

Event Configuration User Guide
r9.2

CA Spectrum® Infrastructure

Manager

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the CA Spectrum® Infrastructure Manager (CA

Spectrum).

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the

information you need for your Home Office, Small Business, and Enterprise CA

products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: CA Spectrum Event and Alarm Concepts 9

About Alarms and Events .. 9

Alerts ... 9

Events ... 10

Event Codes .. 10

Alarms ... 11

Chapter 2: Getting Started with Event Configuration 13

Before You Begin ... 13

Obtaining a Developer ID ... 13

Mapping Traps to CA Spectrum Events ... 14
Preserving Customizations Across Upgrades of CA Spectrum 14

Starting the Event Configuration Application ... 15

Overview of the User Interface .. 17

Loading All Events from All Landscapes .. 18

Saving Events to Landscapes .. 18

Synchronizing Events in a Distributed Environment ... 20

Synchronizing Event Disposition Files on SpectroSERVERs 20

Synchronizing Event and Alarm Support Files on OneClick Web Servers 23

Updating the Overall Alert and Event System for a Landscape 24
Add and Remove Columns from the Events Table .. 25

Logging Event-Related Errors ... 25

Chapter 3: Working with Events and Alarms 29

Finding Events .. 29

Create Events from Scratch ... 30

Create Events from a Copy .. 31

About Configuring Events ... 32

Entering an Event Message .. 33

Specify Event Options ... 40

Configure Events to Generate Alarms .. 42
Configure Events to Clear Alarms .. 57

Modify Events .. 59

Delete Custom Events .. 60

6 Event Configuration User Guide

Chapter 4: Working with Event Rules 61

Event Rules .. 61

Event Condition Rules ... 61

Event Pair Rules .. 62

Event Rate Rules.. 62

Event Series Rules .. 64

Event Counter Rules .. 64

Heartbeat Rules... 64

Single Event Rules .. 64

Solo Event Rules .. 65
User-Defined Event Rules ... 65

Create Event Rules ... 65

Configuring Event Condition Rule Settings ... 66

Configuring Event Pair Rule Settings ... 70

Configuring Event Rate Rule Settings .. 73

Configuring Event Series Rule Settings ... 76

Configuring Event Counter Rule Settings ... 80

Configuring Heartbeat Rule Settings ... 83

Configuring Single Event Rule Settings ... 86
Configuring Solo Event Rule Settings .. 89

Copy Variable Values from Contributing Events to the Rule Output Event 91

Modifying Event Rules... 92

Delete Event Rules .. 93

Chapter 5: Using Procedures in Event Processing 95

Using Procedures in Event Disposition Files .. 95

Input Parameters ... 96

Return Values .. 99

Examples of Procedures in Event Disposition Files .. 99

Logging Errors in Event Procedures ... 101
Troubleshooting Event Procedures .. 102

Appendix A: AlertMap Files 103

SNMP Trap Overview ... 103

About Mapping a Trap to a CA Spectrum Event .. 105

About Processing Alerts with AlertMap Files ... 106

AlertMap File Location .. 106

AlertMap File Syntax ... 107

Error Messages .. 110

SNMPv2 Support ... 111

InformRequest Support .. 111

Contents 7

How an SNMPv2 Trap is Mapped to a CA Spectrum Event 111

Appendix B: Event Disposition Files 115

About Event Disposition Files ... 115

Location of Event Disposition Files .. 116

File Syntax of Event Disposition Files ... 118
Generating Alarms ... 119

Generating Alarms for Events Based on the Values of Event Variables 121

Generating Alarms Unconditionally for Each Event ... 121

Generating Alarms That Users Cannot Clear ... 122

Generating Alarms That Are Not Persistent .. 122

Combining the U, N, and T Flags.. 122

Specify an Event Frequency .. 123

Specify an Event Duration .. 123

Clearing Alarms.. 124
Clear Alarms Created Without Event Discriminators ... 124

Clear Alarms Based on Event Discriminator Values .. 125

Examples of Event Maps That Clear Alarms ... 127

Clearing Alarms Regardless of Event Discriminator Values 128

About Defining Event Rules .. 129

Event Rule Syntax ... 129

EventPair Rule ... 130

EventPairTimeAttr Rule ... 131

EventRateWindow Rule ... 131
EventRateWindowAttrParams Rule .. 132

EventRateCounter Rule... 132

EventSequence Rule ... 133

EventCombo Rule .. 134

EventComboInclusive Rule ... 135

EventCondition Rule.. 135

EventCounter Rule ... 147

Heartbeat Rule... 147

SoloEvent Rule .. 149
SingleEvent Rule ... 150

Using Multiple Event Rules in a Single EventDisp Entry 150

Copy Event Variables from One Event to Another .. 151

Syntax Errors in EventDisp Files .. 157

Add Comments in EventDisp Files .. 158

Appendix C: Event Format Files 159

About Event Format Files... 159

8 Event Configuration User Guide

Location of Event Format Files.. 159

Contents of an Event Format File ... 160

Appendix D: Event Table Files 161

About Event Table Files .. 161

Location of Event Table Files ... 161
Contents of an Event Table File ... 162

Appendix E: Probable Cause Files 163

About Probable Cause Files ... 163

Location of Probable Cause Files .. 163

Contents of a Probable Cause File .. 164

Glossary 165

Index 167

Chapter 1: CA Spectrum Event and Alarm Concepts 9

Chapter 1: CA Spectrum Event and

Alarm Concepts

This section contains the following topics:

About Alarms and Events (see page 9)

Alerts (see page 9)

Events (see page 10)

Alarms (see page 11)

About Alarms and Events

CA Spectrum is a services and infrastructure management system designed to

notify you if a fault has occurred on any managed element within the network

infrastructure. One way that CA Spectrum accomplishes this is by receiving

alerts from problem areas within the infrastructure and converting those alerts

into events and alarms that are displayed in OneClick event and alarm views.

More simply, CA Spectrum notifies you about significant occurrences on your

network through the use of alerts, events, and alarms.

Alerts

An alert is an unsolicited message sent out by a managed element on a network.

A more specific definition of an alert depends on the management protocol that

is used to report the alert. In general, CA Spectrum uses SNMP as the

management protocol to communicate with devices on a network. Alerts that are

generated by an SNMP-compliant device are called traps.

You can configure managed elements that have enabled SNMP traps to direct

their traps to the host machine that is running CA Spectrum, which automatically

listens for SNMP traps. When a trap is received, CA Spectrum uses the trap‘s

source IP address to identify the model in CA Spectrum‘s database associated

with the managed element. Next, CA Spectrum maps the trap to a CA Spectrum

event that is then generated and processed.

CA Spectrum has special handling for traps that are not mapped to specific CA

Spectrum events, and for traps that occur on managed elements that are not

modeled at the time the trap is received.

Events

10 Event Configuration User Guide

You map the traps sent by a managed element to specific CA Spectrum events

using the MIB Tools application in OneClick. In fact, you must do this before you

can create and modify the events and associated alarms using Event

Configuration.

Note: For more information about how traps are mapped to events, see the

Modeling and Managing Your IT Infrastructure Administrator Guide. For

information on using MIB Tools, see the Certification User Guide.

Events

An event is a CA Spectrum object that indicates that something significant has

occurred within CA Spectrum itself or within the managed environment. Events

always occur in relation to a model. When CA Spectrum receives an alert from a

managed element on the network, in response, it generates a CA Spectrum

event for the corresponding model if the received trap is mapped to an event.

CA Spectrum also generates events automatically in various situations, for

example, when models are created or destroyed, when CA Spectrum connects to

or disconnects from a device application, and when contact with a managed

element is established or lost.

CA Spectrum processes an event instance based on how the underlying event is

configured. For example, the event instance might be logged by the Archive

Manager in the Distributed Data Manager (DDM) database. It might also clear an

alarm or generate another event using an event rule.

Network operators can view the list of current events in a landscape on the

Events tab in OneClick. For a specific event, you can also view information such

as a message describing the event and when the event was created.

As previously mentioned, you map the traps sent by a device to specific CA

Spectrum events using the MIB Tools application in OneClick. However, you use

Event Configuration to fully configure the event, that is, to define how the event

should be processed, the event message to display to users in OneClick, and so

on.

Event Codes

Every event has a unique event code. The event code is a 4-byte integer

expressed in hexadecimal format. It has two parts:

■ The first two bytes contain the developer ID of the developer who created

the event

■ The last two bytes identify the event with a unique number relative to all

other event codes for that developer

Alarms

Chapter 1: CA Spectrum Event and Alarm Concepts 11

CA Spectrum assigns event codes to all events created using MIB Tools or Event

Configuration, and the next available event code is always used as the default

code. In Event Configuration, you have the option of overriding the default code

and specifying a different one.

Note: The event code 0x10000 represents a null event. This event cannot be

generated. However, the null event can be used in an event rule that requires an

event code as a parameter.

Alarms

An alarm is a CA Spectrum object that indicates that a user-actionable, abnormal

condition exists in a model. CA Spectrum generates an alarm when a CA

Spectrum event—typically generated as a result of a received trap—specifies

that one should be created. CA Spectrum can also generate an alarm based on

the results of a watch set up, or as a result of CA Spectrum detecting an

abnormal situation not based on an event (for example, lost communication

between a model and the managed element that it represents).

Network operators are alerted to alarms in various ways depending on how

OneClick is configured. For example, the icon representing the model of the

managed element (or a container model containing the managed element

model) might change color. An audio message announcing the new alarm might

also be played.

Operators can view the list of current alarms in a landscape on the Alarms tab in

OneClick. For a specific alarm, you can also view detailed information, such as

whether it has been acknowledged by a user, status, symptoms, probable

causes, and the corrective actions that are recommended.

When the abnormal condition that caused the alarm ends, the corresponding

alarm may be cleared automatically by another event or cleared manually by a

user. Alarm notifications may be sent to other external third-party or internal CA

Spectrum applications as appropriate.

For convenience, you can specify whether an event should generate an alarm

(and the severity of the alarm) in MIB Tools when you map a trap to an event.

However, you use Event Configuration to further configure the alarm (and to

change the alarm severity if desired).

Alarms

12 Event Configuration User Guide

The following figure illustrates the flow of alerts, events, and alarms within CA

Spectrum.

More information:

AlertMap Files (see page 103)

Event Disposition Files (see page 115)

Event Format Files (see page 159)

Probable Cause Files (see page 163)

Chapter 2: Getting Started with Event Configuration 13

Chapter 2: Getting Started with Event

Configuration

This section contains the following topics:

Before You Begin (see page 13)

Preserving Customizations Across Upgrades of CA Spectrum (see page 14)

Starting the Event Configuration Application (see page 15)

Overview of the User Interface (see page 17)

Loading All Events from All Landscapes (see page 18)

Saving Events to Landscapes (see page 18)

Synchronizing Events in a Distributed Environment (see page 20)

Updating the Overall Alert and Event System for a Landscape (see page 24)

Add and Remove Columns from the Events Table (see page 25)

Logging Event-Related Errors (see page 25)

Before You Begin

Before you begin using Event Configuration to create events and alarms, do

either or both of the following:

■ Obtain a developer ID (see page 13) from CA.

■ If you are adding trap support for a device that is not supported by default in

CA Spectrum, map the traps to new CA Spectrum events (see page 14)

using MIB Tools.

Obtaining a Developer ID

The first two bytes of any event code contains a developer ID. By default, this is

the default developer ID provided with CA Spectrum. However, if you are

creating events and alarms to support a new device management module or you

are creating a Southbound Gateway integration, it is recommended that you

obtain a unique, registered developer ID from CA so you can specify event codes

for your events that begin with your unique developer ID. This lets you to easily

recognize your custom code in OneClick and prevents potential conflicts with

other CA Spectrum event codes.

Preserving Customizations Across Upgrades of CA Spectrum

14 Event Configuration User Guide

To obtain a developer ID from CA, contact CA Spectrum Support toll-free at

877-428-6324. To be issued a developer ID, you must have purchased the Level

1 Toolkit.

Note: For information on the toolkit, see the Integrator Guide. To activate your

developer ID, which is done using SSdbload with the -d option, see the

discussion on loading developer information in the Database Management Guide.

Mapping Traps to CA Spectrum Events

If you are creating a new management module for a device that is not supported

by default in CA Spectrum, it is recommended that you map the traps sent by the

device to new CA Spectrum events (that are automatically created when the trap

mappings are defined) using MIB Tools before you begin using Event

Configuration. You can then launch Event Configuration directly from MIB Tools

to fully configure the events and associated alarms.

If you create new events using Event Configuration instead of MIB Tools, you

cannot subsequently use MIB Tools to map traps to them. Instead, you must

manually specify the mappings in the <$SPECROOT>/custom/Events/AlertMap

file on each SpectroSERVER in your environment. This is because the process of

mapping traps to events using MIB Tools automatically creates new events with

unique event codes. You cannot use MIB Tools to map traps to existing events

that were previously created using Event Configuration.

AlertMap files are ASCII files that store the following:

■ Mappings between the traps sent by a device and CA Spectrum events

■ Mappings between the variable bindings that are sent with a trap and the

event variables in the event that CA Spectrum generates on a model when

the trap is received. Variable bindings can store attribute values in a MIB

table, OIDs, or integer bit values.

Note: For more information about using MIB Tools to map traps to events, see

the Certification User Guide.

Preserving Customizations Across Upgrades of CA Spectrum

There are several types of event and alarm configuration files that support event

and alarm processing in CA Spectrum: alert mapping files, event disposition

files, event format files, event table files, and probable cause files.

Starting the Event Configuration Application

Chapter 2: Getting Started with Event Configuration 15

The files that are provided with CA Spectrum to support CA-authored events and

alarms are installed in subfolders of the following folders:

<$SPECROOT>/SS/CsVendor

<$SPECROOT>/SG-Support

If you customize CA-authored events and alarms or create your own, and then

you save the customizations to one or more landscapes, the event and alarm

configuration files that define your customizations are installed in the following

folder or in one of its subfolders:

<$SPECROOT>/custom/Events

This means that the support files for your custom events and alarms are not

overwritten or otherwise affected when you upgrade to a new version of CA

Spectrum.

Starting the Event Configuration Application

You can start Event Configuration from the following locations:

■ OneClick Console

■ MIB Tools

Starting the Event Configuration Application from the OneClick Console

When you start Event Configuration from the OneClick Console, all of the events

supported in the landscape (or landscapes if the environment is distributed) are

loaded into the application.

To start Event Configuration from the OneClick Console

1. Launch the OneClick Console from the OneClick home page.

2. From the Tools menu, select Utilities, Event Configuration.

Starting the Event Configuration Application from MIB Tools

When you use MIB Tools to add trap support for a device that is not currently

supported in CA Spectrum, you map the traps to new CA Spectrum events and

specify whether those events should generate alarms. After you do this, typically

you further customize the events and alarms, which you must do in Event

Configuration. For this reason, you can start Event Configuration directly from

MIB Tools.

Starting the Event Configuration Application

16 Event Configuration User Guide

When you start Event Configuration from MIB Tools, only the events that are

associated with the traps you select are initially loaded into the application.

To start Event Configuration from MIB Tools

1. In the Navigation panel in MIB Tools, select the MIB that contains the traps

that have been mapped to the events that you want to configure.

Note: For information on how to map traps to CA Spectrum events in MIB

Tools, which you must do before you can configure the associated events in

Event Configuration, see the discussion on trap support in the Certification

User Guide.

2. In the Contents panel, click the Map tab.

3. In the Trap Support table, select the mapped traps for which you want to

configure events, and click (Edit traps for selected items in the trap

support table).

The Event Configuration application is started, and the events associated

with the traps that you selected are listed by event code in the Navigation

panel.

Note: At any time, you can load all of the events supported in the landscape

(or landscapes if the environment is distributed) by clicking (Reloads the

list of events) on the Navigation panel.

Overview of the User Interface

Chapter 2: Getting Started with Event Configuration 17

Overview of the User Interface

You perform all event and alarm configuration tasks in the Event Configuration

main window.

The window is divided into three panels:

■ Navigation: The Navigation panel lists all of the events currently loaded

into Event Configuration.

The Modified column displays a checkmark beside any event that you have

created or modified but not yet saved to a landscape. For more information,

see Saving Events to Landscapes (see page 18).

■ Contents: The Contents panel displays a customizable event message that

is displayed on the Events tab in OneClick for the event selected in the

Navigation panel.

Loading All Events from All Landscapes

18 Event Configuration User Guide

■ Details: The Details panel provides access to the configuration information

for the event selected in the Navigation panel. If the event should generate

an alarm, you also configure the alarm in this panel.

Note: You can click the server connection icon () to access connection

status information for all landscapes in the environment.

Loading All Events from All Landscapes

To load or reload all of the events supported in the landscape (or landscapes if

the environment is distributed), click (Reloads the list of events) on the

Navigation panel.

This functionality is especially helpful if you started Event Configuration from

MIB Tools to work with a limited set of events and you now require access to all

events supported in all landscapes.

Saving Events to Landscapes

When you save new or modified events (and their disposed actions, such as

alarms and event rules) to a landscape, Event Configuration updates the event

disposition (EventDisp) file that defines them on the SpectroSERVER, and the

SpectroSERVER flushes all existing event and alarm instances and reloads them

using the most recent configuration information.

You can save all events or just selected ones. You can also save the changes to

the local landscape only or, in a distributed environment, to some or all of the

landscapes.

If you do not save your changes to one or more landscapes before exiting Event

Configuration, the changes are discarded when you exit the application.

Important! The save process flushes and reloads all event rules including those

that are in the middle of processing. As a consequence, the processing of events

by active event rules is aborted, and all associated data (for example, counts for

occurrences of contributing events) is lost.

Saving Events to Landscapes

Chapter 2: Getting Started with Event Configuration 19

To save events to the landscape in a single SpectroSERVER

environment

1. Do one of the following:

■ If you want to save all modified or created events (and associated

alarms), click Save All on the File menu.

