Collecting Baselines for APM
- Finding Out Which Metrics
Matter

Michael Sydor

SSSSSSSSSSSSSSSSSSSS

Table of Contents

Executive Summary

SECTION 1: CHALLENGE 4

Which Metrics Matter? 4
Finding a normal period 5
Key Metrics 6
Building Metric Groups

Applying Thresholds

Building the Report 11
Building the Dashboard 12

SECTION 2: OPPORTUNITY 13

When Do You Collect Baselines? 13

SECTION 3: BENEFITS 14

Effective Use of the APM Workstation 14
Understanding the key components of your application 14
More efficient triage of performance problems 14
Better collaboration with your stakeholders. 14

SECTION 4: CONCLUSIONS 14
SECTION 5: REFERENCES 15

SECTION 6: ABOUT THE AUTHOR 15

Copyright ©2010 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for
your informational purposes only. CA assumes no responsibility for the accuracy or completeness of the information. To the extent permitted by applicable law, CA provides
this document “as is” without warranty of any kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits, business
interruption, goodwill, or lost data, even if CA is expressly advised in advance of the possibility of such damages.

Page 3

Page 4

Executive Summary

Challenge

Successful use of APM technology requires effective skills and processes. This series of tech notes
explores a number of topics that you should consider, when using APM.

Whenever you encounter a performance problem, the first question you ask yourself is “what
changed”? To appreciate what has changed requires that you know what is normal, for your
application. You define normal by collecting characteristics into a simple report called a baseline.

Baselines are the foundation for constructing effective dashboards based on thresholds and alerts,
as well as tracking the quality of your software over the application life cycle.

Opportunity

Collecting baselines exercises core techniques for using the APM workstation to quickly identify the
significant components of your application, defining metric groupings and assembling a report and
dashboard. Generating these baselines, as part of the application lifecycle, means that you will
always have a definition of normal, for your application. This will also help you to design and
construct effective dashboards so that casual users will have the benefit of what you have learned
about the application, and without having to repeat your work.

Benefits

Collecting baselines gives you the following benefits:
= Effective use of the APM workstation

® Understanding the key components of your application
= More efficient triage of performance problems

= Better collaboration with your stakeholders.

SECTION 1: CHALLENGE
Which Metrics Matter?

Applications are always undergoing some kind of change. It may be a new code release. It may be a refresh
of the network or hardware. When something changes your application performance may be at risk.

Baselines are the process to help you manage that change by helping you detect what components in your
application are affected. Until you know exactly what is being affected you do not know where to make the
adjustments that will bring your application back to the performance level you want.

Page 5

Finding a normal period

To get a good baseline you need to have a representative period where the activity of the application meets
your criteria for “normal”. This is almost never when you are having a performance problem. It has to be a
period before the problem occurred. Exactly how much earlier is up to you but the earlier, the better.

You will apply the same report template to the incident, as you do to the baseline. But the baseline has to
come first.

If your application is already deployed in production, then a production baseline is what you will collect. This
has some challenges, as you will so find out. The best time to collect baselines is when you are stress testing
the application in the QA environment. This also has some challenges but this environment gives us the best
chance of defining “normal” for you application.

QA BASELINE

To collect a baseline in QA you simply need to have APM enabled on the application before you start running
your testing. A simulated load is best and you want to have a consistent period of load, called steady-state,
where you will focus your baseline efforts.

You can also collect baselines with manual load but that load activity needs to be consistent. The more
consistent the load profile (manual or automated), to more accurate the baseline will be.

To confirm that delivery of your load is consistent, or reproducible, you want to execute a single load profile
for three consecutive runs of testing. When you analyze these results, you should get the same values for
response times, number of invocations, etc.

