

Creative Application Tuning Techniques

Gary Cherlet gary@cherlet.com

CA IDMS™ Technical Conference

Framingham MA December 2-5, 2014

Abstract

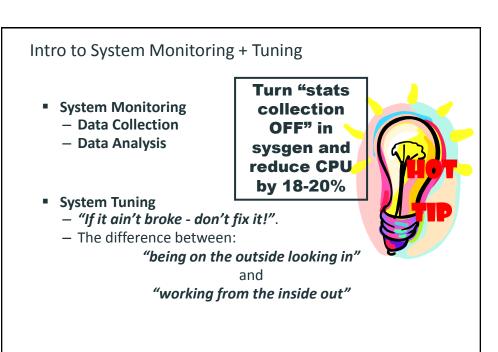
The purpose of this session is to introduce application designers and coders to a wide variety of tools and techniques which can be used to tune poorly performing applications. Using a case study approach, we will examine a number of common design problems, and our solutions. For each solution we will look at implementation techniques, and the effect that the solution had when applied to a live problem situation.

Specific code examples will be reviewed, and the results of the tuning exercise will be presented. This paper will be of particular interest to Analysts and programmers, but there will be much food for thought for DBAs and others who are interested in technical topics. The examples will be of particular interest to any sites who have implemented CAS modules.

Biography – Gary Cherlet

- Retired after 42 years in computing
- 30 years specializing in CA IDMS— pre/post sales support for Cullinet (four and a half years) and Allen Systems Group (one year in Singapore)
- Roles— DBA, application developer, security specialist, performance and tuning specialist, IDD customisation and reporting, IDMS/SQL functions and procedures
- Training in all aspects of using IDMS DBA's and developers wrote courseware for developers
- Where— Canada, Singapore, England, Malaysia, Thailand, Philippines and Australia

Agenda


- Monitoring, Tuning, Objectives
- Identifying Problem Areas
- Techniques Used
- Use of the RETURN Verb
- User-written CA ADS BIFs
- CA ADS Arithmetic vs BIFs
- Look Aside Message Buffer
 - Results
 - Conclusions

- Next Number Server Task
- Database Procedures
- Subschema Tailoring
- Job Submission

Application Tuning Objectives

CA IDMS™ Technical Conference

- Reduce the number of deadlocks
 - Reduce the number of I/Os
 - Reduce execution time
- Minimise impact on applications

CA IDMS™ Technical Conference

ca

- Intro to System Monitoring and Tuning
 - √ Monitoring, Tuning, Objectives
 - Identifying Problem Areas
- Techniques Used
- Use of the RETURN Verb
- User-written CA ADS BIFs
- CA ADS Arithmetic vs BIFs
- Look Aside Message Buffer
 - Results
 - Conclusions

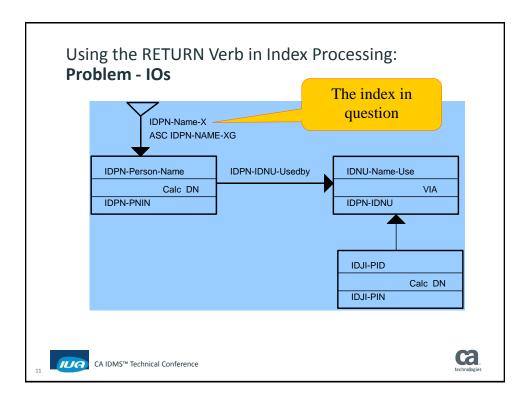
- Next Number Server Task
- Database Procedures
- Subschema Tailoring
- Job Submission

Identifying the Problem Areas (1)

- Deadlock Summary Report
 - Name of Aborted Program
 - Name of program with which deadlock occurred
 - IDMS Status (store/modify/erase?)
 - DBKEY that caused the deadlock
- Page level locks
 - Too many / too large clusters
- Specific DB keys
 - OOAK or NOOAK problems

Identifying the Problem Areas (2)