■ If you want to save only specific events (and associated alarms), select

the events in the table in the Navigation panel, and then click Save

Selected on the File menu.

2. Click Yes.

To save events to one or more landscapes in a Distributed

SpectroSERVER (DSS) environment

1. Do one of the following:

■ If you want to save all modified or created events (and associated

alarms), click Save All on the File menu.

■ If you want to save only specific events (and associated alarms), select

the events in the table in the Navigation panel, and then click Save

Selected on the File menu.

If one or more SpectroSERVERs are unavailable, you are notified at this point

with a warning, so you can cancel the process if desired.

Note: If there are unavailable SpectroSERVERs that will not receive the

changes, you can synchronize the events and alarms on all landscapes later.

2. Click Yes to save the events and alarms to available SpectroSERVERs.

Alternatively, click No to cancel the process.

The Select Landscapes dialog appears. By default, all available

SpectroSERVERs are listed in the left list box, which means that all available

SpectroSERVERs will receive the updated events and alarms.

3. If there are available landscapes to which you do not want to save the

changes, select them in the left list box, and click the right-arrow button to

move them to the right list box.

4. Click OK.

More information:

Synchronizing Events in a Distributed Environment (see page 20)

Synchronizing Events in a Distributed Environment

20 Event Configuration User Guide

Synchronizing Events in a Distributed Environment

If you are running CA Spectrum in a distributed environment, typically you will

need to perform one or both of the following tasks after making changes to

events and alarms using Event Configuration and saving them to landscapes:

■ Update the SpectroSERVERs in the environment that do not have the most

current events and alarms. See Synchronizing Event Disposition Files on

SpectroSERVERs (see page 20).

■ Copy the event and alarm support files to all of the OneClick web servers in

the environment. See Synchronizing Event and Alarm Support Files on

OneClick Web Servers (see page 23).

Synchronizing Event Disposition Files on SpectroSERVERs

If you save event and alarm changes to only some of the SpectroSERVERs in a

Distributed SpectroSERVER (DSS) environment, for example, because a server

in the environment is unavailable, the result is that conflicts exist across the

landscapes with respect to event and alarm configurations. To resolve these

conflicts, you need to save the changes to the unavailable servers when they

become available again, which is a task you can accomplish using the

synchronization features in Event Configuration.

To begin resolving event (and alarm) conflicts across landscapes, first add the

Conflict column to the table of events in the Navigation panel.

Next, examine the Conflict column and note any check marks (). If an event

is configured differently across two or more landscapes, that is, if different event

maps for the event are found in the event disposition (EventDisp) files on all of

the SpectroSERVERs, the event is loaded into Event Configuration once for each

unique event map in the DSS environment. In addition, to notify you of the

disparity, a check mark is placed in the Conflict column beside each event for

which different configurations have been retrieved.

Synchronizing Events in a Distributed Environment

Chapter 2: Getting Started with Event Configuration 21

As an example, note the two instances of event 0xf40004 in the following image.

The scenario shown in the preceding image is the result of customizing a

CA-authored event (event 0xf40004) and then saving the customization to some

but not all landscapes.

By selecting custom event 0xf40004 and examining the Landscapes tab

(displayed automatically in a DSS environment) in the Details panel, you can

identify the landscapes to which the custom event has been saved.

Synchronizing Events in a Distributed Environment

22 Event Configuration User Guide

Similarly, by selecting CA-authored event 0xf40004 and examining the

Landscapes tab, you can identify the landscapes to which the CA event has been

saved. As another example, contrast the preceding image that shows the

Landscapes tab for the custom event with the following image that shows the

same tab for the CA-authored event.

By comparing the following:

■ The configurations of the conflicting events

■ The landscapes to which the conflicting events have been saved

You identify the events you need to save and the landscapes to which you need

to save them to resolve a conflict. Once you have identified these, you can

synchronize the landscapes.

Synchronizing Events in a Distributed Environment

Chapter 2: Getting Started with Event Configuration 23

The process of synchronizing the landscapes updates the event disposition

(EventDisp) files on one or more SpectroSERVERs so that they match the event

disposition file on the main location server in the DSS environment. If the main

location server does not have the event disposition file that you want to use to

update the rest of the SpectroSERVERs, you can use the Save commands

instead, as described in Saving Events to Landscapes (see page 18).

Note: You manually designate a main location server when you install CA

Spectrum. For more information about location servers, see the Distributed

SpectroSERVER Administrator Guide.

To synchronize event disposition files across landscapes

1. Select Synchronize on the File menu.

The landscapes with event disposition files that differ from the file on the

main location server are listed.

2. Select the landscapes to synchronize with the main location server, and click

OK.

Note: You should also synchronize the event and alarm support files that

reside on the OneClick web servers in the environment.

Note: For more information about synchronizing the event and alarm support

files between fault tolerant servers, see the Distributed SpectroSERVER

Administrator Guide.

More information:

Synchronizing Event and Alarm Support Files on OneClick Web Servers (see

page 23)

Add and Remove Columns from the Events Table (see page 25)

Synchronizing Event and Alarm Support Files on OneClick Web Servers

When you create and configure events and alarms using Event Configuration,

and then you save them to one or more landscapes, the following types of

support files are created and updated automatically on only the OneClick web

server to which you are currently connected:

Event format files

Event format files store the event messages that are displayed in OneClick

for users. There is an event format file for every event that can be created by

CA Spectrum.

Probable cause files

Probable cause files store the alarm messages that are displayed in OneClick

for users. There is a probable cause file for every alarm that can be created

by CA Spectrum and that appears on the Alarms tab in OneClick.

Updating the Overall Alert and Event System for a Landscape

24 Event Configuration User Guide

As a result, if you are running multiple OneClick web servers, you need to copy

the following folders (which contain the event format files and the probable

cause files) to the other OneClick servers in your distributed environment:

<$SPECROOT>/custom/Events/CsEvFormat

<$SPECROOT>/custom/Events/CsPCause

In addition, if you use the command line interface (CLI) commands showalarms

or showevents, or you use CA Spectrum Alarm Notification Manager (SANM),

then you will want to copy the contents of these same directories to

<$SPECROOT>/SG-Support on all of the SpectroSERVERs in your environment.

More information:

Location of Event Format Files (see page 159)

Contents of an Event Format File (see page 160)

Location of Probable Cause Files (see page 163)

Contents of a Probable Cause File (see page 164)

Updating the Overall Alert and Event System for a Landscape

As described in Saving Events to Landscapes (see page 18), you can update just

the events (and their disposed actions, such as alarms or event rules) on one or

more landscapes using the Save commands available on the File menu.

However, to update the overall alert and event system more broadly for a given

landscape, in OneClick, click the Update Event Configuration button that is

available on the SpectroSERVER Control subview of the Information tab on the

VNM model. This action reloads the following:

■ The alert maps defined in all custom and CA-authored AlertMap files.

■ The event maps (including event rules) defined in all custom and

CA-authored event disposition files.

■ The event procedures defined in all custom and CA-authored event

procedure definition files.

■ The severity maps defined in all custom and CA-authored severity mapping

files (which are used for alarms that are assigned an alarm severity level of

Conditional).

Add and Remove Columns from the Events Table

Chapter 2: Getting Started with Event Configuration 25

■ The event-related resource settings defined in the .vnmrc file for the

SpectroSERVER.

Note: For information on these settings, see Logging Event-Related Errors

(see page 25). For more information about the .vnmrc resource file, see the

Distributed SpectroSERVER Administrator Guide.

■ The parse maps defined in all custom and CA-authored parse map files.

Note: For information on parse map files, see the Host System Resources

Management User Guide.

Important! This update process flushes and reloads all event rules including

those that are in the middle of processing. As a consequence, the processing of

events by active event rules is aborted, and all associated data (for example,

counts for occurrences of contributing events) is lost.

Add and Remove Columns from the Events Table

You can modify the event information that is displayed in the table of events in

the Navigation panel by adding or removing columns from the table.

For example, if you are working in a Distributed SpectroSERVER (DSS)

environment, it can be helpful to add the Conflict column to the table so you can

easily identify if there are existing events that are configured differently on

different landscapes.

Note: To filter the events in the table based on a specific event property, the

corresponding event property column must be displayed. The filtering

mechanism checks the text string you specify against only the text in the

displayed columns.

To add or remove columns from the events table

1. Right-click any column heading.

The Table Preferences dialog opens.

2. Click the Columns tab, and select the columns you want to display.

Note: If desired, you can also change the table sorting and font using the

controls on the Sort and Font tabs.

3. Click OK.

Logging Event-Related Errors

When you create and configure events and alarms using Event Configuration and

then save them to a landscape, the event and alarm processing instructions are

written to configuration files referred to as event disposition files.

Logging Event-Related Errors

26 Event Configuration User Guide

To help you resolve errors in event disposition files, which result in errors in

event processing, you can write errors of different types to log files. You specify

which types of errors to log, as well as the log files to which to write them, using

several parameters in the VNM resource file (.vnmrc file) for the SpectroSERVER.

See the subsections that follow for details on each parameter.

Several types of errors, such as syntax errors, are typically the result of manual

modifications to event disposition files. To minimize these types of errors, it is

recommended that you use Event Configuration, not a manual process, to create

and configure events and alarms.

Important! If the SpectroSERVER encounters an error in an event map while

parsing an event disposition file, that event map is ignored and, therefore,

cannot be used to process the associated event.

Note: If you make changes to the event-related .vnmrc parameters described in

this section, you must reload the parameters on the SpectroSERVER using the

Update Event Configuration command on the Information tab of the VNM model

for the changes to take effect. For more information, see Updating the Overall

Alert and Event System for a Landscape (see page 24). Alternatively, you can

restart the SpectroSERVER; this reloads all of the parameters in the .vnmrc file,

not just the event-related ones. For more information on the .vnmrc file, see the

Distributed SpectroSERVER Administrator Guide.

event_disp_error_file

If you set this parameter to the name of a text file, CA Spectrum writes any

syntax errors or other errors that it encounters while parsing an event

disposition file to that text file. Use the following syntax:

event_disp_error_file=<file name>

The text file is created in the <$SPECROOT>/SS folder.

Alternatively, you can set the value as follows:

event_disp_error_file=stderr

This sends the output to the console window in the CA Spectrum Control Panel

and to the <$SPECROOT>/SS/VNM.OUT file.

Note: For more information on syntax errors, see Syntax Errors in EventDisp

Files (see page 157).

Logging Event-Related Errors

Chapter 2: Getting Started with Event Configuration 27

event_custom_override_warnings

If you set this parameter to TRUE, when CA Spectrum encounters an event map

for an event in a custom event disposition file, and an event map for the same

event also exists in an event disposition file provided with CA Spectrum, it logs a

warning to the text file specified in the event_disp_error_file parameter (if a file

is specified). The default value is FALSE.

Setting this parameter to TRUE can be helpful if you need to determine which

CA-authored events are being overridden by your custom events, for example,

for troubleshooting purposes. Use the following syntax:

event_custom_override_warnings=TRUE

Note: To set this parameter, you must manually add it to the .vnmrc file.

enable_event_variable_warnings

By default, CA Spectrum does not log any warnings that are encountered while

copying event variable values from one event to another during event rule

processing. You can override this default behavior by setting the value of this

parameter to TRUE. Use the following syntax:

enable_event_variable_warnings=TRUE

Note: To set this parameter, you must manually add it to the .vnmrc file.

event_duplicate_action_warnings

By default, when CA Spectrum encounters identical (and, therefore, duplicate)

event maps for an event within an event disposition file or across multiple event

disposition files on a SpectroSERVER, it logs a warning to the text file specified in

the event_disp_error_file parameter (if a file is specified).

Typically, this default behavior is desirable. However, you can override it by

setting the value of this parameter to FALSE. Use the following syntax:

event_duplicate_action_warnings=FALSE

Note: To set this parameter, you must manually add it to the .vnmrc file.

event_disp_default_log

For events that you create and manage using Event Configuration, you specify

whether they are logged in the Distributed Data Manager (DDM) database using

the Store Event in Historical Database event option in Event Configuration. See

Specify Event Options (see page 40) for more information.

Logging Event-Related Errors

28 Event Configuration User Guide

By default, events that do not have event maps in event disposition files are

logged in the DDM database. You can override this default behavior by setting

the value of this parameter to FALSE. Use the following syntax:

event_disp_default_log=FALSE

Typically, most events have event maps in event disposition files. However, in

rare situations, this is not the case. For example, if you mapped a trap to a CA

Spectrum event manually instead of using the recommended method of using

MIB Tools, and then you inadvertently neglected to define an event map for the

event in an event disposition file, the event is still logged in the DDM database

depending on the value of this .vnmrc parameter.

procedure_error_file

If you set this parameter to the name of a text file, CA Spectrum writes any

errors that it encounters while parsing a procedure file to that text file. Use the

following syntax:

procedure_error_file=<file name>

The text file is created in the <$SPECROOT>/SS folder.

Alternatively, you can set the value as follows:

procedure_error_file=stderr

This sends the output to the console window in the CA Spectrum Control Panel

and to the <$SPECROOT>/SS/VNM.OUT file.

If the event_disp_error_file parameter is set, the errors encountered in

procedures that are executed from events are written to the file specified in

event_disp_error_file instead of to the file specified in this parameter. Errors

encountered in other types of procedures, for example, in those used for

diagnostics, are still written to the file specified in this parameter.

Note: To set this parameter, you must manually add it to the .vnmrc file.

Chapter 3: Working with Events and Alarms 29

Chapter 3: Working with Events and

Alarms

This section contains the following topics:

Finding Events (see page 29)

Create Events from Scratch (see page 30)

Create Events from a Copy (see page 31)

About Configuring Events (see page 32)

Modify Events (see page 59)

Delete Custom Events (see page 60)

Finding Events

To find an event, you can filter the list of events in the Navigation panel to

include only those with displayed property values that include a specific text

string. For example, if the Type column is displayed, you can enter ―timeout‖ to

filter the list to include only events that generate alarms that include the word (in

uppercase or lowercase) in the alarm type text string (alarm title).

An event that is mapped to a Trap will have the Trap Event column checked.

To find events

1. If necessary, click (Reloads the list of events) to update the event table in

the Navigation panel to include all events in the distributed environment.

Note: Typically, you only need to reload the list of events if you started

Event Configuration from MIB Tools. Starting Event Configuration in this

manner only loads into Event Configuration the specific events you selected

in MIB Tools.

2. Verify that the event properties that you want to search against are

displayed in the events table. If this is not the case, add the appropriate

table columns as described in Adding and Removing Columns from the

Events Table (see page 25).

Note: Only visible table columns are included in the filtering process.

3. In the Filter field, enter the text string to search for in the event table.

The list of events in the table is filtered to include only those that have

displayed property values that include the text string you specified.

Create Events from Scratch

30 Event Configuration User Guide

Create Events from Scratch

You can create new events from scratch.

Note: If you are creating a new management module for a device that is not

supported by default in CA Spectrum, it is recommended that you map the traps

sent by the device to new CA Spectrum events (that are automatically created

when the trap mappings are defined) using MIB Tools before you begin using

Event Configuration. You can then launch Event Configuration directly from MIB

Tools to fully configure the events and associated alarms. For more information,

see Mapping Traps to CA Spectrum Events (see page 14).

To create a new event

1. In the Navigation panel, click (Creates a new event).

The Create Event dialog appears.

2. Enter an event code or accept the default event code.

Note: The event code is a 4-byte integer expressed in hexadecimal format.

The first 2 bytes contain the developer ID, and the last 2 bytes identify the

event with a unique number. While the default code is unique, it is

recommended that you enter a code that begins with your CA-assigned

developer ID. This lets you to easily recognize your custom code in OneClick

and prevents potential conflicts with other CA Spectrum event codes. The

event code 0x10000 represents a null event. This event cannot be

generated. However, the null event can be used in an event rule that

requires an event code as a parameter.

3. Enter an event message as described in Entering an Event Message (see

page 33). (You can also modify the message after the event is created.)

Keep in mind that most of the information that a OneClick user receives

about an event is via the message text that is affiliated with that event. For

this reason, provide as much information about the event as possible in the

message.
e

4. (Optional) Enter the Vendor to specify the developer, vendor, or

manufacturer.

Note: The Vendor is available in the directory under

<$SPECROOT>/custom/Events that contains the EventDisp (see page 116)

file. Event options (and other event processing information) are stored in

event configuration files referred to as event disposition files.

Create Events from a Copy

Chapter 3: Working with Events and Alarms 31

5. Click OK.

The new event is added to the table of events in the Navigation panel. The

event is displayed in bold. The Modification column displays New.

Note: The event is marked New. However, the event is not saved. You can

make more updates such as create more events, modify existing events, or

delete events, and save all the updates at one time.

6. Configure the event, as described in Configuring Events (see page 32).

7. (Optional) Add event rules to the event, as described in Creating an Event

Rule (see page 65).

8. Save the changes to one or more landscapes, as described in Saving Events

to Landscapes (see page 18).

The events appear in the normal font and are not marked in the Modification

column.

Create Events from a Copy

You can create new events by copying existing events.

Note: If you are creating a new management module for a device that is not

supported by default in CA Spectrum, it is recommended that you map the traps

sent by the device to new CA Spectrum events (that are automatically created

when the trap mappings are defined) using MIB Tools before you begin using

Event Configuration. You can then launch Event Configuration directly from MIB

Tools to fully configure the events and associated alarms. For more information,

see Mapping Traps to CA Spectrum Events (see page 14).

To create an event from a copy

1. In the Navigation panel, select the event you want to copy, and click

(Copies the selected event).

The Copy Event dialog opens.

2. Enter an event code or accept the default event code.

Note: The event code is a 4-byte integer expressed in hexadecimal format.

