plug-in.

Ensure the manifest resides at the root of the plug-in package.

If the base URL of the plug-in package is /cdd-slack-plug-in/ , the manifest resides directly under the

root of the plug-in package: /cdd-slack-plug-in/manifest.json

Page 12 of 21

Naming and Versioning

Do not create multiple plug-ins with the same name.

Ensure that each unique ID is different. Using a distinct plug-in name helps to distinguish the plug-ins

in the UI.

Ensure the unique ID of the plug-in is a string that includes the plug-in name and the vendor.

Example: CA Technologies Slack

After you have published the plug-in to the community, do not change the plug-in name and vendor

in subsequent versions.

Update the plug-in version every time you modify and release the plug-in.

Tools

Prior to starting the development effort of the RA CDE plug-in, make sure that the targeted tool is

accessible online, as well as making sure that the tool’s server can interact with the GitHub

implementation of Hook.io.

Using the proper version of the API calls

Some of the API calls can be used as version 1 (v1) or version 2 (v2), and there are other calls that

will provide you with different results based on the version being utilized.

Using the correct parameter method

Given that some API calls use URL parameters and other calls are using JSON body parameters, it

becomes very crucial that you become aware of the requirements for the API calls that you are going

to be using. This is where the tools listed in this document can be of great help to you in determining

how build the parameters require for a given API call.

Recommended Tools

To fully test the different Slack incoming web hooks API calls, the following tools can be

used:

 Postman by postman running as a standalone Google Chrome application or plug-in.

 REST Easy extension in FireFox.

 HttpRequester extension in FireFox.

 Curl, which is a command-line utility used extensively to test the different HTTP

get/post calls.

 CA DevTest 9.x

 SOAPUI 5.2.x or greater.

Page 13 of 21

RA CDE —SLACK Plug-in

As part of the process in how to create a RA CDE plug-in, we are going to utilize the SLACK
messaging service.

Please visit the https://slack.com and sign up for the creation of a Slack team.

After you have created a Slack team, you will need to create a new incoming web hook
integration, by going to the following link

https://[YOURS-SLACK-TEAM].slack.com/apps/manage/custom-integrations

https://slack.com/
https://[yours-slack-team].slack.com/apps/manage/custom-integrations

Page 14 of 21

As per the figure below, you will create the desired web hook, which will default to a
specific channel where to the messages will post, as well as the Webhook URL as pointed by
the red arrow. This is the information that you will need to complete the process.

Now you need to generate a test token as shown below:

Page 15 of 21

After the test token has been generated, you will need to make sure that the application is
registered, by clicking on the “Register your application” link as shown below.

Your application should be already listed, click on it, to see the client id and secret.

Page 16 of 21

Write down the client ID and display the secret as well. You are going to be utilizing this
information for the setup of the Slack RA CDE plug-in.

Slack Eclipse Project
As part this document, we have included an Eclipse dynamic web project that utilizes Maven as is

software project management for the additional libraries that will be needed.

Page 17 of 21

It is assumed that Maven has been installed and configured correctly. Expand the slack project that

is part of this document, make sure that you fix the Maven repository path as shown below.

Now open the “slackSendMessage.java”, and enter the web hooks URL that you created before,

please copy the values after the “services/”.

Page 18 of 21

After you have accomplished the above steps, you can perform a build. Highlight the “slack” project

name, select the “Run as  Maven clean”, then perform a “Run asMaven install”.

The WAR file can be found in the ${project_loc}\slack\target\cdd-slack-plug-in-1.0.0.war.

Adding Plug-in to RA CDE
Now you will need to define the following in Release Automation CDE:

 Register the plug-in

 Add the Slack endpoint based off the registered plug-in

 Add a task to a given release’s phase

The above steps are accomplished by following the steps below:

Register the plug-in with Release Automation CDE, in this scenario that plug-in will be Bamboo as

described in the prior sections. To get to plug-ins, select AdministrationPlug-ins in RA CDE.

Figure 13: Registering the plug-in

Now we are going to register the Bamboo plug-in, you will take the complete URL for the manifest

file that describes how the plug-in will interface with RA CDE, click the “Register” button to complete

the plug-in registration.

Page 19 of 21

Once the Slack plug-in has registered successfully, you will see it listed as one of the available plug-

ins and its available services.

After the Slack plug-in has been registered, we move to the AdministrationEndpoints to add an

endpoint for the tasks as defined as part of a release’s phases can be executed. Click the “Add

Endpoint” to start the process.

Enter the necessary information as shown below, you will have to select the correct endpoint type.

Click the “Add” button to complete adding the Slack endpoint.

Page 20 of 21

Please make sure that you enter the URL value as shown above, and use the client ID and secret that

you wrote down in the Slack section. You will see the endpoint defined.

Now we need to go to a release, which already has a phase defined and select “Create a task…”

option in one of the phases and add entries as shown below, once you have entered the necessary

information, click on the “Create” button.

The newly created Slack task will be shown in the phase.

Page 21 of 21

Copyright Notice

Copyright © 2016 CA, Inc. All rights reserved. All marks used herein may belong to their
respective companies. This document does not contain any warranties and is provided for
informational purposes only. Any functionality descriptions may be unique to the customers
depicted herein and actual product performance may vary.

Useful Links

https://slack.com

https://api.slack.com

https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-

2/en/integrations/develop-custom-plug-ins

https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-

2/en/integrations/develop-custom-plug-ins/develop-custom-plug-in-http-service

https://slack.com/
https://api.slack.com/
https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-2/en/integrations/develop-custom-plug-ins
https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-2/en/integrations/develop-custom-plug-ins
https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-2/en/integrations/develop-custom-plug-ins/develop-custom-plug-in-http-service
https://docops.ca.com/ca-release-automation-continuous-delivery-edition/6-2/en/integrations/develop-custom-plug-ins/develop-custom-plug-in-http-service