- Perf Mon Interval Monitor (PMIM)
 - Watch for DBKey WAIT time and high levels of IO activity at peak times
- Perf Mon Real Time Monitor (PMRM)
 - Ad-hoc observations particularly bottlenecks
- Capacity Planning Reports
 - The Capacity Planner's "hit list" of rogue programs


Agenda

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - √ Identifying Problem Areas
- Techniques Used
- Use of the RETURN Verb
- User-written CA ADS BIFs
- CA ADS Arithmetic vs BIFs
- Look Aside Message Buffer
 - Results
 - Conclusions

- Next Number Server Task
- Database Procedures
- Subschema Tailoring
- Job Submission

Using the RETURN Verb in Index Processing: **Problem - IOs**

- Original code used OBTAIN ... USING ... sort-key
- Original had RETRIEVAL LOCKS IS YES
- New code uses RETURN .. Using ... sort-key
- Set RETRIEVAL LOCKS IS NO for CPU savings as well as IO reduction

Using the RETURN Verb in Index Processing

	OLD			NEW				
Query	Ph/IO	P/Rqs	Locks	DBRqs	Ph/IO	P/Rqs	Locks	DBRqs
SMITH//	194	976	609	683	128	748	212	756
S/X/	634	1874	1258	622	43	786	126	764
S//	306	1418	795	845	191	1007	205	1013
SM//	235	1136	650	716	154	943	227	952
S//K	639	2031	1337	707	44	821	154	802
S/J/R	640	2302	1512	884	46	827	154	808
S//R	642	2436	1555	940	42	862	164	845
Sum:	3290	12173	7716	5397	648	5994	1242	5940
				Diff:	-2642	-6179	-6474	543
				% Diff:	-80.3	-50.76	-83.9	10.06

DB requests up because we now have to issue OBTAIN as well as RETURN for "candidate" records – BUT look at the SAVINGS!

Agenda

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas
- Techniques Used
- ✓ Use of the RETURN Verb
- User-written CA ADS BI
- CA ADS Arithmetic vs BIFs
- Look Aside Message Buffer
 - 3
 - Results
 - Conclusions

- Next Number Server Task
- Database Procedures
- Subschema Tailoring
- Job Submission

User written CA ADS BIFs:

Problem - CPU

- Required text processing for user applications:
 - Remove Redundant Spaces
 - Capitalise the First Letter of Each Word
 - Word Capitalisation and also Remove Spaces
 - Remove Non-Alphabetic Characters

User written CA ADS BIFs:

Problem - CPU

Removing Redundant Spaces (REMSPACE)

This function returns the string that results when all occurrences of two or more SPACEs in the specified source string are reduced to a single SPACE character in the result string.

Returned string:

User written CA ADS BIFs:

Problem - CPU

Capitalise the First Letter of Each Word (JWORDCAP)

This function returns the string that results when the first letter of each word in the specified source string is capitalised and all other characters in the string are converted to lower case. This is similar to the CA supplied WORDCAP, except that the following special cases are recognised:

d'Angelo (**D** remains lower case)

McAndrews (A also upper case)

Apostrophe's (the **S** remains lower case following apostrophe's at the end of words)

Returned string:

"O'HearnbbbAndbbbMcHearn'sbbbbbbbbbbbbbbbbb"

CA IDMS™ Technical Conference

User written CA ADS BIFs:

Problem - CPU

Word Capitalisation and Space Reduction (JWCAPREM)

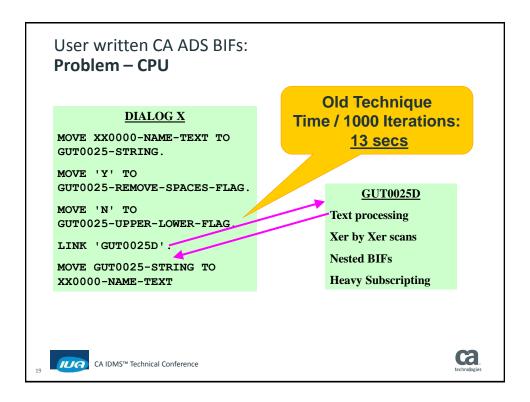
This function returns the string that results when the first letter of each word in the specified source string is capitalised and all other characters in the string are converted to lower case (JWORDCAP), and also reduces multiple spaces to a single space (REMSPACE). As before, the the following special cases are recognised:

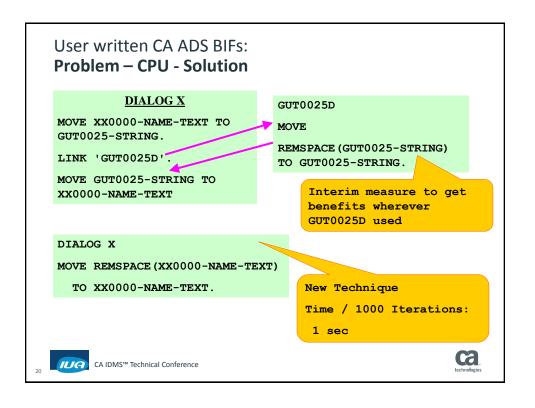
d'Angelo (**D** remains lower case)

McAndrews (A also upper case)

Apostrophe's (**S** remains lower case after apostrophe's at the end of words)

Initial value (where b = space):


"O'HEARNbbbANDbbbMCHEARN'Sbbbbbbbbbbbbbb"


Returned string:

User written CA ADS BIFs: **Problem - CPU**

- User-written BIFs
 - Able to replace LINK to utility routine with the user-written BIF
 - Fewer GETSTG's/FREESTG's
 - Reduced system mode time
 - Reduced DC mode WAITs
 - Immediate (partial) benefit by using the new BIF in the LINKed to dialog
 - Full benefit by using BIF at the higher level

CA IDMS™ Technical Conference

Agenda

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas
- Techniques Used
- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
- CA ADS Arithmetic vs BIFs Subschema Tailoring
- Look Aside Message Buffer
 - Results
 - Conclusions

- Next Number Server Task
- Database Procedures
- Job Submission

CA ADS Arithmetic instead of CA ADS BIFs: **Problem - CPU**

- We had a date difference+offset calculation routine that was used "heaps" (Y2K compliant DATEDIF and DATEOFF not ready)
 - Converted CA ADS BIFs to Arithmetic
 - Converted Arithmetic to User Written BIFs
- Some Basics for arithmetic data items
 - COBOL design rules
 - Use signs
 - Use COMP or COMP-3 instead of DISPLAY
 - Use COMP for items used as subscripts

CA ADS Arithmetic instead of CA ADS BIFs:

Problem - CPU

Code Comparison

Let's not argue the relative merits of readability or maintainability – this code is in a "black box" routine – so once it works nobody has to look at it again. Here's just one line of a much larger routine (see appendix A of the written paper)!

Using a BIF - original code

COMPUTE GUT0016-WORK2-MM =

MOD(GUT0016-WORK2-MM + 9, 12).

Without a BIF - intermediate code

COMPUTE GUT0016-TEMP-MM = GUT0016-WORK2-MM + 9.

DIVIDE 12 INTO GUT0016-TEMP-MM

GIVING GUT0016-TEMP-NUM

REMAINDER GUT0016-TEMP-MM.

CA ADS Arithmetic instead of CA ADS BIFs:

Problem - CPU

2k Iterations	Elapse	SYS	USER	Tot	DC Rqs	Get Stg	Free
				CPU			Stg
Old GUT0016	32.57	13.8	16.33	30.13	86033	34026	34023
Tmp GUT0016	25.3	7.76	13.59	21.35	46033	14026	14023
Difference %	22.321	43.768	16.779	29.14	46.49379	58.779	58.784
Saving for 100k		302	137	439	2,000,000		
CPU Mins Saved				7.3167			

Anticipated Savings

At this stage we have an "intermediate" version of our date handling routine – we thought if we can save 7 minutes on 100,000 uses by changing to basic arithmetic – can we do better yet by writing built-in-functions?