The first 2 bytes contain the developer ID, and the last 2 bytes identify the

event with a unique number. While the default code is unique (even with

respect to the event you are copying), it is recommended that you enter a

code that begins with your CA-assigned developer ID. This lets you to easily

recognize your custom code in OneClick and prevents potential conflicts with

other CA Spectrum event codes. The event code 0x10000 represents a null

event. This event cannot be generated. However, the null event can be used

in an event rule that requires an event code as a parameter.

About Configuring Events

32 Event Configuration User Guide

3. Revise the event message as appropriate for the new event, as described in

Entering an Event Message (see page 33). (You can also modify the message

after the event is created.)

Keep in mind that most of the information that a OneClick user receives

about an event is via the message text that is affiliated with that event. For

this reason, provide as much information about the event as possible in the

message.

4. Click OK.

The new event is added to the table of events in the Navigation panel. The

event displays in bold. The Modification column displays New.

Note: The event is marked New. However, the event is not saved. You can

make more updates such as create more events, modify existing events, or

delete events, and save all the updates at one time.

5. Configure the event, as described in Configuring Events (see page 32).

6. (Optional) Add event rules to the event, as described in Creating an Event

Rule (see page 65).

7. Save the changes to one or more landscapes, as described in Saving Events

to Landscapes (see page 18).

The events appear in the normal font and are not marked in the Modification

column.

About Configuring Events

When you configure an event, you specify the following:

■ The message that is displayed to users in OneClick when the event occurs.

See Entering an Event Message (see page 33).

■ The scope of the event (global or model type-specific) and whether the event

is logged in the Distributed Data Manager (DDM) database by the Archive

Manager for historical and reporting purposes. See Specifying Event Options

(see page 40).

■ Whether the event should generate an alarm. See Configuring Events to

Generate Alarms (see page 42).

■ Whether the event should clear one or more alarms. See Configuring Events

to Clear Alarms (see page 57).

Note: You can also create event rules that are activated (triggered) by an event.

For example, some types of events can be tolerated and do not indicate a

problem unless the frequency at which they are generated reaches a specific

threshold within a specific amount of time. You can create a rule that watches for

this scenario, and when it occurs, generates another event (and associated

alarm) in response.

About Configuring Events

Chapter 3: Working with Events and Alarms 33

More information:

Entering an Event Message (see page 33)

Specify Event Options (see page 40)

Configure Events to Generate Alarms (see page 42)

Configure Events to Clear Alarms (see page 57)

Working with Event Rules (see page 61)

Entering an Event Message

The event message is the message that is displayed on the Events tab in

OneClick when the event occurs.

When you compose an event message, you can use plain text as well as variables

that reference specific data about the generated event. For descriptions of each

variable and the proper syntax to use when including them, see the subsections

that follow.

Note: Event messages are stored in event configuration files referred to as event

format files.

More information:

About Event Format Files (see page 159)

About Configuring Events

34 Event Configuration User Guide

Variable Descriptions and Syntax

This section provides information on the event variables that you can use when

you define event messages. When you include an event variable in a message,

use the syntax defined here.

In the sections that follow, the # sign represents the event variable ID that is

mapped to the OID of the variable binding sent with the trap. This assignment is

made in the OID map in an AlertMap file that is automatically created by MIB

Tools when you map a trap to an event.

You can construct any type of message using event variable IDs. The only

requirement is that the variables that you use in the message are of the proper

data type.

Note: 0x12a63 is a reserved event variable ID that is used for a web context

URL.

{d “%w- %d %m-, %Y - %T”}

This is the variable for the date string. It should be included in every event

message. By including this variable exactly as shown, you tell CA Spectrum

to capture the time and date that the alert is received.

Note: You do not need to include this variable if you are entering the event

message using Event Configuration, as the application automatically inserts

the variable in the event format file that it creates when you save the event

to a landscape.

Date/Time specifier options:

%u

Use GMT time not local time. Must appear first in format.

%%

 Writes % to buffer.

%d

 Writes day-of-month 01..31 to buffer.

%d-

Writes day-of-month 1..31 to buffer.

%D

 Writes date dd/mm/yy to buffer.

%H

 Writes hour-of-day 00..23 to buffer.

About Configuring Events

Chapter 3: Working with Events and Alarms 35

%h

Same as %m.

%j

Writes day-of-year 1..366 to buffer.

%m+

Writes full month name to buffer.

%m-

Writes abbreviated month name to buffer.

%m*

Writes month index 1..12 to buffer.

%m

Writes month index 01..12 to buffer.

%M

Writes minute 00..59 to buffer.

%S

Writes second 00..59 to buffer.

%T

Writes time hh:mm:ss to buffer.

%w+

Writes full weekday name to buffer.

%w-

Writes abbreviated weekday name to buffer.

%w

Writes weekday index 1..7 to buffer.

%y

Writes year 00..99 to buffer.

%Y

Writes year 0000..9999 to buffer.

{t}

This variable inserts the model type name in the message. The (t) variable is

defined internally and is not configurable.

About Configuring Events

36 Event Configuration User Guide

{m}

This variable inserts the model name in the message. The (m) model name

variable is defined internally and is not configurable.

{e}

This variable inserts the event code in the message. The (e) variable is

defined internally and is not configurable.

{u}

This variable inserts the user name in the message. The (u) variable is

defined internally and is not configurable.

{T <event table file name> #}

Inserts a text string that is associated with a MIB table attribute value. The

association between the attribute value and the text string is defined in an

event table file that is automatically created by MIB Tools when you map the

trap to the event. For more information, see Referencing Attribute Values in

a MIB Table (see page 37).

{Y <event table file name> #}

Inserts a text string that is associated with an OID. The association

between the attribute value and the text string is defined in an event

table file that is automatically created by MIB Tools when you map the

trap to the event. For more information, see Referencing OIDs (see

page 38).

{Z <event table file name> #}

Inserts a text value associated with an integer bit value. The association

between the integer bit value and the text string is defined in an event table

file that is automatically created by MIB Tools when you map the trap to the

event. For more information, see Referencing Integer Bit Values (see

page 39).

{o #}

Inserts an object ID.

{O #}

Inserts an octet string.

{X #} or {x #}

Inserts an octet string displayed in hexadecimal format.

{S #}

Inserts a text string.

{B #}

Inserts a Boolean value. Zero denotes false. Any other value denotes true.

About Configuring Events

Chapter 3: Working with Events and Alarms 37

{I #}

Inserts an integer.

{L #}

Inserts a Counter64 counter.

{U #}

Inserts an unsigned integer or Counter64 counter.

{R #}

Inserts a real number in the range: 10E37 to 10E37.

{H #}

Inserts a 32 bit hex number with a 0x prefix.

{K #}

Converts a DateAndTime attribute value from an octet string to a text string,

and inserts the formatted text string.

{G #}

Calculates and inserts the device up time based on the value of the event

variable (#). The value is displayed as days+hours:mins:secs.

{D #}

Used with an event variable (#), which contains an integer representing the

number of seconds since 1969. Converts that value to a string that

represents the date and time.

Referencing Attribute Values in a MIB Table

If a variable binding that is sent with a trap contains an attribute value from a

MIB table, you can use it in an event message. To do so, you must use the proper

syntax and reference the following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated attribute values and the

associated text strings to use in event messages. (Event table files are

automatically created by MIB Tools when you map traps to new CA Spectrum

events.)

As an example, assume you have an event table file named BeaconType that

associates the following attribute values with corresponding text strings:

0x00000001 Reconfiguration

0x00000002 Signal-Loss

0x00000003 Bit-Streaming

0x00000004 Contention-Streaming

0x000000ff None

About Configuring Events

38 Event Configuration User Guide

To reference these values in an event message, use the following syntax:

{T BeaconType 2}

T

Indicates that you are inserting a MIB table attribute whose values are

enumerated in an event table file.

BeaconType

Specifies the name of the event table file that contains the enumerated

values.

2

Specifies the event variable number that is mapped (in the AlertMap file) to

the OID of the variable binding sent with the trap. CA Spectrum takes the

value of the event variable and retrieves the corresponding text string

defined in the event table file. For example, if the event variable above, 2,

stored the value 3, the text ―Bit-Streaming‖ would be rendered in the event

message.

More information:

About Event Table Files (see page 161)

Referencing OIDs

If a variable binding that is sent with a trap contains an OID, you can use it in an

event message. To do so, you must use the proper syntax and reference the

following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated OID values and the

associated text strings to use in event messages. (Event table files are

automatically created by MIB Tools when you map traps to new CA Spectrum

events.)

As an example, assume you have an event table file named NewTable that

associates the following attribute values with corresponding text strings:

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.6 dot6

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.5 dot15

1.3.6.1.4.1.1563.1.2.1.1.3.2 dot7

To reference these values in an event message, use the following syntax:

{Y NewTable 2}

Y

Indicates that you are inserting the value of a variable binding whose

possible OID values are enumerated in an event table file.

About Configuring Events

Chapter 3: Working with Events and Alarms 39

NewTable

Specifies the name of the event table file that contains the enumerated

values.

2

Specifies the event variable number that is mapped (in the AlertMap file) to

the OID of the variable binding sent with the trap. CA Spectrum takes the

value of the event variable and retrieves the corresponding text string

defined in the Event Table file. For example, if the event variable above, 2,

stored the value 1.3.6.1.4.1.1563.1.2.1.1.3.2, the text ―dot7‖ would be

rendered in the event message.

More information:

About Event Table Files (see page 161)

Referencing Integer Bit Values

If a variable binding that is sent with a trap contains an integer bit value, you can

use it in an event message. To do so, you must use the proper syntax and

reference the following:

■ The event variable to which the OID of the variable binding is mapped.

■ The event table file that contains the enumerated integer bit values and the

associated text strings to use in event messages.

Note: Event table files are automatically created by MIB Tools when you

map traps to new CA Spectrum events.

As an example, assume you have an event table file named NewBitTable that

associates the following integer bit values with corresponding text strings:

1 dsx1NoAlarm

2 dsx1RcvFarEndLOF

3 dsx1XmtFarEndLOF

4 dsx1RcvAIS

To reference these values in an event message, use the following syntax:

{Z NewBitTable 2}

Z

Indicates that you are inserting the value of a variable binding whose

possible integer bit values are enumerated in an event table file.

NewBitTable

Specifies the name of the event table file that contains the enumerated

values.

About Configuring Events

40 Event Configuration User Guide

2

Specifies the event variable number that is mapped (in the AlertMap file) to

the OID of the variable binding sent with the trap. CA Spectrum takes the

value of the event variable and retrieves the corresponding text string

defined in the Event Table file. For example, if the event variable above, 2,

stored the value 4, the text ―dsx1RcvAIS‖ would be rendered in the event

message.

More information:

Event Table Files (see page 161)

Example Event Message

The following is a sample event message:

{d "%w- %d %m-, %Y - %T"} A device {m} of type {t} has reported a Firewall trap has

occurred. {S 1} contains the name of the last trap sent via fw. - (event [{e}])

When the message is displayed on the Events tab in OneClick, it is rendered as

follows:

■ {d "%w- %d %m-, %Y - %T"} is replaced with the date and time

■ {m} is replaced with the model name

■ {S 1} is replaced with a string value (S for string data type) from a variable

binding

■ {t} is replaced with the model type

■ {e} is replaced with the event code

Specify Event Options

You can specify the following options for an event:

■ Whether the event is logged in the Distributed Data Manager (DDM)

database by the Archive Manager for historical and reporting purposes.

Events for a model that are not logged in the DDM database are displayed on

the Events tab in OneClick only if they are generated while the Events tab for

that model is displayed.

About Configuring Events

Chapter 3: Working with Events and Alarms 41

■ Whether the event is global or specific to one or more model types.

Global events are those that are generated for all models of all model types

regardless of the developer who created the model type. Examples of global

events include ―link down‖ or ―cold start‖ events.

If an event is specific to a model type, it is generated only for models of

specific model types (for example, for a device model type that supports a

proprietary MIB).

■ The Vendor field appears only for those events that are defined for a vendor.

It appears as read-only only for events that are defined under a vendor

directory. It is configurable for a new event until the event has been saved,

then it will appear as read-only.

Note: Event options (and other event processing information) are stored in

event configuration files referred to as event disposition files.

To specify options for an event

1. Select the event in the Navigation panel.

2. In the Details panel, click the Event Options tab.

3. If you want the event to be logged in the Distributed Data Manager (DDM)

database by the Archive Manager, select Store Event in Historical Database.

4. Under Scope, specify the scope of the event:

■ If the event is global, select Global.

■ If the event is specific to a model type, select Model Type. Then, in the

Select Model Type dialog, select the name of one or more model types to

which the event should apply, and click OK. (Use the CTRL key to select

multiple model types.)

Note: Changing the scope of an event does not modify the event; instead, a

duplicate event with the same event code but a different event scope is

automatically created. As a result, when you save both events to a

landscape, two event maps in two different event disposition files are

created. This lets you to specify event processing for the event and apply

those instructions globally, and then override those processing instructions,

for the same event, for specific model types. When an event is processed by

CA Spectrum, the event maps in model type-specific event disposition files

take precedence over the event maps for the same events in global event

disposition files. If you change the scope of an event, and you do not require

the original event, you can delete it if it is a custom event.

More information:

About Event Disposition Files (see page 115)

About Configuring Events

42 Event Configuration User Guide

Configure Events to Generate Alarms

You can specify that the currently selected event should generate an alarm, and

you can configure the alarm itself using the Alarms tab in the Details panel,

which is shown in the following image.

When you configure an event to generate an alarm and then save that change to

a landscape, you create a mapping between the event and the alarm in a

configuration file referred to as an event disposition file.

About Configuring Events

Chapter 3: Working with Events and Alarms 43

To configure an event to generate an alarm

1. Select the event in the Navigation panel, and then click the Alarms tab in the

Details panel.

Note: Under Generated Alarm, the value for Severity is None. This indicates

that the event does not generate an alarm.

2. Select an alarm severity other than None from the Severity drop-down list.

For help with this step, including descriptions on the different levels of

severity, see Specifying an Alarm Severity (see page 45).

3. (Optional) For Cause Code, change the alarm cause code (the 8-digit,

hexadecimal code that identifies the cause of the alarm). For help with this

step, see Specifying an Alarm Cause Code (see page 47).

As a convention, events that generate alarms typically use their event codes

as alarm cause codes. For this reason, the event code of the event is the

default alarm cause code of the alarm.

4. For Event Variable Discriminators, enter a comma-separated list of event

variable IDs if you want to use the values of the variables in the event to

determine whether to generate the alarm. You must enter each ID; ranges of

IDs are not supported.

Note: By default, CA Spectrum does not generate a new alarm each time the

same event occurs if an alarm already exists for that event on the model.

You can use event discriminators or alarm options to change this default

behavior.

For example, if the event generates alarm 0x3b10011, and you enter ―1,3‖

for Event Variable Discriminators, then if an existing alarm 0x3b10011

already exists on the model, another alarm is not generated unless the

values for both event variables 1 and 3 are different in the new event

instance when compared to current alarms on the model generated from the

same event.

For more help with this step, see Using Event Variable Discriminators to

Generate Alarms (see page 50).

5. For Type, enter a text string that identifies the type of the alarm, for

example, ―BAD LINK DETECTED.‖

About Configuring Events

44 Event Configuration User Guide

The text string you enter for Type is displayed as the alarm title in OneClick,

as shown in the following image. For enhanced readability in OneClick, it is

recommended that you enter the text string in capital letters.

6. Specify the symptoms, probable causes, and recommended corrective

actions for the alarm, respectively, on the Symptoms, Probable Causes, and

Recommended Actions tabs. This information is displayed on the Alarm

Details tab in OneClick, as shown in the preceding image. For help with this

step, see Specifying Symptoms, Causes, and Recommended Actions (see

page 49).

7. Click the Alarm Options tab, and specify advanced options for the alarm. For

help with this step, see Specifying Alarm Options (see page 49).

8. If the currently selected event should also clear one or more alarms, specify

the alarms in the Cleared Alarm(s) area of the Contents panel. For help with

this step, see Configuring an Event to Clear Alarms (see page 57).

More information:

About Event Disposition Files (see page 115)

About Configuring Events

Chapter 3: Working with Events and Alarms 45

Specify an Alarm Severity

The following lists the alarm severity levels used in CA Spectrum. Each severity

level is associated with a color-coded condition that is displayed on the model.

When an alarm of the specified severity is asserted on a model, the condition

color is displayed on the model‘s icon to reflect the alarm status.

Normal (0)

Color-coded condition: Green

Indicates that contact has been made with the device, and the device is

operating normally. There are no alarms associated with the device. If an

event generates an alarm, but a severity for the alarm is not specified (for

example, if you have created the supporting EventDisp configuration file

manually and inadvertently omitted a severity), CA Spectrum assigns the

alarm a severity of Normal.

Minor (1)

Color-coded condition: Yellow

Indicates that an abnormal situation exists, but no immediate action is

required. This level of severity is also used for alarms created only to convey

information, such as ―Duplicate IP."

Major (2)

Color-coded condition: Orange

Indicates that a loss of service has occurred or is impending. Action is

required within a short period of time.

Critical (3)

Color-coded condition: Red

Indicates that a loss of service has occurred and immediate action is

required.

Maintenance (4)

Color-coded condition: Brown

Indicates that the device has been taken offline for maintenance purposes.

Suppressed (5)

Color-coded condition: Gray

Indicates that the device cannot be reached due to a known error condition

that exists on another device.

Initial (6)

Color-coded condition: Blue

Indicates that contact with the device has not yet been established.

About Configuring Events

46 Event Configuration User Guide

Variable

Color-coded condition: N/A; evaluates to a severity that has a color-coded

condition

Lets you to assign an alarm severity based on the value of a variable binding.

For example, if the value of the variable binding is 1, then the alarm is

assigned a severity level of Minor.