PRODUCTION BASELINE

A production environment may also be used for collecting the baselines but it can be very challenging to find
a consistent, representative period. The following figure illustrates this challenge.:

[= Per Interval |

110,000 - | -
= 41 -5
g 100,000 _
£ so.000| -
&S 80,000 | ¥4 A
o | A
g 7oocoql 1% 4 Sy
£ 0,000 - s WA
2 o ; 4
@ 50,000 e =~ =
o - T -
& 40,000 { | / m e - - ™
=] - - - - N\
5 30.000 _— o o
= | = . A ==
S 20,000 | - - —. o b -
2 40,000 | — - e = =
' B R S RCEARARRA RS e e R AR R R
o L —
4:00 PM 8:00 PM 12:00 AM 4:00 AM 8:00 AM 12:00 PM
Date/Time
[start: 914/09 3:00 PMm End: 9/5/09 3:00 PM|
[2ackeEnd - rRe Per Interval]
70,000 1
=
2 60,000 |
=2
=
5 50.000
o
w
2 40,000 |
2
(=3
=3
£ 30.000
o
2 20,000
wi
=
S
S 10004k s
-
o
4:00 PM 8:00 PM 12:00 AM 4:00 AM 8:00 AM 12:00 PM
Date/Time
[start: o/5/09 3:00 PMm End: 9/6/09 3:00 PMm|

As you can see in the two charts, the curves are roughly equivalent. These are some deviations but over the
24 hour period these two historical views have the same characteristics. That is until you look at the actual
responses per interval. When you look at the uppermost curve, in each chart, the top chart varies from

Page 6

90,000 to 110,000 responses per interval , while the lower chart varies from 40,000 to 70,000 responses
perinterval. Which one in the normal level of activity? You cannot really decide until you look at more
sample periods.

Here is another example, this time showing an acceptable level of variation. This is also for a production
baseline where it was decided that the indicated 4 days would define normal. The prior week had a higher
level of interaction but the application, in this case, was changed over the weekend. So the new activity
levels now constituted “normal” for this application.

134.4K;

Thu 29 Fri 30

When you establish a baseline, it is not a static definition. The baseline needs to be validated with every
change in the application or its operating environment. “Normal”, for your application, is probably a moving
target. Itis an exercise that can be accomplished in a few minutes. If nothing has changed in the baseline,
with respect to the components that best represent performance, then the baseline definition doesn’t need to
change. If new key components are encountered or different levels of performance expereinced, then these
changes need to be accommodated in the baseline template definition and in the alert thresholds.

When a baseline changes, it is a call to action because metric groups, thresholds, reports and dashboards
and alerts, are all dependent on the baseline information. If you want to keep all of that information correct,
the baseline is how you will know that you monitoring configuration is correct and valid.

Key Metrics

When you measure the performance of application components you get a number of metrics for each
component. The basic five metrics are response time, responses per interval (invocations), concurrency
(concurrent invocations), errors and stalls. Two of these are essential to start an effective baseline: response
time and invocations. The other metrics are also valuable but you should consider them once your baseline
practice is established. For now, just looking at these two metrics will get you off to a solid start with
baselines.

If you are new to APM you may have noticed that thousands of metrics are being collected for your, 24 hours
by 7 days, these metrics are being stored for you to use in addressing performance issues. It seems like a

Page 7

mountain of information but the techniques we will discuss today will get you quickly focused on the top 10
or 20 metrics that best represent your application performance.

Eventually, you will use these baselines to define threshold and alerts, and set the foundation for SLA’s and
other service management activities, as well as managing performance along you application life cycle.
RESPONSE TIME EXAMPLE

The response time metrics shows you which components are the potential bottlenecks for you application.
The activities that you spend lots of computer time on are real opportunities to make the application more
efficient. Which components and queries does your application spend the most time on?

The following figure shows the explorer view of the APM workstation, with the Search Tab selected.

serDomain® 2] overview | Traces | Errors Search |
Custarn Metric Host (Virtual) FE—— Inverage Go
55| Custom Metric Process (Virtual) —
-8 Custom Metric Agent (Virtual) (*SuperDomain®) I” Use Regular Expression T Show Min, Max and Cou
[#¥]% L1 TOTAL Potential Leak Count Resourcs | Matric b value
[#]€ MONITOR - Bytes in Use IDBC|SQLIPrepared|Query| SELECT OBJECTS.ID, OBJE... Average Query Time (ms) 2,149,
[MONITOR - Inkislization Complste 15P|__base |Average Response Time (ms) 441,464
]2 TOTAL leakhuntersizes IDEC]SQH [Prepared|Query|SELECT OBJECTS.ID, OBJE, 498 Query Time (ms)_ il “.“9@‘%‘\
G-{ Agents 5P| _login 49¢ Response Time (is) (118,018
2 Alrts J0BC|SQLIDynamic| Query|SELECT 10 FROM OBJECTS ... Average Query Time (ms) 31,184