CA ADS Arithmetic instead of CA ADS BIFs:

Problem - CPU

Using a User Written BIF - final code

MOVE GUT0016-WORK1-DATE TO GUT0016-WORK2-DATE.

MOVE DBTOSERL(GUT0016-WORK1-DATE) TO GUT0016-WORK2.

MOVE GUT0016-NUM-AREA TO GUT0016-DATE-AS-NUM.

CALL NUMBTOD8

0 () (

RETURN.

Please see Appendix A of written paper for the full code + intermediate code replaced by this!

DEFINE NUMBTOD8.

MOVE SERLTODB (GUT0016-DATE-AS-NUM) TO GUT0016-WORK2.

MOVE GUT0016-DATE-AREA TO GUT0016-WORK2-DATE.

GOBACK.

CA ADS Arithmetic instead of CA ADS BIFs:

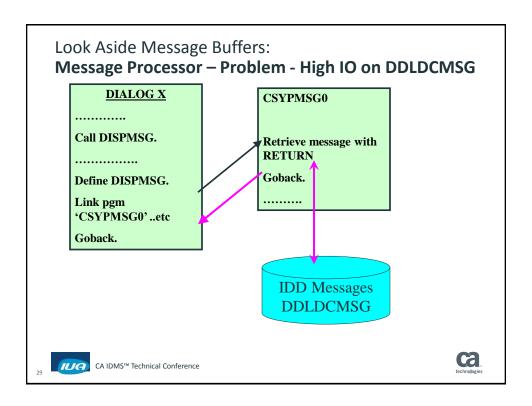
Problem - CPU

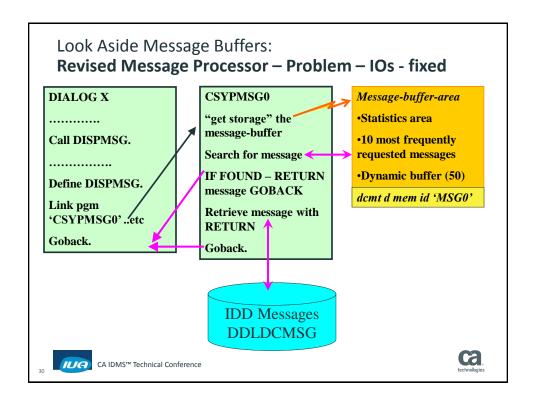
2k Iterations	Elapse	SYS	USER	Tot	DC Rqs	Get Stg	Free
				CPU			Stg
Old GUT0016	32.57	13.8	16.33	30.13	86033	34026	34023
New GUT0016	16	7	6.37	13.37	42033	12026	12023
Difference %	50.875	49.275	60.992	55.626	51.14317	64.656	64.662
Saving for 100k		340	498	838	2,200,000		
CPU Mins Saved				13.967			

Anticipated Savings

With a built-in-function we look like saving 14 minutes of CPU on 100,000 uses of this routine (our volumes are now much higher than this and 100,000 was a conservative estimate anyway) - so we're pretty happy that we bit the bullet and did this way back when!

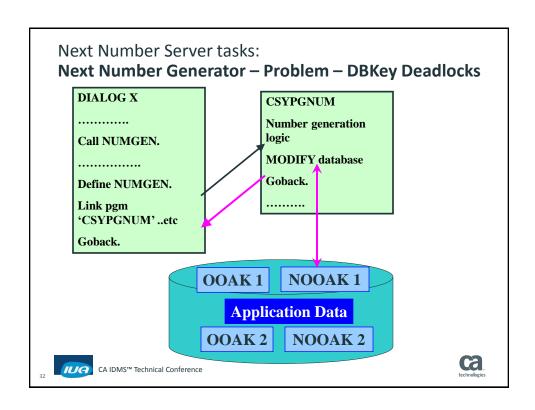
Agenda


- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas
- Techniques Used
- ✓ Use of the RETURN Verb
- Next Number Server Task
- ✓ User-written CA ADS BIFs
- Database Procedures
- ✓ CA ADS Arithmetic vs BIFs
- Subschema Tailoring
- Look Aside Message Buffer Job Submission