To use this option, do the following:

– For Severity, select Variable.

– For Event Variable, specify the ID of the event variable that stores the

variable binding value to use to determine the severity level of the

alarm. You must specify a variable whose possible values are

enumerated and directly correspond to the numeric severity levels used

by CA Spectrum (identified in the first column in this table).

Conditional

Color-coded condition: N/A; evaluates to a severity that has a color-coded

condition

Lets you to assign an alarm severity based on the value of a variable binding.

It also allows you to select the set of enumerated values and corresponding

CA Spectrum alarm severity levels to use. This is useful if, for example, the

variable binding defines a set of alarm severity levels that differ from those

used in CA Spectrum.

To use this option, do the following:

■ For Severity, select Conditional.

■ For Event Variable, specify the ID of the event variable that stores the

variable binding value to use to determine the severity level of the

alarm. You must specify a variable whose possible values are

enumerated. The actual value in the event variable will be used as the

key to look up a corresponding CA Spectrum alarm severity level in a

severity mapping file.

■ Below the severity level drop-down list, select the file that contains the

user-defined mappings of variable binding values and CA Spectrum

alarm severity levels.

More information:

Create Alarm Severity Mappings for the Conditional Severity Level (see page 53)

Modifying Alarm Severity Mappings for the Conditional Severity Level (see page

55)

About Event Disposition Files (see page 115)

About Configuring Events

Chapter 3: Working with Events and Alarms 47

Enable or Disable Alarms of a Severity Type

Alarms use a large amount of resources such as memory and processing time.

CA Spectrum lets you disable an alarm of a severity type to reduce the impact on

system performance. The disabled alarm is available internally but you cannot

view it in the user interface. The disabled alarm does not support alarm

attributes like discriminators. By default, alarm types with severity levels Initial

and Suppressed are set as disabled. All other alarm types continue to exist as

regular alarms.

Note: Normal severity alarms do not support discriminators.

To disable an alarm of a severity type

1. Select the VNM Model.

2. Click the Information tab and expand the Alarm Management section.

3. Right-click the alarm and select Disable.

The alarm is disabled and the change takes effect immediately. The existing

alarms of the selected severity type continue to be regular or internal alarms

until they are cleared.

To enable an alarm of a severity type

1. Select the VNM Model.

2. Click the Information tab and expand the Alarm Management section.

3. Right-click the alarm and select Enable.

The alarm is enabled and the change takes effect immediately. The existing

alarms of the selected severity type continue to be regular or internal alarms

until they are cleared.

Notes:

■ Even after enabling alarms, you must verify that the client-side filters are

adjusted before you can view the alarm in the client applications.

■ We do not recommend enabling the Suppressed alarm type as it can

adversely impact performance.

Specify an Alarm Cause Code

An alarm cause code is an 8-digit, hexadecimal code that identifies the probable

cause of the alarm. When you save the event and associated alarm to a

landscape, a mapping between the event code and the associated alarm code is

added to the event configuration file that determines how to process the event,

referred to as the event disposition file. This mapping is the mechanism by which

CA Spectrum identifies if an alarm should be generated for an event, and if so,

which one.

About Configuring Events

48 Event Configuration User Guide

As a convention, events that generate alarms typically use their event codes as

alarm cause codes, and for this reason, the event code of the event is the default

alarm cause code of any alarm. However, you can change the alarm cause code

if desired. For example, you might want to change the alarm cause code if you

have an existing, more generic alarm that you want to be generated whenever

the event occurs.

The alarm cause code is also used to name the underlying probable cause file

that contains the alarm-related messages (symptoms, causes, and

recommended actions) to display in OneClick when the alarm occurs. Each

probable cause file is named Prob<alarm_cause_code>, where

<alarm_cause_code> is the code you specify on the Alarms tab in Event

Configuration.

To specify an alarm cause code, do one of the following:

■ Accept the default code, which readily identifies the alarm with the event

that generates it. If the supporting probable cause file does not exist, it will

be created automatically by Event Configuration when you save the event

and alarm changes to a landscape.

■ Click Browse, and in the Select Alarm Cause Code dialog, select an existing

code. The displayed list includes all of the alarm cause codes for all loaded

events that generate alarms. In this case, the supporting probable cause file

will be updated automatically when you save the event and alarm changes to

a landscape.

■ Enter a new 8-digit, hexadecimal value. If the supporting probable cause file

does not exist, it will be created automatically by Event Configuration when

you save the event and alarm changes to a landscape.

Note: If you create an alarm-generating event and save it to one or more

landscapes, and you later change the alarm cause code to a new code and then

save that change to the landscapes, Event Configuration automatically creates a

new probable cause file that is named based on the new alarm cause code.

However, to remove the probable cause file named using the old code (if it is not

used by any other alarm-generating events), you must do so manually.

More information:

Saving Events to Landscapes (see page 18)

About Event Disposition Files (see page 115)

Probable Cause Files (see page 163)

Contents of a Probable Cause File (see page 164)

About Configuring Events

Chapter 3: Working with Events and Alarms 49

About Specifying Symptoms, Causes, and Recommended Actions

If an event generates an alarm, you need to supply several plain text messages

that describe the symptoms, probable causes, and recommended corrective

actions for the alarm. These messages are displayed on the Alarm Details tab in

OneClick, as shown in the following image.

The text messages that you enter for the symptoms, probable causes, and

recommended corrective actions for an alarm are stored in an alarm

configuration file referred to as a probable cause file. The fields that support

traps get auto-populated, if the MIB that defines the trap is in the MIB Tools MIB

database. For example, when you create a new alarm, the trap specific Alarm

Title is auto- populated assuming the MIB in which the trap is defined is found in

the MIB database.

More information:

About Probable Cause Files (see page 163)

Specify Alarm Options

You can specify the following advanced options for an alarm:

Alarm is Persistent

If selected, the alarm is retained in memory if the SpectroSERVER is shut

down and then restarted.

About Configuring Events

50 Event Configuration User Guide

Alarm is User Clearable

If selected, the alarm can be cleared by users.

Generate a Unique Alarm for Each Event

If selected, a unique alarm is generated each time that the event occurs. By

default, CA Spectrum does not generate a new alarm each time the same

event occurs if an alarm already exists for the event on the model; selecting

this option changes this default behavior.

Using Event Variable Discriminators to Generate Alarms

By default, if an alarm exists on a given model as a result of an event, CA

Spectrum does not generate another alarm if the same event occurs again on the

model. This default behavior prevents an event that can occur multiple times due

to the same condition. However, often you want multiple alarms to occur if the

conditions of the event change, and you can specify this type of behavior using

event variable discriminators.

Event variable discriminators are numeric values that refer to the IDs of the

event variables in an event. In turn, the event variable IDs are mapped (in the

AlertMap file) to the OIDs of the variable bindings sent with the trap. The

discriminators let CA Spectrum to determine whether to generate alarms for

multiple instances of the same event based on the values of the variable bindings

sent with the traps.

If you configure an event to generate an alarm, and you specify one or more

discriminators, the alarm is generated if the values of the referenced event

variables are different. In this way, you can specify that alarms should be

generated for distinct event instances (which have the same event code) even if

an alarm already exists on the model.

As an example, assume you have configured event 0x3b10011 to generate

alarm 0x3b10011, and you have specified that event variables 1 and 3 are event

variable discriminators. This configuration means that, if an existing alarm

0x3b10011 already exists on the model, another alarm is not generated unless

the values for both event variables 1 and 3 are different in the new event

instance when compared to current alarms on the model generated from the

same event.

When you are configuring an alarm, specify the event variable discriminators by

entering a comma-separated list of IDs, for example:

1,3,5

You must enter each ID; ranges of IDs are not supported.

Note: Event discriminators cannot be specified for normal, maintenance,

suppressed, or initial severity alarms.

About Configuring Events

Chapter 3: Working with Events and Alarms 51

Creating Dynamic Alarm Title

The alarm title is taken from the PCause files

($SPECROOT/SG-Support/CsPCause).

In OneClick, whenever the dynamic alarm title attribute has any value, the

dynamic string is displayed instead of the static alarm title from the probable

cause file. The static alarm title will be displayed by default, if there is no value

in the dynamic alarm title attribute.

You can use the dynamic alarm title variable to create a dynamic alarm title. The

dynamic varbind id is 76620 (or 0x12b4c). Once you set the dynamic alarm title

variable, you see more information about the alarm in the title. To use the

functionality, you can create an event which has that varbind set to any value

e.g. by mapping a trap variable to that ID in an alert map file. You can also copy

some other event variable via an event rule, and then map the event to an alarm

using that ID as a discriminator.

Example: Create a Dynamic Alarm Title

You can either create 0x050e1106 through an alert map or through the condition

rule. This example maps an alert to an event, copying over one alert variable

(1.3.6.1.10.1.2) as a dynamic alarm title. The dynamic varbind id is 76620 (or

0x12b4c).

1.3.6.1.4.4.1.6.3 0x050e1106 1.3.6.1.4.1.10.1.1(1,0)\

1.3.6.1.4.1.10.1.2(76620,0)

You can also use an event rule to copy over a varbind (here ID 7 from event

0xffff0000) to be used as dynamic title id in the new event (0x050e1106).

0xffff0000 E 50 R CA.EventCondition, ―default‖, ―0x050e1106 7:76620‖

For both cases, you can create a minor alarm which will show the dynamic title,

discriminating on the dynamic value ID. This shows an individual alarm for each

value.

0x050e1106 E 50 A 1,0x050e1106,76620

About Configuring Events

52 Event Configuration User Guide

Example: Clear a Dynamic Alarm Title

This example shows how to clear a dynamic alarm title using the Dynamic ID

value.

0x050e1107 E 50 C 0x050e1106,76620

Note: You do not have to use the dynamic alarm title attribute as discriminator.

In this case, there will only be one alarm, with one title, with the value from the

first event which created the alarm. All subsequent events will just be attached

to that alarm, even when you have different dynamic title values. If they use the

discriminator, then of course they get one alarm per title value. This uses the

regular discriminator feature.

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Configuring Alarm Severity Mappings for the Conditional Severity Level

A severity mapping file is an ASCII file that is used to determine the actual

severity of an alarm instance to generate when the alarm configuration specifies

an alarm severity of Conditional.

The Conditional alarm severity lets you assign the alarm severity based on the

value of a variable binding sent with the trap that triggered the event. Moreover,

it also lets you select the set of mappings between values and alarm severity

levels to use when determining the actual alarm severity.

It is the severity mapping file that defines the mappings between possible

variable binding values and CA Spectrum alarm severity levels. You can create

severity mapping files and customize those that are provided by default with CA

Spectrum.

More information:

Create Alarm Severity Mappings for the Conditional Severity Level (see page 53)

Modifying Alarm Severity Mappings for the Conditional Severity Level (see page

55)

About Configuring Events

Chapter 3: Working with Events and Alarms 53

Create Alarm Severity Mappings for the Conditional Severity Level

If you create a severity mapping file, it is installed in the following location when

you save the change to a landscape:

<$SPECROOT>/custom/Events/<vendor_directory>/SeverityMaps/<file

name>

where <vendor_directory> is the directory and <file_name> is the file name

that you specified when you created the mapping file using Event Configuration.

If you do not specify a directory when you create the file, it is installed in the

following folder instead:

<$SPECROOT>/custom/Events/CA/SeverityMaps/<file name>

Important! Custom severity mapping files override those provided with CA

Spectrum, the latter of which are located in

<$SPECROOT>/SS/CsVendor/<vendor_directory>/SeverityMaps.

To create an alarm severity mapping file

1. Display the event that generates the alarm, and click the Alarms tab.

2. If you have not already done so, do the following:

a. For Severity, select Conditional.

b. For Event Variable, enter or select the event variable that contains the

variable binding value to use to determine the alarm severity.

3. Select any severity mapping file and click Configure.

The Configure Conditional Alarm Severity dialog opens, displaying the

contents of the selected severity mapping file.

About Configuring Events

54 Event Configuration User Guide

4. Click .

The severity mapping file add dialog opens.

5. Complete the fields as follows:

Directory

Specifies the directory in which to save the severity mapping file.

Name

Specifies a name for the severity mapping file; this should be the name

of the variable binding whose values are enumerated in the file.

6. Add the mappings between the string representations of the variable binding

values and CA Spectrum alarm severity levels (described in Specifying an

Alarm Severity (see page 45)) as follows:

■ To add a mapping, enter a unique string value for String, select a

severity for Severity, and click Add.

If you want the alarm to be cleared—instead of generated—if the

corresponding variable binding value is sent, select Clear.

■ To change a mapping, select the mapping, change the value for String or

for Severity (or both), and click Modify.

■ To remove a mapping, select the mapping, and click Remove.

7. Click OK twice.

About Configuring Events

Chapter 3: Working with Events and Alarms 55

Modifying Alarm Severity Mappings for the Conditional Severity Level

You can make changes to your custom severity mapping files and those provided

by default with CA Spectrum at any time.

If you modify a severity mapping file that was provided with CA Spectrum, a

customized version of the file is installed in the following location when you save

the change to a landscape:

<$SPECROOT>/custom/Events/<vendor_directory>/SeverityMaps/<file

name>

Important! Custom severity mapping files override those provided with CA

Spectrum, the latter of which are located in

<$SPECROOT>/SS/CsVendor/<vendor_directory>/SeverityMaps.

To modify an alarm severity mapping file

1. Display the event that generates the alarm, and click the Alarms tab.

2. If you have not already done so, do the following:

a. For Severity, select Conditional.

b. For Event Variable, enter or select the event variable that contains the

variable binding value to use to determine the alarm severity.

3. Select the severity mapping file to use to determine the actual severity level

of the alarm, and click Configure.

The Configure Conditional Alarm Severity dialog opens, displaying the

contents of the selected severity mapping file.

About Configuring Events

56 Event Configuration User Guide

4. Click .

The severity mapping file edit dialog opens.

5. Modify the mappings between the string representations of the variable

binding values and CA Spectrum alarm severity levels as follows:

■ To change a mapping, select the mapping, change the value for String or

for Severity (or both), and click Modify.

If you want the alarm to be cleared—instead of generated—if the

corresponding variable binding value is sent, select Clear.

■ To add a mapping, enter a unique string value for String, select a

severity for Severity, and click Add.

■ To remove a mapping, select the mapping, and click Remove.

6. Click OK twice.

About Configuring Events

Chapter 3: Working with Events and Alarms 57

Configure Events to Clear Alarms

You can specify that the currently selected event should clear one or more

alarms using the Alarms tab in the Details panel, which is shown in the following

image.

When you configure an event to clear alarms and then save that change to a

landscape, you create a mapping between the event and the alarms to be

cleared in a configuration file referred to as an event disposition file.

About Configuring Events

58 Event Configuration User Guide

To configure an event to clear alarms

1. Select the event in the Navigation panel, and then click the Alarms tab in the

Details panel.

2. Under Cleared Alarm(s), click (Adds an alarm to the list).

The Add Cleared Alarm dialog opens displaying the alarm cause codes for all

alarms currently loaded into Event Configuration.

3. Click Browse, and in the Select Alarm Cause Code dialog, select the alarm

cause code of the alarm to clear.

To help you identify the desired alarm, you can enter a text string in the

Filter text box to filter the list to include only the alarms with displayed

properties that contain the text string.

4. Click OK.

5. If the alarm you want to clear was generated based on event variable

discriminators, select Clear Options, and then specify how the alarm should

be cleared. You can select one of the following options:

All Alarms

Select this option if the event should clear all existing instances of the

alarm regardless of whether the values in the alarm-clearing event

match the values stored in the alarm instances.

Event Variable Discriminators

Select this option if the event should clear existing instances of the alarm

based on the values of the alarm‘s variables (which are copied from the

alarm-generating event to the alarm when the alarm is generated). Then

enter a comma-separated list of event variable IDs (for example: 1,3,5).

You must enter each ID; ranges of IDs are not supported.

The alarm is cleared by the alarm-clearing event if the values in event

match the values stored in the alarm.

For examples of using event discriminators to clear alarms, see Clearing

Alarms (see page 124).

6. Click OK.

7. (Optional) Repeat the preceding steps to add additional alarms to be cleared.

More information:

About Event Disposition Files (see page 115)

Modify Events

Chapter 3: Working with Events and Alarms 59

Modify Events

You cannot delete the events that are authored by CA and provided with CA

Spectrum. However, you can customize them to meet your requirements just as

you would any other events.

In addition, you can undo any customizations that you make to a CA-authored

event by deleting the event. For CA-authored events only, this action does not

delete the event but instead reverts it to its default configuration.

When you delete (revert) a CA-authored event, the author of the event changes

from ―Custom‖ back to ―CA.‖ To identify the author of an event, add the Author

column to the table of events in the Navigation panel, as described in Adding and

Removing Columns from the Events Table (see page 25).

To modify events

1. Select the event in the Navigation panel.

The event details are displayed in Contents and Details panels.

2. Modify the event details.

The event is displayed in bold. The Modification column displays Edited.

Note: The event is marked Edited. However, the event is not saved. You can

make more updates such as create more events, modify existing events, or

delete events, and save all the updates at one time.

3. Do one of the following:

a. Go to File, Save All.

All marked events in the Navigation panel are saved.

b. Select events in the Navigation panel, and go to File, Save Selected.

Note: You can select multiple events using the Shift key.

The selected events are saved.

The events are modified. The events appear in the normal font and are not

marked in the Modification column.

Delete Custom Events

60 Event Configuration User Guide

Delete Custom Events

You can delete any event that was not authored by CA. To identify the author of

an event, add the Author column to the table of events in the Navigation panel.

Important! Do not delete an event unless you are certain it is no longer

required. If you delete an event that generates a needed alarm, CA Spectrum will

be unable to inform you about a problem in the network infrastructure.

To delete events

1. Select the event to delete in the Navigation Panel, and click (delete).

The event is displayed in italics.The Modification column displays Deleted.