Details|com.netopia.nbbs. webservice NEBSNorthboun. .. Average Response Time (ms) 14,322

&1 (% Enterprise Manager

cpems]
] webLogic !
B8 Details|{packageandciass}|GetConfig Average Response Time
IDetails|[{packageandciass} |Get Table. [Average Response Time (ms) 7,226
&= Agent Stats ! 7,192|
/] Metric Count R — e] 7,182
Details|jcom. netopia.nbbs. webservice NBBSNorthboun... Average Response Time 6,623
Details|com.netopi bservice. NEBSNarthbo verage Response Time 6,556/
A 5,454
6,350
5,401
3,931
Detalsl{packageandclass} action 3,643
Jetails|comnetopia nbbs. httpClient WebClient|action Average Response Time | 3,136
JsP|_findepe werage Response Time (ms) | 2,943|
]

et RIERShIrthhosn
Errors Per Interval

[= (=8 Commits Thu O8MS/DE 07:30 AM Thu DBASS 0200 Ph
18,2

] Average Response Time (ms)
2], Concurrent Invocations
~|¢ Errors Per Interval 138K

| Responses Per Inkerval
] Stall Count 01K
-9 Rollbacks

] Average Response Time (ms)
] Concurrent Invocations
|5 Errors Per Interval

| Responses Per Interval aran aoan o ey e a0 [y ey 150 [rery 1700 ey ey

45K

On the left hand side an agent has been selected. Underneath that agent are all of the components
reporting. Some of these components are expanded to review the individual metrics underneath each unique
component. Navigation among these metrics is tedious when you don’t know what you are looking for. Using
the search tab eliminates the need for any navigation.

There is a search field into which you type the word “Average” (no quotes). When you hit return, the APM
workstation will then show all of the metrics containing the word “Average”, for the current data or historical
range. You then click on the “Value” header to cause the results to be sorted, from greatest to least. If you
click on any of the metric rows, you will get a graph below, for the range you are looking at. You can also
<shift>><click> to add multiple metrics to the same graph.

You might also notice that the query match both response times and query times. You can keep these metric
names separate but it doesn’t matter at this point. Whatever shows up here is simply the biggest of response
times.

The next step is to define a metric group and add the top 10 or twenty metrics. The name of this metric group
should be PERFORMANCE - that’s just what it means. That name will make it easy to find later when you are
defining alerts, reports and dashboards.

Page 8

INVOCATIONS EXAMPLE

The invocations metrics (Response per Interval) lets you know where your application is the most active. This
provides a precise mechanism to measure and track capacity. When the application is saturated, where it
can no longer scale, the invocations tell you exactly how many key interactions are being performed.

Zustom Metric Host (Virtual) ST [Respnnsus =
5] Custom Metric Process (irtual) [5 S
- P8 Custom Metric Agent (Virtusl] (*SuperDomain®) I™ Use Regular Expression I Show Min, Max and Cou
_EF‘ LH TOTAL Potential Leak Count Resource Value
< MONITOR - Bytes in Use Z 7 Responses Per Interval 13,341,524
]2 MONITOR - Initiakization Complete chageandclass}set Responses Per Interval 13,741,852
[#]2 TOTAL leakhunterSizes Det delass}[get Responses Per Interval 11,630,564
-4 agents Details| {packageandclass} [isEmpt; Responses Per Interval 9,607,871
- (5 Alerts Detalls|{packageandclass} | getiodehla Responses Per Interval 9,154,569
@ a Enterprise Manager Ea_taLsprkaqeand:hss}‘f‘ormstFn:l.o_g_ Responses Per Interval 6,677,289
-pem;; Details| {packageandclass}|addSampleWRhStartTme Responses Per Interval 6,511,135
B viebloge hageandclasshichannelStatusTostring _ Responses Per Interval
B } ndclassh|addChildElement Responses Per Interval
etal eandclass}[isTrue Responses Per Interval 3,426,290
Agent Stats Det delass} [getQuet Responses Per Interval 3,365,341
/|5, Wetric Count dclass} |toString Responses Per Interval 3,309,635
- Backends {packageandclass} toucht astpdate Responses Per Interval B]
& .j f— 2 {pack declass}h g lop! i Per Interval 3,289,856/
> Details| {packageandclass} |getStatevaiue ‘Responses Per Interval 3,176,086|
-9 File System Do Responses Per Interval 7,940,283
R L Responses Per Interval 2,925,874
@ GCHe ere a O O e O [Responses Per Interval 2,897,084
(% Host Respanses Per Interval 2,736,500
& 108C Det delass} [channelTypeToString Respanses Per Interval 2,727,425
~|£. Conection Count Det ok declass} [fir ClosingCurly Responses Per Interval 2,523,641
IErontandel annel inhhe Bacnnnaac Dar Tntarual 2 212 nAd