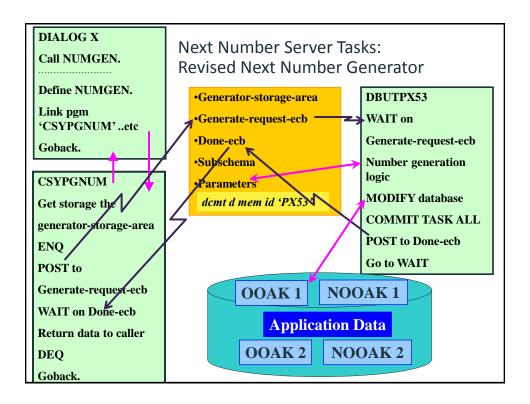

- Results
- Conclusions

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas

Techniques Used


- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
- ✓ CA ADS Arithmetic vs BIFs
- ✓ Look Aside Message Buffer
 - Results
 - Conclusions

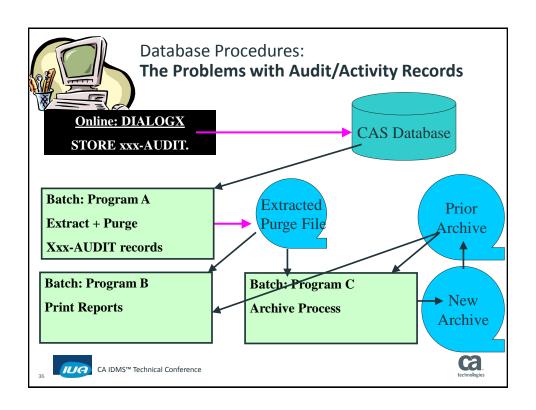
Next Number Server Task



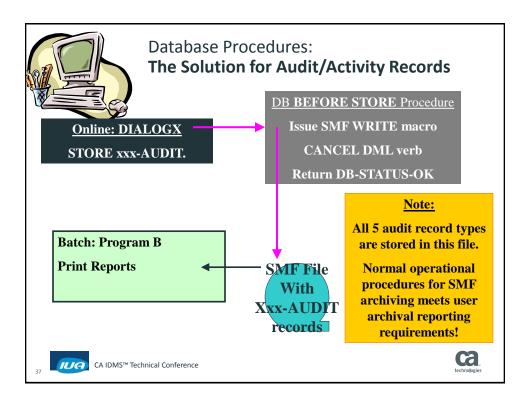
- Database Procedures
- Subschema Tailoring
- Job Submission

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - √ Identifying Problem Areas
- Techniques Used
- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
- ✓ CA ADS Arithmetic vs BIFs
- ✓ Look Aside Message Buffer
 - Results
 - Conclusions

- ✓ Next Number Server Task
- Database Procedures
- Subschema Tailoring
- Job Submission


Database Procedures:

The Problems with Audit/Activity Records


- Direct Dbkey of −1 to create a "sequential file" from IDMS
- Each STORE changes space available so creates page level locks
- Concurrent tasks competing for the same page leads to -
- Heavy deadlocking of online transactions
- Monthly processing to clear out the areas and creation of 5 archive files
- Records are never looked at online

Database Procedures:

Results

- Reduced number of deadlocks (30%)
- Reduced I/O (20%)
- Reduced internal response time (20%)
- Reduced journal I/Os
- Replaced 5 monthly update jobs with one non-database job
- CAS-CPRAUD-AREA dropped out of sight on WRITE activity
- CAS-CAPAUD-AREA virtually disappeared from PMIM monitoring
- NO application code affected