Note: The event is marked Deleted. However, the event is not deleted until

you save the changes. You can make more updates such as create more

events, modify existing events, or delete events, and save all the updates at

one time.

2. Do one of the following:

a. Go to File, Save All.

All marked events in the Navigation panel are saved.

b. Select events in the Navigation panel, and go to File, Save Selected.

Note: You can select multiple events using the Shift key.

The selected events are saved.

The events are deleted. The events appear in the normal font and are not

marked in the Modification column.

More information:

Add and Remove Columns from the Events Table (see page 25)

Chapter 4: Working with Event Rules 61

Chapter 4: Working with Event Rules

This section contains the following topics:

Event Rules (see page 61)

Create Event Rules (see page 65)

Modifying Event Rules (see page 92)

Delete Event Rules (see page 93)

Event Rules

Event rules lets you specify evaluation logic that determines how CA Spectrum

processes the events to which you are applying the rules and what actions to

perform in response to the events.

An event rule stipulates the conditions under which an event condition, a pattern

of events, or a combination of events in a particular order or over a particular

period of time sets the generation of another event.

You can create multiple rules for a single event.

Event rules are stored in event configuration files referred to as event disposition

files.

More information:

Using Procedures in Event Processing (see page 95)

Event Condition Rules

An event condition rule creates an event when specific conditions are satisfied.

The input to the rule is a list of conditions and associated events. Each condition

is evaluated until one is found that evaluates to TRUE, and then the

corresponding event is created.

The following are the parameters to the rule:

■ The event that starts the evaluation of the rule

■ A conditional expression to evaluate

■ The event to generate if the conditional expression is true

An event condition rule can include multiple conditional expressions and

corresponding output events.

Event Rules

62 Event Configuration User Guide

More information:

Configuring Event Condition Rule Settings (see page 66)

Event Pair Rules

In some cases, you expect events to happen in pairs, and if the second event

does not occur, this may indicate a problem in the computing infrastructure. An

event pair rule creates an event based on this scenario. If the first of two

expected events is generated but the second event does not follow the first, a

new event is generated in response. You can specify the amount of wait time that

can elapse before the new event is generated.

Note: Other unrelated events can be generated between the first and the

second event. They do not affect execution of the rule.

More information:

Configuring Event Pair Rule Settings (see page 70)

Event Rate Rules

Some types of events do not indicate a problem unless the frequency at which

they are generated reaches a specific threshold within a specific amount of time.

An event rate rule creates an event based on this scenario. When a number of

events of the same type that is, with the same event code are created within a

given time period, a new event is created in response.

Note: Other, unrelated events do not affect execution of the rule.

Event rate rules never terminate. Once the conditions of the rule are met and a

new event is created in response, the rule remains active, but no additional

event is created as long as the frequency at which the evaluated events remains

at or above the specified rate in the rule. If the frequency drops below the

specified rate, and then subsequently exceeds that rate again, another new

event is generated in response.

An event rate rule can use either of the following methods to define the window

of time in which the events must occur:

Sliding Window: When the rule uses this type of time window, if the specified

number of events (or more) ever occurs in any window of the specified time

period, the output event is created in response. This type of time window is best

suited for accurately detecting a short burst of events.

Event Rules

Chapter 4: Working with Event Rules 63

For example, the following illustration shows the sliding time windows that are

active for a rule that watches for five instances of a given event (e) within a

specified time period.

When a sliding time window is used for a rule, if the rule generates a rule output

event, all active time windows are terminated, and a new time window

automatically begins.

Sequential Window: When the rule uses this type of time window,

non-overlapping time windows are examined, one after another, to determine if

the requisite number of events has occurred within the time window. This type of

time window is best suited for detecting a long, sustained train of events.

For example, the following illustration shows the sequential time windows that

are opened and closed for a rule that watches for five instances of a given event

(e) within a specified time period.

If the current time window closes due to time period expiration, or if the rule

creates an output event in response, the window is not opened next time until a

new event occurrence is detected.

Event Rules

64 Event Configuration User Guide

More information:

Configuring Event Rate Rule Settings (see page 73)

Event Series Rules

An event series rule creates a new event when a given event is followed by one

or more other events in an ordered or unordered sequence. The combination of

events that must occur can include any number and type of event, and you can

specify the amount of wait time that can elapse during which the sequence of

events must occur.

Note: Other, unrelated events can be generated during the wait time. They do

not affect execution of the rule.

More information:

Configuring Event Series Rule Settings (see page 76)

Event Counter Rules

An Event Counter rule counts events. It watches for two events, one increasing

the count, the other one decreasing it again. An event is generated whenever the

count is higher than a threshold, and also once it falls below the set threshold.

The EventCounter rule remains instantiated and counts events. It does not

terminate.

Heartbeat Rules

The Heartbeat rule watches for a periodic heartbeat event, and generates a new

event when the heartbeat event is missing. There is a separate event to stop the

rule instance, if required.

Single Event Rules

The Single Event rule watches for a single occurrence of a target event. The

SingleEvent rule reduces an event stream where one event ('up' event) may

occur multiple times, before a reset ('down') event is seen. Instead of the

multiple 'up' events, a single event is set that can be reused in other rules,

denoting the condition ('up' or 'down'). An event is generated the first time the

target event is seen. The rule does not trigger unless the clearing event is seen

again. It will then reset the behavior to the initial state. If needed, a separate

event can be generated when the clearing event is seen.

Create Event Rules

Chapter 4: Working with Event Rules 65

Solo Event Rules

The SoloEvent rule finds an instance of the target event that is not followed by or

preceded by any other user defined event in a defined time window. The time

periods are configurable, and there is a separate event to stop the rule.

User-Defined Event Rules

Most of the CA-shipped event rules are supported on the Event Configuration

User Interface. However, in some cases, CA can create a special rule or

customize a rule for an individual customer. A customer can create a rule as well.

Event disposition entries using such rules are not supported by the Event

Configuration Editor. The event rule displayed is read-only. The rule entry must

be edited in a text editor and reloaded in the event disposition files. Such custom

event rule entries need to have the correct vendor code and rule name,

depending on which vendor supplied the rule. For example, a custom rule entry

for a rule called 'MyOwnRule' from vendor 'MyOwnVendor' will have the following

syntax:

0xfff00002 E 50 R MyOwnVendor.MyOwnRule, <rule parameters>

Note: The xml rule definition file is located at

$SPECROOT/SS/CsVendor/<Vendor Name>/EventRules/<RuleName>.xml.

Create Event Rules

Before creating an event rule, we recommend that you start the application and

examine the rules that are provided for various events created by CA.

You can create an event rule in two ways:

■ From scratch.

■ By copying an existing event rule and modifying the copy. This method is

only useful if the new rule will also be triggered by the same event that

triggers the rule you want to copy.

Note: Event rule definitions are stored in event configuration files referred to as

event disposition files.

Create Event Rules

66 Event Configuration User Guide

To create an event rule from scratch

1. In the Navigation panel, select the event that will activate (trigger) the event

rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Click (list) and select the type of event to create from the drop-down

list.

The configuration dialog for the selected type of event rule opens.

4. Configure the event rule as required.

5. Click OK to save the event rule to the event.

To create an event rule from a copy

1. In the Navigation panel, select the event that has the event rule that you

want to copy.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Select the event rule to copy and click (copy).

The event rule configuration dialog opens.

4. Modify the configuration of the event rule as required.

5. Click OK to save the event rule to the event.

More information:

Configuring Event Condition Rule Settings (see page 66)

Configuring Event Pair Rule Settings (see page 70)

Configuring Event Rate Rule Settings (see page 73)

Configuring Event Series Rule Settings (see page 76)

Configuring Event Condition Rule Settings

To create an event condition rule you must create one or more conditions against

which the event for which you are creating the rule is evaluated. For each

condition, you must also specify an event that CA Spectrum generates if the

given condition is met. Optionally, you can also specify that one or more values

of the event that triggered the rule should be copied to the rule output event.

Create Event Rules

Chapter 4: Working with Event Rules 67

As an example, assume you want to create the following event condition rule

(expressed in pseudo-code) for event 0x210c0e:

If event 0x210c0e occurs, evaluate the following:

if event variable 2 = 2 or event variable 2 = 2, then generate 0x0021001c,

else if event variable 2 = 3 or event variable 2 = 4, then generate 0x0021001b,

else if event variable 2 = 5, then generate 0x0021001a,

else, generate 0x00210017.

This rule requires the four conditional expressions shown in the following rule

configuration dialog.

In the dialog, use the buttons above the list of conditions to add new conditions

and to modify, copy, and delete a selected condition. Use the up and down

arrows below the list of conditions to move a selected condition up or down to

change the sequence in which the conditions are evaluated.

The rule output event (generated event <Z>) that corresponds to the first

condition that evaluates to TRUE is generated.

Note: Event variable discriminators are a general feature available for all types

of rules. However, while you can specify discriminators for an event condition

rule, a rule of this type currently does not use them during rule processing.

Create Event Rules

68 Event Configuration User Guide

When you add or modify a condition, you define the conditional expression using

the following dialog.

The settings in the dialog include the following:

Condition <C>

The condition to evaluate. Use the controls in the top section of the dialog to

create the expression.

For information on conditional expression syntax, see EventCondition Rule

(see page 61).

Generated Event <Z>- Generate Event

The event code of the event to create in response if the associated condition

evaluates to TRUE.

To specify the event code, click Browse, select the event in the Select Event

dialog (which displays all of the events loaded into Event Configuration), and

click OK.

Create Event Rules

Chapter 4: Working with Event Rules 69

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the event that

activated the rule to generated event <Z>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the event variables into

generated event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Note: To create a default condition that always evaluates to TRUE, in the

condition configuration dialog, simply select DEFAULT for Operator, and click

Insert Criterion.

Create Event Rules

70 Event Configuration User Guide

Configuring Event Pair Rule Settings

You configure an event pair rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 71

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported.

Event <Y> - Event Code

The event code of the event that, within the specified time period, should

follow the event that activates (triggers) the rule. Event <Y> is the second

event in the pair of events.

To specify the event code, click Browse, select the event in the Select Event

dialog (which displays all of the events loaded into Event Configuration), and

click OK.

Time <T> - Time Interval

The period of time that begins when the first event is created and during

which the second event (event <Y>) should occur.

Generated Event <Z> - Generate Event

The event code of the event to create in response if the second event (event

<Y>) does not follow the first event within the specified time interval.

To specify the event code, click Browse, select the event in the Select Event

dialog (which displays all of the events loaded into Event Configuration), and

click OK.

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <Z>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into generated

event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Create Event Rules

72 Event Configuration User Guide

Event Variable Discriminators in Event Pair Rules

The use of discriminators not only lets multiple instances of the rule to be

generated due to the same event, but also affects rule processing and

termination. More specifically, if discriminators are used, the following occurs:

When the event is generated, if there are active instances of the rule, another

instance of the rule is created only if the values of the specified variables are

different in the new event when compared to the events that activated the

existing rule instances. (If you do not specify any discriminators for a rule, if a

single instance of the rule is active, subsequent instances of the rule are never

generated when subsequent instances of the event occur.)

To terminate the rule without generating the rule output event, the values of all

of the specified event variables must be the same in both the first event (that

triggered the rule) and the second event (for which the rule is watching) in the

pair.

As an example, assume you create an event pair rule that watches for a port

down event followed by a port up event, and you specify the event variable that

stores the interface ID of the port as an event variable discriminator. As a result,

if device A has ports 1 and 2, and port 1 goes down, a rule instance for the event

is generated. If port 2 subsequently goes down, another rule instance is also

generated due to the same event because the interface ID in the second instance

of the event is different. There are now 2 active instances of the rule due to port

down events related to 2 different ports.

To continue the example, if port 2 goes up within the specified time period, the

associated rule will immediately terminate without generating the rule output

event if the port up event that is generated stores the interface ID of port 2 in the

same event variable (that is, the IDs of the event variables in the first event and

second event in the pair that store the interface ID are the same). If a similar

event is not generated for port 1 within the specified time period, the associated

rule will terminate by generating the rule output event.

Note: To use event variable discriminators effectively in an event pair rule, the

IDs of the event variables in the contributing events must match. That is, the

same event variables must store the same variable binding data. If this is not the

case, you can create an event condition rule that is activated by the first event

and that copies the data to event variables that have the appropriate IDs in the

rule output event; you can then use the rule output event as the second event in

the pair.

Create Event Rules

Chapter 4: Working with Event Rules 73

Configuring Event Rate Rule Settings

You configure an event rate rule using the following dialog.

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

You must enter each ID; ranges of IDs are not supported.

Create Event Rules

74 Event Configuration User Guide

The use of discriminators not only lets multiple instances of the rule to be

generated due to the same event, but also affects rule processing. More

specifically, if discriminators are used, the following occurs:

■ When the event is generated, if there are active instances of the rule,

another instance of the rule is created only if the values of the specified

variables are different in the new event when compared to the events

that activated the existing rule instances. (If you do not specify any

discriminators for a rule, if a single instance of the rule is active,

subsequent instances of the rule are never generated when subsequent

instances of the event occur.)

■ To generate the rule output event, the values of the variables must be

the same in all instances of the same event (and all other rule conditions

must be met).

Event Rate - Occurrences <N>

The number of instances of the same event that must be created within the

specified time period in order for the rule to generate the output event.

Event Rate - Time <T>

The period of time during which <N> occurrences of the same event must

occur in order for the rule to generate the output event.

Event Rate - Sliding Window

The type of time window to use. Select Sliding Window to use a sliding

window of time; clear Sliding Window to use a sequential window of time. For

a description of both, see Event Rate Rules (see page 62).

Generated Event <Z> - Generate Event

The event code of the event to create in response if <N> occurrences of the

same event occur within the specified period of time.

To specify the event code, click Browse, select the event in the Select Event

dialog (which displays all of the events loaded into Event Configuration), and

click OK.

Create Event Rules

Chapter 4: Working with Event Rules 75

Generated Event - Copy Event Variables

If you want to copy the values of any event variables in the event that

activated the rule to generated event <Z>, select Copy Event Variables and

do one of the following:

■ Select Copy All to copy the values of all of the event variables into

generated event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Note: If you want an event rate rule to also generate a different rule output

event when the rate at which the trigger event occurs drops below the specified

threshold, you can manually modify the rule in the event disposition file and

specify that rule output event. For more information, see EventRateWindow Rule

(see page 131).

Create Event Rules

76 Event Configuration User Guide

Configuring Event Series Rule Settings

You configure an event series rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 77

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

You must enter each ID; ranges of IDs are not supported.

The use of discriminators not only lets multiple instances of the rule to be

generated due to the same event, but also affects rule processing and

termination. More specifically, if discriminators are used, the following

occurs:

■ When the event is generated, if there are active instances of the rule,

another instance of the rule is created only if the values of the specified

variables are different in the new event when compared to the events

that activated the existing rule instances. (If you do not specify any

discriminators for a rule, if a single instance of the rule is active,

subsequent instances of the rule are never generated when subsequent

instances of the event occur.)

■ To generate the rule output event, the values of the variables must be

the same in all contributing events (that is, in the event that activated

the rule and in all events specified in the series).

To use event variable discriminators effectively in an event series rule, the

IDs of the event variables in the contributing events must match. That is, the

same event variables must store the same variable binding data. If this is not

the case, you can create an event condition rule that is activated by a given

event and that copies the data to event variables that have the appropriate

IDs in the rule output event; you can then use the rule output event in the

series.

Events <S> - Event List

Select Ordered if the list (series) of events must occur in a specific sequence

to trigger creation of the response event. Select Not Ordered if the events in

the series can occur in any order.

Events <S> - Event Code

The series of events that must follow the event that activated the rule in

order for the rule to generate the output event. If the events in the series

must occur in a specific order, list them in that order.

Use the buttons above the table to add, modify, copy, and remove events

from the list. To move an event up or down in the list (if necessary), select

the event, and click the up or down arrow.

Create Event Rules

78 Event Configuration User Guide

When you add an event to the series, you can also specify that one or more

of the values in its event variables should be copied to the rule output event

(generated event <Z>). To do so, in the dialog in which you select the event

to add to the series, do one of the following:

■ Select Copy All to copy the values of all of the event variables to the rule

output event.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Time <T> - Time Interval

The period of time during which the series of events must occur in order for

the rule to generate the output event.

Generated Event <Z> - Generate Event

The event code of the event to create in response if the series of events

occurs within the specified period of time and, if required, in the specified

order.

To specify the event code, click Browse, select the event in the Select Event

dialog (which displays all of the events loaded into Event Configuration), and

click OK.

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the event that first

activated the rule to generated event <Z>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the event variables into

generated event <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable IDs

or ranges of IDs using Event Configuration, see Copying Variable Values from

Contributing Events to the Rule Output Event (see page 91).

In some cases, you might want an event to be generated in response to a specific

series of events, but one of several events might first trigger that same series.

To satisfy this scenario, create the same event series rule for all events that will

trigger the series.

Create Event Rules

Chapter 4: Working with Event Rules 79

Alternatively, you might want to watch for any combination of a series of events

and in any order, inclusive of the event that triggers the series. To satisfy this

scenario, you might create the following rules:

Event that triggers

the rule (event to

which rule is

applied)

Events in the series (not

ordered)

Rule output event

(generated event <Z>)

0x0001002a

0x0001002b, 0x0001002c

0x0001002f

0x0001002b

0x0001002a, 0x0001002c

0x0001002f

0x0001002c 0x0001002a, 0x0001002b 0x0001002f

Using this set of rules, any combination of events 0x0001002a, 0x0001002b,

and 0x0001002c occurring in any order generates event 0x0001002f.

Create Event Rules

80 Event Configuration User Guide

Configuring Event Counter Rule Settings

You configure an event counter rule using the following dialog:

Create Event Rules

Chapter 4: Working with Event Rules 81

The settings in the dialog include the following:

The event for which the rule is defined is the one that counts up the event. The

first event initiates a new rule instance and counts (count will be 1).