| Errors Per Interval
-8 Commits
/|5 Averags Responss Time (ms)

Concuerent Invocations
- Ertars Per Interval
esponses Per Interval
all Count:
& ™ Rolbacks
| Average Response Time (ms)
- Concurrent Invocations
|5 Ervors Per Interval
|, Responses Per Interval

Thu DEAS0E 07:30 AM
s

4

136 |

|
|

|\
2039 I‘I '\.'.M

./"nf‘

Thu 06/15/06 08.00 PNV

1030 130

1230 1330 1430

1730 1830 1930

The sequence of operations is exactly the same as before, with the exception of the Search field, which is now
equal to “Responses”. After sorting the Value column, verify your top 10 or 20 metrics, create a new metric
group called CAPACITY, and drag the metrics into that new metric group.

Building Metric Groups

To be efficient, you want to drag-n-drop metrics, instead of typing them. This requires that you have to APM
workstation windows open: an Explorer and Management Module Editor. You create the management
modaule, or navigate to it if it is already existing and then drag metrics from the Explorer window and drop into
the fields of the metric grouping.

The following figure is an example, this time with Enterprise Manager metrics. You don’t have to wait for a
complex application to try out your workstation skills. You always have the Enterprise Manager metrics
around for practice.

Page 9

[Management Module Editor - Introscope Workstation [admin@®spyderiacks:5001]

‘woikstation Edt Manager Elemenis Properties ‘iewer Help

” Sep03 Sep0S Sep07 Sep03 Sef] 1 Sepl3 SeplS 5epi7 Sep 18 Sep2l Sep23 SepZ5 Sep27 Sep2d OctOL

Hod b W

Tine range:|Custom Range = | Resolutioni[t 4415 seconds |

) *

=14 *SuperDomain® "= { & EM_characteristics (EM_Status_?1 in *SuperDomain®)

+1- 3 ALL Enterprise Managers (*SuperDomain®)

=1 EM_Status_71 (*SuperDomain®)

1 actions

o1 B9 alerts

1l Calculators

1 [£9 pashboards

EM_Status_Summary_71

=1 Wetric Groupings
Agents_any_Metrics

& BackupCallectors_Metrics

£ Collectors_Agents

&4 Collectors_Connected

£ Collectors_Metrics

&l
el

4 EM_1dentity
04 GE Duration (ms)

04 Harvest_Capacky

4 Harvest_Duration

24 MoM_workstations

£ MOM_metrics

4 Number of Histarical Queries
4 Number of Traces in Database
& overall_Capacty

£ smarkStor_Capacity

4 smartstor_Duration

£ TT Database Disk Usage {mb)
=123 Report Templates

L HealthCheck - Enterprise Manager 71
41- 58 SMP Callections

+1-(3 Enterprise Manager (*SuperDomain®)
41 Sample (*SuperDamain®)

#1- Sample-7. 1 (*SuperDomain®)

418 suppartabilty (*SuperDomain®)