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas

Techniques Used

- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
- ✓ CA ADS Arithmetic vs BIFs
- ✓ Look Aside Message Buffer
 - Results
 - Conclusions

- ✓ Next Number Server Task
- ✓ Database Procedures
- Subschema Tailoring
- Job Submission

CA IDMS™ Technical Conference

Subschema Tailoring:

Problem - CPU

- Why large subschemas are a performance issue in CA ADS?
 - Currency save/restore processing
 - Very CPU intensive
 - It's a logical merge from the top level down not just a straight copy of the currency tables
 - Cost goes up with an increase in the number of levels
 - Cost goes up with increasing size of subschema(s)

Subschema Tailoring:

Problem - CPU - A true Story

- Problem
 - Heavy user of Logical Record Facility
 - Not a problem by itself BUT
 - As LR's needed additional components they were simply added to the subschema
 - End results
 - Very large subschemas
 - Application VERY expensive to run
- Solution
 - Had user tailor the subschemas to meet the needs of logical groups of programs
- Result 25% cost reduction for the application

CA IDMS™ Technical Conference

Subschema Tailoring:

Problem – CPU – "test harness" benchmark

Test Case	Sys Mode	User Mode	Tot Time	Getstgs	Progs Called
Tailored subschema	1.61	0.5407	2.1507	14023	8005
Global subschema	16.41	0.6714	17.0814	14023	8005
Difference	919.25	24.17	694.23		

A 700% Reduction in CPU – and – not a single line of application code was changed!

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas

- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
 ✓ Database Procedures
- ✓ CA ADS Arithmetic vs BIFs
 ✓ Subschema Tailoring
- ✓ Look Aside Message Buffer Job Submission ♣
 - Results
 - Conclusions

- ✓ Next Number Server Task

CA IDMS™ Technical Conference

Job Submission:

Problem - DB Key Deadlocking - Symptoms

- 4,000+ batch job submissions /day
- Heavy DB Key WAITs
- Frequent nn29 abends

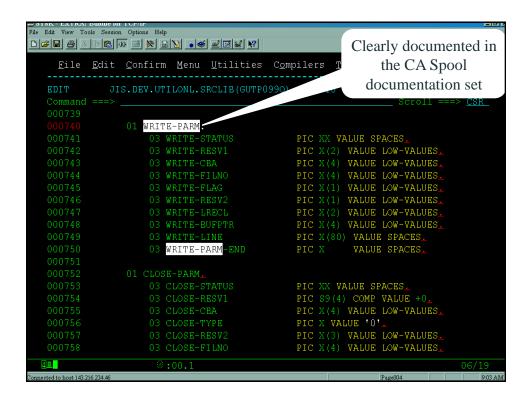
Job Submission:

Problem - DB Key Deadlocking - Why

- Job Submission with WRITE PRINTER
 - JCL images "printed" to JES Internal Reader
 - '/*EOF' and WRITE PRINTER ENDRPT to finish submission
- What causes the problems?
 - JCL goes into Queue area with DB key locking and journalling of before+after images (STOREs)
 - JCL comes out of the Queue area when IDMS-DC "prints" the report to the INTRDR – with locking and journalling of before+after images (ERASEs)

Job Submission:

Problem – DB Key Deadlocking - Solution


- Job Submission without Queue
- How?
 - CA Spool™ interface to send JCL images to JES via CA Spool
 - Some gotchas
- Results
 - Almost eliminated Queue area deadlocks
 - Stable and reliable
 - Sorry no "benchmark" results on this one


```
SYSK - EXTRA! Bundle for TCP/IP
File Edit View Tools Session Options Help
File Edit Confirm Menu Utilities Compilers Test Help
                                                              Columns 00001 00072
                 650-WRITE-TO-CASPOOL SECTION.
                                                        Easy to use - this is
                                                          what the API for
                         PERFORM 660-OPEN-CASPOOL
                                                       CA Spool looks like!
                     end-if
                     TRANSFER 'ESFWRIT' RETURN USING WRITE-PARM.
                     IF WRITE-STATUS NOT = SPACES
move 99 TO L-JCL-PARAM-ERROR-CODE
                         perform 670-CLOSE-CASPOOL
                         DC RETURN
                     END-IF.
  4B
```


- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas
- ✓ Techniques Used
- ✓ Use of the RETURN Verb
- ✓ User-written CA ADS BIFs
- ✓ CA ADS Arithmetic vs BIFs
- ✓ Look Aside Message Buffer
 - Results
 - Conclusions

- ✓ Next Number Server Task
- ✓ Database Procedures
- √ Subschema Tailoring
- √ Job Submission

Results: anticipated benefits in CAS

- Remove 1.1 I/O's for every dialog that issues a message, and
- Remove 2 to 2.n I/O's for every audit/activity record created, and
- Elimination of deadlocks and waits during number generation, and
- Elimination of deadlocks and waits due to creation of activity/audit records, and
- Improved response times due to all of the above

Results: actual achievements in CAS

- Reduced deadlocks by >= 30%
- Eliminated 5 monthly update jobs
- Improved response times by 20% (in "hit list" dialogs)
- Reduced I/O activity by 20% (in "hit list" dialogs)
 - I/O profile excludes non-critical database areas (load area, message area, etc)
 - Only "business" areas show up
- DBAs able to cut Message run units from 4 to 2
- Only 4 dialogs had any code changes a total of 8 lines of code were affected!

CA IDMS™ Technical Conference

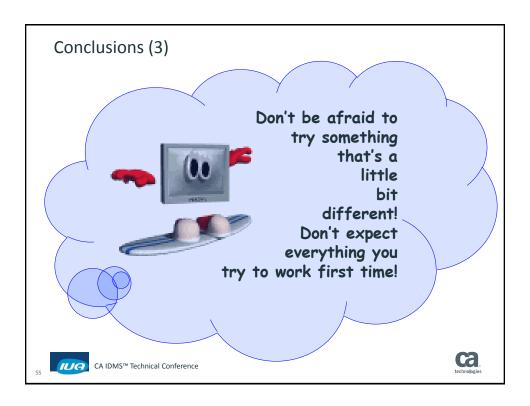
Agenda

- ✓ Intro to System Monitoring and Tuning
 - ✓ Monitoring, Tuning, Objectives
 - ✓ Identifying Problem Areas
- ✓ Techniques Used
- ✓ Use of the RETURN Verb
- ✓ Next Number Server Task
- ✓ User-written CA ADS BIFs
- ✓ Database Procedures
- ✓ CA ADS Arithmetic vs BIFs
- ✓ Subschema Tailoring
- ✓ Look Aside Message Buffer
- ✓ Job Submission

- ✓ Results
- Conclusions

Conclusions (1)

- Don't be afraid to use the full functionality of the products (e.g.):
 - Database procedures
 - User written BIFs for CA ADS
- Be sure to follow traditional, good design and coding practices for efficiency
 - What was good for COBOL is still good for CA ADS in many cases
- When all else fails
 - Use assembler


Conclusions (2)

- Focus your application tuning efforts on heavily used (application) utility programs
- Avoid changes that will affect many dialogs (requiring large migrations)
 - Ease of testing and validation
 - Makes for easier implementations
 - Backed out more easily if there's a problem
 - The value of focusing on utility routines

Summary

- Introduced a variety of tools and techniques which were used to tune poorly performing applications
- Used a case study approach
- Discussed a number of common performance problems
- Examined design options
- Saw implementation techniques for solutions
- Reviewed specific code examples
- Looked at effects when applied to live problem situations
- Saw the results of a tuning exercise for CAS

Online Session Evaluation

Please provide your feedback about this session: A8

On the CA Communities web site http://communities.ca.com

More details in your conference bag

Questions and Answers and Discussion