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event

variable discriminators are a general feature available for all types of rules.

Count down event <D> - Event Code

Sets the event code that counts down by one. To specify the event code, click

Browse, select the event in the Select Event dialog which displays all of the

events loaded into Event Configuration, and click OK.

Count down event <D> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Counter Event Threshold <N>

Sets a certain threshold that when reached, generates a new event. The rule

will also generate another event when the count is lower then the threshold

again.

Threshold violated event <V> - Event Code

Is generated when the count threshold is reached. To specify the event code,

click Browse, select the event in the Select Event dialog (which displays all of

the events loaded into Event Configuration), and click OK.

Create Event Rules

82 Event Configuration User Guide

Threshold violated event <V> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <V>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Threshold

violated event <V>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Threshold reset event <R> - Event Code

Generates when the count is below the threshold again. To specify the event

code, click Browse, select the event in the Select Event dialog (which

displays all of the events loaded into Event Configuration), and click OK.

Threshold reset event <R> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event Reason:, select Copy Event Variables,

and do one of the following:

■ Select Copy All to copy the values of all of the variables into Threshold

reset event Reason:.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Create Event Rules

Chapter 4: Working with Event Rules 83

Configuring Heartbeat Rule Settings

You configure heartbeat rule using the following dialog.

Create Event Rules

84 Event Configuration User Guide

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event

variable discriminators are a general feature available for all types of rules.

Heartbeat Event <H> - Event Code

Sets the Heartbeat Event code. To specify the event code, click Browse,

select the event in the Select Event dialog (which displays all of the events

loaded into Event Configuration), and click OK.

Heartbeat Event <H> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <H>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Heartbeat

Event <H>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Heartbeat Period <P>

Sets the time gap between individual heartbeats.

Generate event on missing heartbeat <Z> - Event Code

Generates an event when the heartbeat event is missed. To specify the

event code, click Browse, select the event in the Select Event dialog (which

displays all of the events loaded into Event Configuration), and click OK.

Create Event Rules

Chapter 4: Working with Event Rules 85

Generate event on missing heartbeat <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <Z>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables to Generate

event on missing heartbeat <Z>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

(Optional) Heartbeat Rule Stop Event <S> - Event Code

The Heartbeat Rule Stop Event stops the Heartbeat event rule.To specify the

event code, click Browse, select the event in the Select Event dialog (which

displays all of the events loaded into Event Configuration), and click OK.

Create Event Rules

86 Event Configuration User Guide

Configuring Single Event Rule Settings

You configure a single event rule using the following dialog.

Create Event Rules

Chapter 4: Working with Event Rules 87

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event

variable discriminators are a general feature available for all types of rules.

Generate single event <S> - Event Code

It is generated the first time the trigger event is seen either when the rule is

instantiated, or the first time the trigger event occurs after the reset event is

seen. To specify the event code, click Browse, select the event in the Select

Event dialog (which displays all of the events loaded into Event

Configuration), and click OK.

Generate single event <S> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Event (see page 91).

Reset rule event <R> - Event Code

Sets the reset event. To specify the event code, click Browse, select the

event in the Select Event dialog (which displays all of the events loaded into

Event Configuration), and click OK.

Reset rule event <R> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Create Event Rules

88 Event Configuration User Guide

(Optional) Reset rule notify event <N> - Event Code

It is generated when the reset event is seen. To specify the event code, click

Browse, select the event in the Select Event dialog (which displays all of the

events loaded into Event Configuration), and click OK.

Reset rule notify event <N>- Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Create Event Rules

Chapter 4: Working with Event Rules 89

Configuring Solo Event Rule Settings

You configure a solo event rule using the following dialog.

Create Event Rules

90 Event Configuration User Guide

The settings in the dialog include the following:

Event Variable Discriminators

A comma-separated list of the IDs of the event variables in the event to

evaluate as a part of the rule.

Note: You must enter each ID; ranges of IDs are not supported. Event

variable discriminators are a general feature available for all types of rules.

Prevent period before Solo Event

Sets the time period before the solo event where none of the 'prevent'

events may occur (in seconds).

Solo Event <S>- Event Code

Specifies the Solo event. To specify the event code, click Browse, select the

event in the Select Event dialog (which displays all of the events loaded into

Event Configuration), and click OK.

Solo Event <S>- Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖.

Note: For information on the proper syntax to use when specifying variable

IDs or ranges of IDs using Event Configuration, see Copying Variable Values

from Contributing Events to the Rule Output Even (see page 91)

Prevent period after Solo Event Action:

Sets the time period after the solo event where none of the 'prevent' events

may occur.

Generated Event <Z> - Event Code

Defines the event that will be generated when the rule triggers (when just

the 'solo' event is seen). To specify the event code, click Browse, select the

event in the Select Event dialog (which displays all of the events loaded into

Event Configuration), and click OK.

Create Event Rules

Chapter 4: Working with Event Rules 91

Generated Event <Z> - Copy Event Variables

If you want to copy the values of any event variables in the first event that

activated the rule to generated event <D>, select Copy Event Variables, and

do one of the following:

■ Select Copy All to copy the values of all of the variables into Count down

event <D>.

■ Select Copy, and specify a comma-separated list of specific variable IDs

whose values should be copied. Ranges of IDs are also supported, for

example, ―1-4‖

Prevent Events <P>

Defines a list of 'prevent' events. In the dialog, use the buttons above the list

of prevent events to add new events and to modify, copy, and delete a

selected event.

Stop Event <X> - Event Code

The Stop Event stops the Solo Event rule. To specify the event code, click

Browse, select the event in the Select Event dialog which displays all of the

events loaded into Event Configuration, and click OK.

Copy Variable Values from Contributing Events to the Rule Output Event

When you use event rules to trigger events, depending on the rule, the event

that is generated as the output of the rule might be generated only after

multiple, contributing events occur or certain complex conditions are met.

By default, a rule output event does not have any event variables. However, you

can specify that the values of the event variables in the events that contribute to

the rule‘s processing should be copied to the rule output event. This lets you

specify event processing behaviors for the rule output event based on those

values, which you can do using event variable discriminators. Moreover, because

the values of event variables in events that generate alarms are also stored in

those alarms, you can also use event discriminators to specify alarm processing

(generation or clearing of alarms) based on the values. For an example of this

usage, see Event Variable Copying and Event Discriminators (see page 157).

You can specify that all of the event variables in a contributing event should be

copied to the rule output event, or you can specify one or more specific variables

by their IDs. These are the event variable IDs that are mapped (in the AlertMap

file) to the OIDs of the variable bindings sent with the trap.

Note: For more information about AlertMap files, see the Event Configuration

User Guide.

Modifying Event Rules

92 Event Configuration User Guide

To copy only specific variable binding values from a contributing event to the rule

output event, enter a comma-separated list of the IDs and/or ranges of IDs, as

shown in the following image.

Use the first text box to specify the event variables in the contributing event that

you want to copy, and use the second text box to specify the event variables in

the output event into which the values should be copied. The first ID in the

―source‖ text box will copied into the first ID in the ―target‖ text box, and so on.

You can copy the value of one source variable into a target variable that has a

different ID. For example, the preceding image indicates that source variable 1

should be copied into target variable 1, source variable 2 should be copied into

target variable 3, and source variables 3, 4, and 5 should be copied into target

variables 4, 5, and 6, respectively.

Modifying Event Rules

You can modify event rules.

To modify event rules

1. In the Navigation panel, select the event that activates (triggers) the event

rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Select the event rule to modify, and click (edit).

4. Modify the configuration of the event rule as required.

5. Click OK.

More information:

Configuring Event Condition Rule Settings (see page 66)

Configuring Event Pair Rule Settings (see page 70)

Configuring Event Rate Rule Settings (see page 73)

Configuring Event Series Rule Settings (see page 76)

Delete Event Rules

Chapter 4: Working with Event Rules 93

Delete Event Rules

You can delete event rules.

To delete event rules

1. In the Navigation panel, select the event that activates (triggers) the event

rule.

2. In the Details panel, click the Event Rules tab.

The list of event rules for the selected event appears.

3. Select the event rule to delete, and click (delete).

4. Click OK to confirm the deletion.

Chapter 5: Using Procedures in Event Processing 95

Chapter 5: Using Procedures in Event

Processing

Using Procedures in Event Disposition Files

CA Spectrum includes many procedures that accomplish common tasks. These

are located in <$SPECROOT>/SS/CsVendor/CA/Procedures. Each procedure

XML file defines the procedure (input parameters, return value, and so on) and

provides documentation about its function.

You can specify that one or more procedures should be executed when an event

is processed by adding the procedures to the event‘s event map in the

appropriate event disposition file. When the event is generated for a given

model, the SpectroSERVER processes the event and executes the procedures.

(Both the current event and the current model are required for proper procedure

execution, and both are automatically set by the SpectroSERVER.)

To add a procedure to an event map, use the following syntax:

<event_code> E <event_severity> <processing_parameters> P <procedure>

<event_code> S

Specifies the event code of the event.

E

Identifies the action code that indicates the event data should be logged by

the Archive Manager in the Distribute Data Manager (DDM) database.

<event_severity>

Specifies the relative severity of the event on a scale of 0 to 100.

<processing_parameters>

Specifies additional event processing behaviors, such as whether the event

generates an alarm, clears one or more alarms, or executes one or more

event rules.

P

Specifies the action code that indicates that a procedure follows.

<procedure>

Specifies the procedure to execute. To specify multiple procedures, use

multiple instances of P <procedure>.

Using Procedures in Event Disposition Files

96 Event Configuration User Guide

Example:

The following event map executes a procedure that creates event 0xabcd0002

on a port‘s device model, which is retrieved by reading the Device_Mdl_Handle

attribute (0x10069). Event 0xabcd0002 has copies of all of the event variables in

the original event.

0xabcd0000 E 50 \

 P "CreateEventWithVariables(\

 ReadAttribute({ C CURRENT_MODEL }, { H 0x10069 }), \

 { H 0xabcd0002 }, \

 GetEventVariableList() \

)"

In the example, CURRENT_MODEL is a predefined constant referring to the

current model, which is automatically set in the environment by the

SpectroSERVER when the event is processed.

As shown in the example, a procedure must be fully enclosed in double quotes,

has a procedure name, and takes parameters. Parameters follow the procedure

name, are enclosed in braces if they are direct values (or constants), and are

separated by commas.

If a procedure spans multiple lines, you must use the line continuation character

to indicate that each line continues a single event map.

You can use any number of procedures in an event map.

Note: The user-defined event procedures are read-only in the

Event-Configuration editor.

Input Parameters

A procedure accepts the following types of input parameters:

■ A value. Values are specified by type and value.

■ A constant. Constants are specified by the letter C followed by the reserved

word for the constant.

■ Another procedure, which is evaluated when the parameter is needed and

whose return value is used as the actual input parameter for the calling

procedure.

Using Procedures in Event Disposition Files

Chapter 5: Using Procedures in Event Processing 97

Parameter Types

When you specify a direct value as a parameter, you must specify its type. Value

types have a derivation hierarchy, which is shown in the following table. You can

use a more specialized type for a more general type. For example, you can use a

model handle in place of an unsigned integer, and you can use either of these

types in place of a number.

When a parameter has a type that is not the same as or a derivative of the

expected type, if the type is similar, most procedures attempt a conversion to

the expected type. If a conversion fails or is not performed, an error occurs.

Note: You can use the ToUInteger procedure (provided with CA Spectrum) to

convert a parameter value to an unsigned integer. Many times, this can help to

avoid errors due to expected versus actual parameter types.

To specify a parameter type in a procedure, you specify a letter (a short symbol)

for the type. For example, both of the parameters in the following procedure are

handles (IDs), which are indicated by the letter ‗H.‘ The first handle specifies the

model for which to generate the event, and the second handle specifies the event

to generate.

CreateEvent({ H 0x29c00003 }, { H 0xffff0000 })

The table that follows provides a short list of parameter types, their derivation

hierarchy, and their associated short symbols. For the complete list of short

symbols, see EventCondition Rule (see page 135).

Parameter Type Description Short

Symbol

Object

Derivation root

N/A

 List List root N/A

 AttributeList List of attribute values N/A

 EventVariableList List of event variables N/A

 Attribute Value Any possible attribute value N/A

 Number Number root N/A

 Integer An integer value I

 Unsigned Integer An unsigned integer value U

 DateTime A time value T

 ModelHandle A model handle H

 ModelType A model type handle H

Using Procedures in Event Disposition Files

98 Event Configuration User Guide

Parameter Type Description Short

Symbol

 RelationHandle A relation handle H

 Attribute ID An attribute ID a

 Unsigned Long An unsigned long (64-bit) value L

 Boolean A Boolean value B

 Double A real value R

 String String root N/A

 Text String A String value S

 Octet String An octet String value O

 Tagged Octet String A hexadecimal tagged octet

String

X

 Object ID An object ID value o

 IP Address

An IP address

A

 Variable The value of a variable V

Constants

You specify a constant using the letter C followed by the reserved word for the

constant. For example, the following procedure creates event 0xffff0000 for the

current model:

CreateEvent({C CURRENT_MODEL}, { H 0xffff0000 })

You can use the following list of constants in procedures in event maps:

CURRENT_EVENT

The current event, which is set in the environment automatically by the

SpectroSERVER.

CURRENT_MODEL

The current model, which is set in the environment automatically by the

SpectroSERVER.

RELATION_SIDE_LEFT

The model on the left side of an association.

RELATION_SIDE_RIGHT

The model on the right side of an association.

RELATION_SIDE_EITHER

The model on either side of an association.

Examples of Procedures in Event Disposition Files

Chapter 5: Using Procedures in Event Processing 99

Return Values

Every procedure returns a value whose type depends on the function that the

procedure performs, for example, a list of model handles or a Boolean value of

TRUE or FALSE.

The possible types of return values are the same as the possible types of input

parameters for procedures. This lets you use procedures as input parameters

because they ultimately evaluate to permissible input values.

Examples of Procedures in Event Disposition Files

The following examples show how procedures can be used in event maps to

implement event processing. Assume that each procedure is wrapped inside

double quotes.

Add together two integer numbers (4 and 16):

Add({ I 16 }, { I 4 })

Add together a direct value of 4 and the value in event variable 2 in the current

event:

Add({ U 4 }, GetEventVariable({ U 2 }))

Create event 0xffff0000 for model 0x29c0003:

CreateEvent({ H 0x29c00003 }, { H 0xffff0000 })

Create event 0xffff0000 if event variable 1 in the current event exceeds 100:

If(Less({ U 100 }, GetEventVariable({ U 1 })), \

 CreateEvent({ H 0x29c00003 }, { H 0xffff0000 }), \

 Nil() \

)

Create event 0x10002 with a list of event variables. The list will be a copy of the

variables in the current event. In the new event, also set event variable 2 to

1965:

CreateEventWithVariables({ H 0x29c00003 }, \

 { H 0x10002 }, \

 SetEventVariable(GetEventVariableList({ C CURRENT_EVENT }), \

 { U 2 }, \

 { U 1965 } \

) \

)

Examples of Procedures in Event Disposition Files

100 Event Configuration User Guide

Create a list and add several elements. The list will contain the following

elements in this order: 5,3,2,1,4,6:

AddTail(\

 AddHead(\

 AddTail(\

 AddHead(\

 AddHead(\

 AddTail(\

 CreateList(), \

 { U 1 }), \

 { U 2 }), \

 { U 3 }), \

 { U 4 }), \

 { U 5 }), \

 { U 6 })

Create event 0x10002 for model 0x29c00003 if the model has IP address

191.168.102.25:

If (HasIPAddress({ H 0x29c00003 }, { A 192.168.102.25 }), \

 CreateEvent({ H 0x29c00003 }, { H 0x10002 }), \

 Nil() \

)

Create event 0xffff0000 for model 0x29c00003 if attribute 0xffff0000 of the

current model has the same value as event variable 1 in the current event:

If(Equals(ReadAttribute({ C CURRENT_MODEL }, { H 0xffff0000 }), \

 GetEventVariable({ U 1 }) \

), \

 CreateEvent({ H 0x29c00003 }, { H 0xffff0000 }), \

 Nil() \

)

Return TRUE if the current time is 8 a.m. or later:

GreaterOrEqual(GetHour(GetCurrentTime()), { U 8 })

Retrieve the value of event variable 1 in the current event and write it to

attribute 0xffff0001 in the current model:

WriteAttribute({ C CURRENT_MODEL }, { H 0xffff0001 }, GetEventVariable({ U 1 })

)

Logging Errors in Event Procedures

Chapter 5: Using Procedures in Event Processing 101

Create event 0xffff0000 for model 0x29c00003 if exactly 3 event variables in the

current event‘s event variable list have a value of 4. The procedure iterates over

the list, assigning each element in the list to the loop variable ‗X‘ in turn and

checking its value. If the value of the element is 4, the return variable ‗ret‘ is

incremented. After iterating through the list, the return value is checked, and the

event is generated if its value is 3:

If(Equals(ForEach(GetEventVariableList(), \

 { Variable X }, \

 { Variable ret }, \

 { U 0 }, \

 If(Equals({ Variable X }, \

 { U 4 }), \

 Assign({ Variable ret }, \

 Add({ Variable ret }, \

 { U 1 }) \

), \

 Nil() \

) \

), \

 { U 3 }), \

 CreateEvent({ H 0x29c00003 }, { H 0xffff0000 }), \

 Nil() \

)

Logging Errors in Event Procedures

You can log the errors that the SpectroSERVER encounters while parsing a

procedure XML file or while executing a procedure used in an event map to an

error file.