3 S e (461 nerDiomain®)

~[[=[

Tue 03/1/07 01:38 AM
265 0k

Fri 09/21/07 01:48 AM

E

P = S
L W =
B =
[EIEL S A e e |
¥ / - \
1220k o—»*—"-‘—"' T
Lo neneauaty o
o4t} »
\
s 12 T 13 Fila s 15 sun 10 o 17 Tue 12 ied 19 T 30 Fria1
P Custom btre Fost atre Frocess Tatre fgert o Agem= i Gata Feints] =
» Bustom bitric Host Wetric Process hiktrio fgert Capacity (£)B0 Dita Pairts]
P Custom bitric Host iktric Process iktric sgert Capacity (£)[E0 Diaxa Fairts]
» Bustom bitric Host Wetric Process hiktric fogert of Nietrios[i0 Data Ponts]
P |Custom bistrc Host Wetrc Process Wetric Agert (...|Entarpri Wanager| Data of Historeal Queriss B0 Data Poits]
» bitric Host Wetric Process et fgert (I5teptse MnoerlOta toreransaton: T Dtabase ik Usge (k)0 Do Pinis) ||
3 =l

Management Madule Agent Expressions

Mletric Expressions

5

[Enterprise Manager:Cyeral Capacity \(%1)

Remove

[Enterprise ManagertIData StorehlSmartStar:Smartstor Disk Usage W(mbi)

Remove

[Enterprise ManagerIHealth: SmartStar Capatity (%1)

Remove

[Enterprise Manageri Data Storei|Transactions:umber of Historical Queies Refiois

[Enterprise ManagerIData Starehl Transactions Number of Traces in Datahase | Removs

[Enterprise ManageriIData Storei[Transactions: TT Databass Disk Usage 1(mbl)| Remove

[Enterprise ManagerIHealth: Harvest Capacty (%1

Remove

[Enterprise ManagerIHealth: Heap Capacity (%l
add

Remove

5

Apply Revert

The left pane lists the current metric groupings. The right pane, with the graph and parameter entry fields,
holds the current members of the collection. While drag-n-drop is the easiest to start with you may also use a
regular expression to define the metrics you are interested in, for the metric grouping.

Once a metric group is established, you are now ready to define thresholds, and build dashboards and

reports.

Applying Thresholds

To define a threshold, simply select a metric group and right-click to create a new alert via the pop-up menu.
There are a lot of options available for configuration. What you need to focus is the threshold definition which
layered over the current values of the elements of your metric group. You cannot set thresholds reliably until
your metric group is defined and presenting data. An example result is in the following figure:

Page 10

Sun 08/25/06 04:35 PM Sun 06/25/06 06:28 PM
5184
GREEN zone f‘
360-
YELLOW zone
264
1384
RED zone
18:40 16:45 16:50 1655 17:00 17:05 17:10 17:16 17:20 17:25 1730 17:35 17:40 17:45 17:50 1745 12:00 18:05 18:10 18:15 18:20 18:25

Connecthity Availability Performance Capacity

[aPP1) @ @ ¢ |
[apP2 &) ® @ |
[aPP2 @ 2 2 ® |

The graph is of the metric count and thresholds have been defined so that the various regions will be reflected
in an alert lamp. A sample dashboard is directly below the graph for added emphasis of this relationship.
The alert definition does not build this dashboard - you need to complete it.

For the metric count thresholds, when the application server starts, it will progress up to a certain point and
then it is ready for load. Prior to that point it is “unavailable”. Itis a feature of Java that the application
components are not loaded until users start exercising the application. So if the app server is restarted at
4am but no users arrive until 8am, the app server is actually is an “unproven” state. Since some application
servers can hang at startup, this is a useful state to reveal. And the “yellow” means exactly that - “caution -
this server has not fully initialized”! When even a single user exercises the application, the remaining Java
components get invoked, and the server is now fully initialized - we are in the green state.

Using the metric count is practically airtight, in terms of getting some experience with thresholding and
learning a small tidbit about the nuances of your application startup. Everything you do to get this alert
established is exactly the same process for the PERFORMANCE and CAPACITY metric groupings - only the
level of effort changes.

This little dashboard snippet should be interesting for you are well. This is the first dashboard you should
attempt because it is heavy on the metric groupings and easy to validate. Sure, everybody wants to build a
GIS! application for their first dashboard but you really need to “keep it simple”. There is nothing worse than
a dashboard that looks pretty - but doesn’t represent reality.

