
(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Refactoring CA Gen applications:

What, When, Why, Where and How

Ryan Johnson

EDGEucate 2007

Session 2, Monday 29th Oct 2007, 10:15

CA Gen specialists based in Brisbane, Australia

Clients across Europe, Australia and SE Asia

Recently acquired Response Systems

Services include
Upgrades to CA Gen infrastructure and applications

Offsite development from our Brisbane labs

Consultancy on process, architecture and SDLC

Strategic reviews

Facet profile

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Understand what Refactoring is

Understand why it can be valuable – and when

Learn where others have started, and importantly…

What the foundations of success for this are!

Session objectives

Undertaken over the last three years

Collaborative approach
Partnership - open and transparent

Incremental – initial small steps

Jointly laying the foundations for success

Reviewing and evaluating as we progressed

This session is drawn from the real-world

Refactoring case study

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Refactoring is the process of restructuring an
application from the inside-out, without functionally
altering the application.

Business change is not introduced

Refactored applications require regression testing

This ensures the risk profile of this activity is low

What is Refactoring?

So what’s the justification?
There’s no direct benefit to the business

It’s essentially a “technical” exercise!

When to Refactor?

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

So what’s the justification?
There’s no direct benefit to the business

It’s essentially a “technical” exercise!

There are a number of different indicators:
Old architectures constraining new directions

Inconsistent or absent standards (or enforcement)

Increasing cost to deliver the same volume of change

Increasing cost of (impact) analysis and test effort

When to Refactor?

For our client it was a combination of these:
Volume of business change was reasonably constant

Cost to implement that change was continually rising

Entire application was contained within a single model

3270 screens delivered from psteps that accessed data

Testing impact on small change was large (or unknown)

Application architecture was preventing much reuse

Many different ways of resolving the same problems

When to Refactor?

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Accepting that “something must change”

Usually driven by cost considerations

Understand the alternatives:
Replace Risk moderate; Cost high

Rewrite Risk very high; Cost high – very high

Refactor Risk low - moderate; Cost moderate

Refactoring is the lowest cost and risk of the three

Why Refactor?

Refactoring is the lowest cost and risk - but only if
The objectives from Refactoring are defined

The benefits and outcomes are defined and measurable

The project costs and risks are contained

And these are the factors upon which a strong
business case can be built, approved and supported:

Refactoring requires an investment but will yield a
greater return than the investment made

Why Refactor?

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

1. Define where you’re going

2. Define the process to get you there

3. Choose a functional area to commence with

Where to start?

Make the big decisions first
Consider moving to components

Define the component architecture

Implementation of Services Oriented Architecture

Functionally “tier”ing the application

Reduce coupling but retain cohesion

Keep it “real” and avoid too much architectural “purity”

Define where you’re going

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Define the target outcomes
New or revised architecture definitions

New or revised coding standards that support those

Coding templates that implement the new standards

Produce a worked example as a real reference

Determine how to objectively measure the outcomes

Communicate with the existing developer community

Define where you’re going

It’s a programme of work so the activity must be
Defined and repeatable

Scalable so that you can “divide and conquer”

Incorporate how ongoing work meshes with Refactoring

Define the model management strategies

Define the testing and acceptance and deployment

Define the process

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Execute the process against a single functional area
Not so small or simple that the difficulties are not faced

Not so large that the first iteration isn’t achievable

Ideally a 3-6 month effort that deploys into Production

Choose a starting point

Execute the process against a single functional area
Not so small or simple that the difficulties are not faced

Not so large that the first iteration isn’t achievable

Ideally a 3-6 month effort that deploys into Production

Review and revise
Collect the metrics and analyse what worked and did not

Modify the process if required

Fill in the gaps in the architecture and standards

Choose a starting point

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Started by defining a Refactoring process

Identified some key enablers prior to commencing
Define the tiers to implement within the application

Defined a component hierarchy

Expanded coding standards to cover CBD

Revised standards to support these with checklists

Acceptance testing strategies

Metrics collection for measuring improvements

So how did this work?

Chose a complete functional area
Indicative complexity

Clear business value

Split it into three prioritised clusters
Update/Create/Delete functions around “core entities”

The remaining Update/Create/Delete functionality

The more widely utilised Read integration points

Each executed as a project with standard controls

So how did this work?

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

The application functionality should change!
Existing behaviour was inconsistent

Error messages, Screen layouts, Function keys

The goal of a more consistent application was at
odds with avoiding functional change

Testing without automation pushed costs up

What were the lessons?

Allowed change – but controlled it through design
The business would approve the change

The testers then knew to expect the change

Consistency then supported Refactoring objectives!

Invested heavily in automated regression testing

Plugged gaps in the Architecture and Standards

The next iteration used the revised approach

What changed?

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

First functional area now Refactored
Fully componentised

Functional area split into presentation, rules and db tiers

Automated testing tools now in place

Process improvements also in use by core teams

Many related activities improved for everyone:
Change control and model management

Definition of test cases

The road so far:

External function point analysis performed
Committed to ongoing measurement - quarterly

Commenced with a baseline measurement

Reviewed after each major quarterly release

Shows empirically that cost / function point change is
decreasing in the areas that have been refactored

Business has committed to ongoing investment

Measured by

(c) Facet Consulting Pty Ltd, 2006.
Commercial-in-Confidence

Refactoring can extend the life of large applications
Reducing ongoing cost of ownership

Simplifying application structure

Enabling faster business change – time to market

Enabling exploitation of new technologies and platforms

Significantly lower risk and cost than replacement

Determine how you’re going to measure progress

Define your goals, then the process and then begin!

Summary

Email: ryan.johnson@facet.com.au

Questions?