Errors that are found while parsing a procedure file are written to the file

specified in the procedure_error_file parameter in the .vnmrc resource file for

the SpectroSERVER. Errors that are found while executing a procedure used in

an event map are written to the file specified in the event_disp_error_file

parameter. For more information on these parameters, see Logging

Event-Related Errors (see page 25).

More information:

Logging Event-Related Errors (see page 25)

Troubleshooting Event Procedures

102 Event Configuration User Guide

Troubleshooting Event Procedures

You can use the DebugValue procedure to assist you in troubleshooting

procedures used in event processing that are not performing as you intend. The

DebugValue procedure prints the value of a parameter to the error log file

specified in the event_disp_error_file parameter in the .vnmrc file for the

SpectroSERVER.

Note: For information on how to set the event_disp_error_file parameter in the

.vnmrc file, see event_disp_error_file (see page 25).

The DebugValue procedure accepts the following input parameters:

■ A text string that is printed before the value is printed. This parameter is

especially helpful for differentiating values when you are using more than

one DebugValue procedure in a given event procedure.

■ Any value (value, constant, or another procedure).

The DebugValue procedure returns the value that is passed in as the second

input parameter (which is unchanged). This means that you can use it as an

input parameter in any other procedure without affecting the execution of that

procedure.

As an example, the following DebugValue procedure prints a text string followed

by the value of a read operation on an attribute of the current model. It then

returns the value of the read operation, which, in turn, is used as the first input

parameter in the Equals procedure.

If(Equals(DebugValue({ S \"Attribute value is:\" }, \

 ReadAttribute({ C CURRENT_MODEL }, { H 1 }), \

 GetEventVariable({ U 1 }) \

), \

 CreateEvent({ H 0x29c00003 }, { H 0xffff0000 }), \

 Nil() \

)

Appendix A: AlertMap Files 103

Appendix A: AlertMap Files

More information:

SNMPv2 Support (see page 111)

AlertMap File Syntax (see page 107)

SNMP Trap Overview (see page 103)

SNMP Trap Overview

An SNMP trap is sent out as a trap PDU (Protocol Data Unit). The PDU contains

the following pieces of information:

Enterprise OID

Identifies the company responsible for a device sending the trap. For

example, 1.3.6.1.4.1.X is an enterprise OID where X identifies the enterprise

(for example, Sun). The numbers preceding the X represent a hierarchy of

global bodies responsible for the management of information. The Internet

Assigned Numbers Authority (IANA) allocates the enterprise level numbers

that identify companies and their management MIBs on the MIB tree. For

more information, see their website, http://www.iana.org.

Network Address

Specifies the network address of the managed element initiating the trap.

Generic Trap Identifier

This can be a value from 0 through 6. There are six standard industry traps

within the SNMP protocol. These traps have a generic trap identifier of 0-5.

The number 6 indicates that the trap is an enterprise-specific trap.

Enterprise specific traps are proprietary traps created for developer-specific

types of managed nodes. These traps are defined by proprietary MIBs.

Specific Trap

Specifies the specific trap number as listed in the trap definition of the trap

MIB.

Time Stamp

Specifies the time at which the trap was created.

Variable Bindings

Specifies the variables and values that are defined in the trap. These

variables are generally pointers to other MIB objects.

SNMP Trap Overview

104 Event Configuration User Guide

For example, when a redundant power supply fails in a Cisco router or switch, the

following information is sent in the trap PDU:

■ Network address of the device

■ Timestamp of the trap

■ Enterprise OID: 1.3.6.1.4.1.9

■ Generic Trap ID: 6

■ Specific Trap ID: 5

■ Variable Binding(s): 1.3.6.1.4.1.9.9.13.1.5.1.2,

1.3.6.1.4.1.9.9.13.1.5.1.3

The network address and the timestamp information vary depending on the

device and the time that the trap was sent.

The enterprise OID identifies the vendor company using the last two digits. In

this example, 9 indicates a trap generated by a Cisco device.

The generic trap ID of 6 indicates that this trap is an enterprise-specific trap

defined by a proprietary MIB. The specific trap ID of 5 is the number assigned to

the trap in the referenced Cisco MIB. The following portion of the Cisco

environment monitoring MIB (CISCO-ENVMON-MIB) defines this trap.

ciscoEnvMonRedundantSupplyNotification TRAP-TYPE

-- Reverse mappable trap

 ENTERPRISE ciscoEnvMonMIBNotificationPrefix

 VARIABLES {

 ciscoEnvMonSupplyStatusDescr, ciscoEnvMonSupplyState }

-- Status

-- mandatory

 DESCRIPTION

 "A ciscoEnvMonRedundantSupplyNotification is sent if the

 redundant power supply (where extant) fails. Since such a

 notification is usually generated before the shutdown state is

 reached, it can convey more data and has a better chance of being

 sent than does the ciscoEnvMonShutdownNotification."

 ::= 5

This trap definition has two variables (ciscoEnvMonSupplyStatusDescr and

ciscoEnvMonSupplyState) that are sent as variable bindings. Such variables are

actually references to other managed objects defined by the MIB. The OIDs sent

in the variable bindings represent these managed objects.

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 105

The following excerpts from the MIB define ciscoEnvMonSupplyStatusDescr and

ciscoEnvMonSupplyState:

ciscoEnvMonSupplyStatusDescr OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..32))

-- Rsyntax OCTET STRING(SIZE(0..32))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Textual description of the power supply being instrumented.

 This description is a short textual label, suitable as a human-

 sensible identification for the rest of the information in the

 entry."

 ::= { ciscoEnvMonSupplyStatusEntry 2 }

ciscoEnvMonSupplyState OBJECT-TYPE

 SYNTAX CiscoEnvMonState

-- Rsyntax INTEGER {

-- normal(1),

-- warning(2),

-- critical(3),

-- shutdown(4),

-- notPresent(5),

-- notFunctioning(6)

-- }

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The current state of the power supply being instrumented."

 ::= { ciscoEnvMonSupplyStatusEntry 3 }

The ciscoEnvMonSupplyStatusDescr variable will have a string value describing

the power supply, and the ciscoEnvMonSupplyState variable can have a value of

1, 2, 3, 4, 5 or 6 depending on its status. The current value for each variable is

detected using the variable bindings in the trap PDU.

About Mapping a Trap to a CA Spectrum Event

When CA Spectrum receives a trap, it must be associated with a specific CA

Spectrum event for CA Spectrum to use the trap information. This association is

made in an AlertMap file.

CA Spectrum can receive SNMP traps from devices that have been modeled

using the Pingable model type. To enable this, you must set the

enable_traps_for_pingables variable in the CA Spectrum .vnmrc file to TRUE. For

information about how to do this, see the Distributed SpectroSERVER

Administrator Guide. The AlertMap file for the Pingable model type is located in

the <$SPECROOT>\SS\CsVendor\Cabletron\Pingable directory.

About Mapping a Trap to a CA Spectrum Event

106 Event Configuration User Guide

About Processing Alerts with AlertMap Files

The IP address of the managed element issuing the trap is sent as a part of the

trap information. CA Spectrum uses the IP address to identify the model that

represents the managed element issuing the trap. From this information, CA

Spectrum is able to identify the model type associated with the managed

element.

To process the trap correctly, CA Spectrum refers to the AlertMap file. Depending

on where they reside, AlertMap files can be applied globally (that is, to all CA

Spectrum model types) or only to models of a specific model type.

Thus, if you want to change the trap mapping for a particular model type only,

you should modify the AlertMap file for that model type. If an AlertMap file at the

model type level does not exist, you must create one and make your changes

there.

If you want to change how an alert is mapped globally (that is, for all model

types), you will need to find all AlertMap files that specify a mapping for that

trap, and make your changes to each one of these files.

Note: Global AlertMap files apply to all vendor model types, not just those

created by the vendor who created the file.

AlertMap File Location

Default trap mappings are located in the <$SPECROOT>/SS/CsVendor directory

while MIB Tools customized trap mappings are located in the

<$SPECROOT>/custom/Events/AlertMap directory. MIB Tools‘ customized trap

mappings are preserved when you upgrade CA Spectrum, and they take

precedence over any existing default trap mappings. For more information about

working with custom trap mappings and default trap mappings, see Map Tab.

Global AlertMap files are located in

<$SPECROOT>/SS/CsVendor/<developername>/AlertMap, where

<developername> is usually the name of the vendor, manufacturer, or

developer associated with the model type.

In some instances, CA may use something other than the developer name for the

directory. For example, the IETF directory contains the AlertMap file that maps

standard RFC traps.

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 107

If the AlertMap file is specific to the model type, it is located in

<$SPECROOT>/SS/CSVendor/<developername>/

<model_type_name>AlertMap, where:

<developername> is the name of the vendor, manufacturer, or developer

associated with the model type (for example, Compaq). If you are developing

your own management module, your developer name is used here.

<model_type_name> is the name of the model type.

If a mapping for a trap exists in both a model type AlertMap file and a global

AlertMap file, the model type AlertMap file takes precedence for that particular

model type.

When you map traps using MIB Tools, entries are generated in the following file

on all SpectroSERVERs in your DSS environment:

<$SPECROOT>/custom/Events/AlertMap

The mapping information for a trap in these files overrides any mapping

information that previously existed for that same trap in other files or directories

on the SpectroSERVER. For more information, see Chapter 10: Managing MIBs

and Traps.

The name of every AlertMap file is always ―AlertMap.‖ No file extension is used in

the Windows environment.

AlertMap File Syntax

If the appropriate AlertMap file is found, CA Spectrum looks for an entry

matching the trap. Each entry in the Alert Map file has three components: the

alert code, the event code, and the OID map.

Alert Code

The alert code consists of three pieces of information from the trap: the

Enterprise OID string, the generic trap identifier, and the specific trap identifier.

About Mapping a Trap to a CA Spectrum Event

108 Event Configuration User Guide

1.3.6.1.4.1.9: Enterprise OID (in this case indicating a Cisco device).

6: The Generic Trap Identifier (in this case the 6 indicates an Enterprise specific

trap).

5: Specific Trap Identifier (in this case 5).

Event Code

The event code is a 4-byte integer expressed in hexadecimal format. Each event

code has two parts: the first two bytes contain the developer ID of the developer

who created the file, and the last two bytes identify the event with a unique

number relative to all other event codes for that particular developer.

If the event code is zero, an event will not be generated for that particular alert.

If the event code is non-zero, CA Spectrum will map the alert variables to event

variables using the OID map.

OID Map

The trap you are mapping may include one or more pieces of variable

information, known as variable bindings. Each of these variable bindings

provides information about the trap. You can choose to map these bindings to

event variables so that the information can be used by CA Spectrum.

Variable bindings and the information about how CA Spectrum should map them

are specified in the OID map section of the alert map entry. A single alert map

entry may have multiple OID maps associated with it indicating that there were

many variable bindings sent with the SNMP trap. These OID maps should be

separated by the backslash (\) character and a new line as in the following

example.

1.3.6.1.4.1.9.6.5 0x180000 1.3.6.1.4.1.9.9.13.1.5.1.3(1,2)\

1.3.6.1.4.1.9.9.13.1.5.1.2(4,0)

As shown in the following example, the OID map can be broken down into three

parts: the OID, the value variable ID, and the instance variable ID.

About Mapping a Trap to a CA Spectrum Event

Appendix A: AlertMap Files 109

The OID identifies the specific variable being sent with the trap. The previous

OID references the ciscoEnvMonSupplyState variable in the Cisco Environment

monitoring MIB (CISCO-ENVMON_MIB).

The value variable ID stores the value of the variable sent in the variable binding.

Any integer value can be used here; however, it must be different from the

integer used for the instance variable ID. A value of zero indicates that you do

not want to store the value of the variable binding.

The instance variable ID stores the instance portion of the OID. If your variable

binding identifies a particular object from a table variable within the trap MIB, it

will likely include an instance ID. Any integer value can be used here; however,

it must be different from the integer used for the value variable ID. A value of

zero indicates that you do not want to store the value of the instance variable.

Important! There are no spaces between the OID, the value variable ID, and

the instance variable ID.

Comments

There are two comment identifiers that allow you to add comments to the

AlertMap file: # or //. Text entered after one of these identifiers and before the

start of the next line is ignored when processing the AlertMap file.

For example:

#Comment

0.0 0x10306 #Comment

1.0 0x10307 //Comment

2.0 0x220001 1.3.6.1.2.1.2.2.1.1(1,2)

3.0 0x220002 1.3.6.1.2.1.2.2.1.1(1,2)\

 1.3.6.1.2.1.2.2.1.3(4,0)

//Comment

//Comment

4.0 0x1030a

5.0 0x1030b

1.3.6.1.4.1.45.6.271 0x1060f 1.3.6.1.4.1.45.1.2.1.9.2.1.2(3,4) #Comment

As shown in OID Map (see page 108), the backslash (\) character is used as a

line continuation character. You can also use comments when using the line

continuation character.

About Mapping a Trap to a CA Spectrum Event

110 Event Configuration User Guide

For example:

3.0 0x220002 1.3.6.1.2.1.2.2.1.1(1,2)\ #Comment

 1.3.6.1.2.1.2.2.1.2(3,0)\

 //Comment

 1.3.6.1.2.1.2.2.1.3(4,0)

Note: Inline and multiline comments are not supported.

How CA Spectrum Maps Alert Variables to Event Variables

CA Spectrum maps alert variables to event variables as follows:

1. CA Spectrum scans the AlertMap file entry to find an OID Map whose OID

either exactly matches the trap variable‘s OID, or is a prefix of the trap

variable‘s OID.

2. If more than one OID map has an OID that is a prefix of the trap variable‘s

OID, CA Spectrum chooses the OID with the longest prefix (best match).

3. If an OID map is found, CA Spectrum examines its value variable ID to

decide whether to translate the trap variable‘s value into an event variable.

If an OID map is not found, CA Spectrum ignores the alert variable.

4. If the value variable ID is zero, CA Spectrum ignores the trap variable‘s

value. Otherwise, the type, length, and value of the event variable are

obtained from the trap variable, and an event variable is constructed. The

value variable ID can then be used to represent the value of the variable

binding in an Event Format file.

5. CA Spectrum examines the OID Map to decide whether to translate the trap

variable‘s instance ID into an event variable. If the OID in the OID Map

exactly matches the trap variable‘s OID, there is no instance ID to translate.

If the instance variable ID in the parameter is zero, the instance OID is

ignored. If the instance ID exists and the instance variable ID is non-zero, an

event variable is constructed. The instance variable ID can then be used to

represent the value of the OID instance in an Event Format file.

More information:

Event Format Files (see page 159)

Error Messages

If CA Spectrum is unable to identify the model for a given IP address, an event is

generated on behalf of the VNM model indicating that a trap was received from

an unknown SNMP device (event 0x00010802). Contained within this event are

details about the trap, including the agent IP address, enterprise OID, trap code,

community name, and variable binding data.

SNMPv2 Support

Appendix A: AlertMap Files 111

If CA Spectrum can properly identify the model for the trap source, but it cannot

find an entry for the specific trap code in the AlertMap file, an event indicating

that an unknown alert was received (event 0x00010801) is generated on behalf

of that model. Contained within the event are details about the trap, including

the agent IP address, device type, device time, trap type, and variable binding

data.

SNMPv2 Support

CA Spectrum supports the receipt and processing of SNMPv2 format

InformRequests and traps as defined by RFC 2576, ―Coexistence between

Version 1, Version 2, and Version 3 of the Internet-Standard Network

Management Framework.‖

InformRequest Support

When CA Spectrum receives an SNMPv2 InformRequest, it is decoded and

converted to SNMPv1 format as specified in RFC 2576. A response to the

InformRequest is generated and sent back to the inform originator.

How an SNMPv2 Trap is Mapped to a CA Spectrum Event

If you are mapping SNMPv2 traps to CA Spectrum events, you will need to

reference the translated trap in the AlertMap file.

The following is an overview of how an SNMPv2 trap is translated. For complete

information about this process, see RFC 2576. Section 3.2 of the RFC explains

how an SNMPv2 trap is translated into an SNMPv1 trap so that it can be used in

an SNMPv1 environment.

SNMPv2 Support

112 Event Configuration User Guide

1. The SNMPv1 enterprise OID for the trap is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is one of the standard traps

(defined in RFC 1907), then set the value of the SNMPv1 enterprise

parameter to the value of the snmpTrapEnterprise.0 variable binding if it

exists. If it does not exist, set the value to snmpTraps.

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, the

following criteria is used:

If the next-to-last sub-identifier of the snmpTrapOID is 0, then find the

enterprise number by removing the last two sub-identifiers.

snmpTrapOID = 1.3.6.1.4.1.1916.4.1.0.1

Enterprise number = 1.3.6.1.4.1.1916.4.1

If the next-to-last number is not 0, then find the enterprise number by

removing the last sub-identifier.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

Enterprise number = 1.3.6.1.4.1.5486.1.3

2. The SNMPv1 generic trap identifier for the trap is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is a standard trap as defined in

RFC 1907, use the standard generic trap parameter for that trap (0-5).

standard trap = 1.3.6.1.6.3.1.1.5.1 (cold start)

generic trap identifier = 0

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, set the

generic-trap parameter to 6.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

generic trap identifier = 6

3. The SNMPv1 specific trap parameter is determined as follows:

a. If the SNMPv2 snmpTrapOID parameter is a standard trap as defined in

RFC 1907, set the specific-trap parameter to 0.

standard trap = 1.3.6.1.6.3.1.1.5.1 (cold start)

specific trap parameter = 0

b. If the SNMPv2 snmpTrapOID parameter is not a standard trap, set the

specific-trap parameter to the last sub-identifier of the SNMPv2

snmpTrapOID parameter.

snmpTrapOID = 1.3.6.1.4.1.5486.1.3.8

specific trap parameter = 8

4. The SNMPv2 variable bindings are converted directly to SNMPv1 bindings. As

noted in RFC 2576, variable bindings of type Counter64 cannot be

translated.