! Global Information System http://en.wikipedia.org/wiki/GIS

Page 11

Building the Report

The other immediate application of a metric group is to define a report template. The following figure shows
the definition of a baseline report for the Enterprise Manager. As before, if you do not already have an
application to practice on, the EM is always there for you. And like the definition of the metric grouping, you
can incrementally test the template to make sure you are getting what you want. The metric group and type of
report element are also highlighted.

&

dit Report HealthCheck - Enterprise Manager 71
Text Data Properties | Display Properties |

=

[~ Override Template Default Time Range
All Agents

Overall Capacity Start Time: I Duration: I4

*| SmartStor Capacity

)| SmartStor Duration End Time: INOW I — IWeeks jv

Y| Number of Historical Queries

2 Transaction Trace Disk Usat{ Metric Grouping: (] IEM_IdentD EI Choose I

24| Number of Traces in Database [~
2] GC Duration (ms) W Yalue |

Period: I:‘u,u: °
Agent Override Expression: I (.*)

BEEIEEEPI

Reset Selection to Default
T | 2 |

[Breview Selected Element i

BESOI <[DER &afe 5

T ST Ty

. Absolute| Absolute

EM_Identity Mean Mn Max| Count

Number of Agents 19 0 21| 47,43 |
Number of Metrics 130,424 2 152,912 47,423

Number of Workstations 0 0 2| 47423

Start: 9/13/07 2:39 AM End: 10/11/07 2:39 AM

Period: 11 hours, 12 minutes

Agents: Custom Metric Host (Virtual)|Custom Metric Process (Virtual)| Custom Metric Agent (Virtual)

y i

Page 10of 1

ok | apply | cose |

It will take a couple of minutes to finish the report template definition. And then a couple of test runs to
make sure it is ready. But once it is - it is ready for everybody and you have established the first element of
collaboration - a consistent presentation of performance information to share with you stakeholders.

To turn back to the performance baseline for your application, after you have mastered the first two key
metrics, you can move on and define the remainder. In the next figure is the cover sheet for the full baseline
report:

Page 12

Baseline - Component Response
Created on Jun 19, 2006 4:57 PM

These tahles summarize a load test and will be post-processed as part of the
Characterization effort.

Table of Contents:

Sorted hy Slowest Response Time
Sorted hy Largest Invocations
Sonted By Highest Stalls

Sonted By Highest Concurrency
Sorted By Errors

h = W N =

The immediate benefit of doing baselines via report is that you don’t need any time at the APM workstation,
going through all of those manual operations. You could even reduce the report generation to a simple script.

Building the Dashboard

After the baseline report is established, it is time to turn more attention to the dashboard. The dashboards
that is easiest to understand, by a wide variety of stakeholders, is the alert-centric dashboard indicated
below:

Connectivity Availability Performance Capacity

APP 1) 9 9)
APP 2 9 9 () 9

APP 2 L))))

The first two thresholds, CONNECTIVITY and AVAILABILITY are the easiest to define. There is a single agent
connection metric and metric count, per agent. So these are a metric group of 1 member, unless the
application has multiple instances and you could collect all of the instances together in the metric grouping.
The PERFORMANCE and CAPACITY thresholds can have any number of members in their representative
metric groupings. These will take more time to confirm that you have the key metrics and to validate that the
thresholds are correct. But this dashboard, simple as it it, is your first test. You need to be able to reliable
assemble this dashboard before you can go onto something more interesting.

This next sample dashboard is very popular. You simple draw or import an appropriate solution architecture
diagram, and then create summary alerts for each of the systems you are monitoring. A summary alert takes
an arbitrary collection of alerts and displays the most urgent state. Thus, for the previous figure, App1 would

Page 13

show green (4/4), App2 would show red (1/4), App3 would show green (4/4), fora Summary Alert. You
don’t have to use all four alerts but why not? These four alerts cover everything possible state of your
application: disconnected, connect, app server hung, app server active, performance problem, capacity
problem, etc. With summary alerts, and the appropriate system architecture diagram, anyone can observe
which systems are having problems and which experts to involve.

My LOB - Web Presence

Congdi] Authumalion

Hostng Sardge

l

i Senes 200

Building dashboards is easy, provided that you have done a correct job defining your metric groups. All the
work is really in defining which metrics to focus on, how to organize them for applying thresholds, and then to
assign the threshold definition. You only need to follow the right sequence of activities. And it all begins with
the baseline.

SECTION 2: OPPORTUNITY

When Do You Collect Baselines?

Your first exercise of the application, while in a testing environment, is the best place to start collecting
baselines. Everything you will want to do with APM: alerting, dashboards, reports and triage - these all
depend on effective baselines.

Taking the time to establish a valid baseline means that no one else has to repeat that work.

If you have not yet started with baselines but the application is being monitored, then you need only use the
historical view to begin identifying the components that will constitute the baseline. You will need to allow
about 30 minutes to complete this task. Of course, when an urgent problem urgent problem has been
detected it may seem like a luxury to complete this task. But it is essential because if you had the baseline
defined, collecting a new baseline will only take a few minutes. This is obligatory, after a fix or configuration
change, in order to confirm that the problem has been addressed.

Page 14

Selecting a normal period in production, or a representative test during QA, takes some consideration to
ensure that the period for the baseline is representative. This is discussed in the previous section: “Finding a
normal period”. If you collect your baselines in advance, you simply save more time when a problem occurs.

Once the baseline is defined, it | captured in a report template. This template can then e used to generate a
baseline report periodically (daily, weekly). This way you will always have a current baseline available and you
will save additional time during an incident.

Different kinds of baselines

SECTION 3: BENEFITS
Effective Use of the APM Workstation

The workstation component of your APM solution is a very powerful tool. Collecting the baseline is not just
something fun to do - itis a basic competency in using the workstation to do something that benefits all of
your stakeholders.

Not all of your stakeholders will be able, or interested to access the APM workstation. Many will be quite
satisfied with the browser-based access - provided you give them effective dashboards. Building the
dashboards is easy. Knowing what to put on those dashboards - that is where the baseline will provide
guidance.

Understanding the key components of your application

Every application is different but what makes your application unique? That’s what a baseline process helps
you to establish. It is a mechanical process that gets you focused on the components that matter. Why they

matter - that is another discussion and one that requires a lot more expertise in application architecture and
software design. Generating the baseline and sharing it among your stakeholders is easy.

There are dozens of different components and thousands of metrics but only a few of them need to be
exposed in order to understand and manage performance. That’s what the baseline presents - just the
simple facts about what matters for your application.

More efficient triage of performance problems

When a performance problem is detected, stakeholders need facts. In a complex service implementation,
every application is suspect until you can establish that you are either part of the problem, or that you are not.
Comparing your performance during the incident, with your baseline, is how you make that conclusion. It lets
you separate out the normal activity. Anything that remains is suspect.

Better collaboration with your stakeholders.

Knowledge is your understanding of the performance aspects of the application. You need to share this
knowledge with your stakeholders for them to appreciate and value your expertise with APM.

SECTION 4: CONCLUSIONS

Baselines are the first step to understanding how to manage and communicate the performance of your
application. They exercise some basic skills with the APM workstation but when you collect effective
baselines, no one else needs to repeat that process. You improve collaboration by sharing this succinct

Page 15

information so that your stakeholders are fully informed as to what is critical about your application and
where to invest to keep performance on track.

APM is how your organization comes together to manage the delivery of services. Baselines are the language
that lets you track software quality and identify where components are underperforming.

SECTION 5: REFERENCES

The key reference for using the APM Workstation is the “Workstation User Guide”, version 9.0.

Here are the chapters and sections that will provide additional guidance for the techniques discussed in this
technical brief:

Chapter 2 - Using the Workstation Console
Viewing Historical Data
Chapter 3 - Using the Workstation Investigator
Tab Views in the Investigator's Browse Tab
Chapter 6 - Introscope Reporting
Chapter 7 - Creating and using Management Modules
Configuring Metric Groupings
Creating and Editing Dashboards

Monitoring Performance with Alerts

SECTION 6: ABOUT THE AUTHOR

Michael Sydor is an Engineering Services Architect specializing in Best Practices for APM. He advises and
leads client teams to establish their own APM disciplines to deliver effective triage and manage performance
across the application lifecycle. Michael is also the author of “Application Performance Management -
Realizing APM”, to be released later this year under the CA Press program.