SNMPv2 Support

Appendix A: AlertMap Files 113

Example:

If you are sending the following SNMPv2 snmpTrapOID to the SpectroSERVER:

1.3.6.1.4.1.5486.1.3.8

You should use the following OID as the alert code (see page 107) in the

AlertMap file: 1.3.6.1.4.1.5486.1.3.6.8.

Enterprise OID: 1.3.6.1.4.1.5486.1.3

Generic Trap Number: 6

Specific Trap Number: 8

Appendix B: Event Disposition Files 115

Appendix B: Event Disposition Files

This section contains the following topics:

About Event Disposition Files (see page 115)

Location of Event Disposition Files (see page 116)

File Syntax of Event Disposition Files (see page 118)

Generating Alarms (see page 119)

Clearing Alarms (see page 124)

Clearing Alarms Regardless of Event Discriminator Values (see page 128)

About Defining Event Rules (see page 129)

Syntax Errors in EventDisp Files (see page 157)

Add Comments in EventDisp Files (see page 158)

About Event Disposition Files

When an SNMP trap is received by CA Spectrum and mapped to a CA Spectrum

event that is generated for the model, an event disposition file is used to

determine how to process the event. The processing instructions in an event

disposition file (an ASCII text file) can include:

■ Whether the event should be logged

■ The severity of the event

■ Whether the event should generate an alarm of a specific severity

■ Whether the event should clear one or more alarms

■ Whether the event should trigger an event rule (a series of events that are

watched for and trigger another event if they occur in a specific pattern or

time frame)

Location of Event Disposition Files

116 Event Configuration User Guide

The events provided with CA Spectrum all have processing instructions defined

for them in global and model type-specific event disposition files. In addition,

whenever you create a new, custom event (either using MIB Tools when you are

mapping a trap to the new event or later using Event Configuration) a custom

event disposition file is automatically created. This means that typically you

should not need to manually create an event disposition file.

Important! It is recommended that you specify the processing instructions for

all events using MIB Tools and Event Configuration, both of which can save your

customizations to one or more landscapes. If you are adding new trap support

for a new device, first use MIB Tools to map the traps to new CA Spectrum events

and specify basic event settings. Then, you can launch Event Configuration

(directly from MIB Tools) and completely configure the events. Using this

workflow, typically you should not need to manually modify an event disposition

file; however, this appendix provides reference information on the proper syntax

to use if manual modifications are ever required.

More information:

Location of Event Disposition Files (see page 116)

File Syntax of Event Disposition Files (see page 118)

Location of Event Disposition Files

The name of every event disposition (EventDisp) file is always EventDisp.

Note: In the Windows environment, no file extension is used.

Location of Event Disposition Files

Appendix B: Event Disposition Files 117

The EventDisp files that support the events provided with CA Spectrum are

installed in the following folders:

■ <$SPECROOT>/SS/CsVendor/<developer_name>

An EventDisp file in this location defines the processing for all events created

by the developer that are global in scope. <developer_name> is the name of

the developer, vendor, or manufacturer who created the EventDisp file.

Note: In some instances, CA may use something other than the developer

name for the developer-specific directory; for example, the IETF directory

contains the EventDisp file that specifies the processing for events resulting

from standard RFC traps.

■ <$SPECROOT>/SS/CSVendor/<developer_name>/<model_type_name>

An EventDisp file in this location defines the processing for all events created

by the developer and whose scope is limited to the model type represented

by <model_type_name>. In this case, <developer_name> is the name of

the developer, vendor, or manufacture who created the model type (for

example, Compaq).

Note: If an event map entry exists in both a global EventDisp file and a model

type-specific EventDisp file, the event map entry in the model type-specific file

takes precedence.

If you customize the event processing for the CA-authored events provided with

CA Spectrum, or if you create new, custom events using MIB Tools or Event

Configuration, a custom EventDisp file is created in the following folder or in one

of its subfolders:

<$SPECROOT>/custom/Events

Note: The event map entries in a custom EventDisp file override those in the

EventDisp files provided by default with CA Spectrum.

File Syntax of Event Disposition Files

118 Event Configuration User Guide

File Syntax of Event Disposition Files

Each line in an event disposition (EventDisp) file is called an event map, and each

event map can specify one or more event processing behaviors, such as whether

the event should be logged or whether it should generate an event. The following

syntax is used for an event map:

<eventcode> E <eventseverity> <processing parameters> S <sbgw processing flag>

<eventcode>

Specifies the event code of the CA Spectrum event for which the processing

behavior is being defined. The event code is defined in the AlertMap file that

maps the trap to the event, or it is specified within the code that generates

the event. The event code must be specified for CA Spectrum to process the

event.

E

(Optional) Indicates that the event data should be logged by the Archive

Manager to the Distributed Data Manager (DDM) database. If the E flag is

not used, the event data is temporarily logged, but it is not preserved when

the SpectroSERVER is shut down and then restarted.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is

the least severe and 100 is the most severe. If a value for event severity is

not specified, CA Spectrum uses a default value of 0.

Note: The event severity parameter is not currently used by the event

management system. However, if you are logging the event, you are advised

to assign an event severity value since use of this parameter may be

incorporated into event processing in the future. If you are not logging the

event, an event severity value should not be assigned.

<processing parameters>

Specifies additional event processing behaviors, such as whether the event

generates an alarm or clears one or more alarms. The topics in this section

provide detailed information on the proper syntax for various event

processing behaviors.

S <sbgw processing flag>

(Optional) Specifies whether an event should be registered for Southbound

Gateway processing or not. It applies to modeltype specific entries only and

only those modeltypes derived from the southbound modeltype fragment.

The S is followed by either of the following sbgw processing flags:

■ + (process for Southbound Gateway: S+)

■ - (do not process for Southbound Gateway: S-)

Generating Alarms

Appendix B: Event Disposition Files 119

Because the default sbgw processing flag setting is '+', an entry without the 'S'

flag present will always be processed by the Southbound Gateway. Setting any

entry to 'S-' adds a modeltype specific EventDisp action without it being

processed by the Southbound Gateway.

While an event does not require an event map in an EventDisp file, most events

have one. If an event does not have an event map in an EventDisp, the event is

logged in the DDM database by default (which means it is preserved when the

SpectroSERVER is shut down and then restarted), but no additional processing

takes place. If an event does have an event map, the event is processed

according to the event map.

Note the following about EventDisp files:

■ Empty lines in the EventDisp file are ignored.

■ If a single event map spans more than one line, a backslash ‗\‘ at the end of

each line must be used to help ensure that CA Spectrum considers the next

line as a part of the event map.

Generating Alarms

The following syntax is used to generate an alarm:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>

A

Indicates that an alarm should be generated when the specified event

occurs.

<alarmseverity>

Specifies a number between 0 and 6 that identifies the severity of the alarm:

■ 0 (Normal)

■ 1 (Minor)

■ 2 (Major)

■ 3 (Critical)

■ 4 (Maintenance)

■ 5 (Suppressed)

■ 6 (Initial)

Each severity in the preceding list is associated with a color-coded condition.

When an alarm is asserted on a model, the associated condition color is

displayed on the model‘s icon to reflect the alarm status.

Generating Alarms

120 Event Configuration User Guide

You can also specify an alarm severity of Variable or Conditional, each of

which evaluates to one of the numeric severity levels. The following syntax is

used to indicate a severity level of Variable:

{ v <event_variable_ID> }

<event_variable_ID>

Specifies the ID of the event variable in the event to evaluate to

determine the alarm severity level.

Similarly, the following syntax is used to indicate a severity level of

Conditional:

{ v <event_variable_ID> <folder_name>.<file_name> }

 <event_variable_ID>

Specifies the ID of the event variable in the event to evaluate.

 <folder_name>

Specifies the severity mapping file to use to determine the alarm

severity level.

<file_name>

 Specifies the severity mapping file to use to determine the alarm

severity level.

Note: If a severity is not specified in the event map, CA Spectrum uses a

default value of 0 (Normal).

<alarmcause>

Specifies a number that is used to identify the probable cause file that

contains the messages associated with the alarm.

Example:

The following event map serves as an example:

0x3e00002 E 50 A 2,0x3e00003

The example specifies the following about an event with an event code of

0x3e00002:

■ It is logged in the Distributed Data Manager (DDM) database by the Archive

Manager for historical and reporting purposes.

Note: Events for a model that are not logged in the DDM database are

displayed on the Events tab in OneClick only if they are generated while the

Events tab for that model is displayed.

■ It has a severity level of 50.

■ It generates a major (orange) alarm whose alarm cause code is 0xe00003.

Generating Alarms

Appendix B: Event Disposition Files 121

More information:

Specify an Alarm Severity (see page 45)

Generating Alarms for Events Based on the Values of Event Variables

Event discriminators are references to event variables that let you to generate

alarms for events based on the values of the variables.

The following syntax is used to generate an alarm using event discriminators:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,<eventdiscriminators>

where <eventdiscriminators> is a comma-separated list of one or more event

variable IDs that indicate the event variables to examine to determine whether

to generate an alarm. These are the event variable IDs that are mapped (in the

AlertMap file) to the OIDs of the variable bindings sent with the trap.

The following event map serves as an example:

0x3b10011 E 70 A 1,0x3b10011,1,3

This example specifies that when an event with an event code of 0x3b10011 is

generated, if an existing alarm with an alarm cause code of 0x3b10011 already

exists on the model, another alarm for the same event is generated only if the

values for both event variables 1 and 3 are different in the new event when

compared to current alarms on the model generated from the same event.

The values of event variables are also stored in the alarms that are generated

based on events. This means you can also use event discriminators to

differentiate multiple occurrences of an alarm and clear alarms based on the

values of the variables.

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Clearing Alarms (see page 124)

Generating Alarms Unconditionally for Each Event

By default, if an alarm exists on a model for a given event, CA Spectrum does not

generate a new alarm each time the same event occurs. However, the U flag can

be used to change the default behavior and generate a new alarm

unconditionally each time the same event occurs. The syntax is as follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,U

Generating Alarms

122 Event Configuration User Guide

This following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,U

Generating Alarms That Users Cannot Clear

By default, users can clear alarms. However, the N flag can be used to change

the default behavior so that an alarm cannot be cleared by users. The syntax is

as follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,N

The following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,N

Generating Alarms That Are Not Persistent

By default, alarms are persistent, that is, they are retained in memory if the

SpectroSERVER is shut down and restarted. However, the T flag can be used to

change the default behavior so that an alarm is not persistent. The syntax is as

follows:

<eventcode> E <eventseverity> A <alarmseverity>,<alarmcause>,T

The following event map serves as an example:

0x3dc0000 E 50 A 1,0x3dc0000,T

Combining the U, N, and T Flags

Any combination of the U, N, and T flags can be used within an event map.

As an example, the following event map generates a unique alarm for each event

that has an event code of 0x3dc0000. The alarm cannot be cleared by users, and

it is not persistent.

0x3dc0000 E 50 A 1,0x3dc0000,U,N,T

The N flag and the T flag can be used with event discriminators as shown in the

following example, which is a variation of the event map described in Generating

Alarms for Events Based on the Values of Event Variables (see page 121).

0x3b10011 E 70 A 1,0x3b10011,1,3,N,T

Generating Alarms

Appendix B: Event Disposition Files 123

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Specify an Event Frequency

The F flag can be used to detect if an event is occurring with abnormal frequency

within a specified period of time. Use event rate rules to generate events for this

purpose. The syntax described in this section is supported only to preserve

compatibility with EventDisp files created for versions of CA Spectrum prior to

version 6.5.

The syntax for using the F flag in an event map is as follows:

<EventCode> E <EventSeverity> F <OccurenceLimit> <Duration> <FrequencyEventCode>

F

Indicates how frequently the event is evaluated.

<OccurenceLimit>

Specifies the number of times that the event must occur.

<Duration>

Specifies the amount of time in seconds in which the number of events

specified in <OccurenceLimit> must occur to generate an event.

<FrequencyEventCode>

Specifies the event code of the event to generate if the specified number of

events occurs within the specified period of time.

Specify an Event Duration

You can use the D flag to detect that a second event in what was expected to be

a pair of events did not occur within a specified period of time.

Note: Use event pair rules to generate events for this purpose. The syntax

described in this section is supported only to preserve compatibility with

EventDisp files created for versions of CA Spectrum prior to version 6.5.

The syntax for using the D flag in an event map is as follows:

<FirstEventCode> E <EventSeverity> D <SecondEventCode> <Duration>

<DurationEventCode>

Clearing Alarms

124 Event Configuration User Guide

D

Indicates that the duration of the time between events is evaluated.

<SecondEventCode>

Specifies the event code of the second event that should occur.

<Duration>

Specifies the amount of time in seconds to wait for the second event to

occur.

<DurationEventCode>

Specifies the event code of the event to generate if the second event does

not occur within the specified period of time.

More information:

EventPair Rule (see page 130)

Clearing Alarms

You can specify that an event should clear any of the following types of alarms:

■ An alarm with a specific alarm cause code that was created without event

discriminators.

■ All alarms with a specific alarm cause code that were created based on event

discriminators if their variable values match those in the alarm-clearing

event.

■ All alarms with a specific alarm cause code that were created based on event

discriminators regardless of whether their variable values match those in the

alarm-clearing event.

More information:

Clear Alarms Created Without Event Discriminators (see page 124)

Clear Alarms Based on Event Discriminator Values (see page 125)

Examples of Event Maps That Clear Alarms (see page 127)

Clear Alarms Created Without Event Discriminators

The following syntax is used to clear an alarm that was not created with event

discriminators (which means there is only one instance of the alarm, and it does

not contain copies of the event variables):

<eventcode> E <eventseverity> C <alarmtobecleared>

Clearing Alarms

Appendix B: Event Disposition Files 125

<eventcode>

Specifies the event code of the event.

E

Indicates the event data should be logged by the Archive Manager to the

Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is

the least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

Example:

0xfffff0000 A 1, 0xffff0000

0xfffff0001 C 0xffff0000

The first event map generates alarm 0xffff0000 when event 0xfffff0000 occurs.

The second event map clears alarm 0xffff0000 when event 0xfffff0001 occurs.

More information:

File Syntax of Event Disposition Files (see page 118)

Examples of Event Maps That Clear Alarms (see page 127)

Clear Alarms Based on Event Discriminator Values (see page 125)

Clearing Alarms Regardless of Event Discriminator Values (see page 128)

Clear Alarms Based on Event Discriminator Values

In the context of clearing alarms, event discriminators are the IDs of the event

variables to examine in the alarm-clearing event and an alarm to determine

whether to clear the alarm as a result of the event.

Recall that the event variable IDs are mapped (in the AlertMap file) to the OIDs

of the variable bindings sent with the trap, and their values are copied from the

alarm-generating event to the alarm if the alarm is generated as a result of

examination of their values.

Clearing Alarms

126 Event Configuration User Guide

Because the values of event variables are also stored in the alarms that are

generated based on events, you can use event discriminators to differentiate

multiple occurrences of an alarm and clear alarms based on the values of the

variables. More specifically, the alarm can be cleared if the values in the

alarm-clearing event match the values stored in the alarm.

The following syntax is used to clear an alarm based on event discriminator

values:

<eventcode> E <eventseverity> C <alarmtobecleared>,<eventdiscriminators>

<eventcode>

Specifies the event code of the event.

E

Indicates that the event data should be logged by the Archive Manager to the

Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is

the least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

<eventdiscriminators>

Specifies a comma-separated list of one or more event variable IDs that

indicate the variables to examine to determine whether to clear the alarm.

Example:

0xfffff0000 A 1, 0xffff0000, 1, 2

0xfffff0001 C 0xffff0000, 1, 2

Alarm 0xffff0000 is cleared only if the values of event variables 1 and 2 in the

alarm-clearing event (0xffff0001) have the same values as those stored in the

alarm, which are copied from the alarm-generating event (0xffff0000) when the

alarm is generated. If the alarm-clearing event does not contain these event

variables, the alarm is not cleared.

You can also use the following syntax to specify that a single event should clear

multiple types of alarms:

<eventcode> C <alarmtobecleared>,<eventdiscriminators> C

<alarmtobecleared>,<eventdiscriminators>,...

Clearing Alarms

Appendix B: Event Disposition Files 127

More information:

File Syntax of Event Disposition Files (see page 118)

Examples of Event Maps That Clear Alarms (see page 127)

Examples of Event Maps That Clear Alarms

In the following example, the first event map specifies that event 0x3dc0004

generates alarm 0x3dc0001. The second event map specifies that event

0x3dc0002 clears alarm 0x3dc0001.

0x3dc0004 E 50 A 2,0x3dc0001

0x3dc0002 C 0x3dc0001

The following two event maps are the same as those above except both use

event discriminators. The first event map specifies that a new alarm is generated

for each 0x3dc0004 event that has unique values for both event variables 1 and

3. The second event map clears all alarms with the alarm cause code of

0x3dc0001 if the values in the alarm for variables 1 and 3 match the values for

the same variables in event 0x3dc0002.

0x3dc0004 E 50 A 1,0x3dc0001,1,3

0x3dc0002 C 0x3dc0001,1,3

If the event map that creates the alarm uses event discriminators, but the event

map that clears the alarm does not, the event discriminators are still considered

when clearing the alarm.

The following event maps use the same logic as the example above even though

the event discriminators are not explicitly stated in the event map that clears the

alarm. Collectively, the event maps specify that all alarms with an alarm cause

code of 0x3dc0001 should be cleared if the values in the alarm for variables 1

and 3 match the values for the same variables in event 0x3dc0002.

0x3dc0004 E 50 A 1,0x3dc0001,1,3

0x3dc0002 C 0x3dc0001

The following event map uses the U flag to generate a unique alarm each time

that event 0x3dc0004 occurs. The event that clears the alarm, event 0x3dc0002,

clears all alarms that have an alarm cause code of 0x3dc0001.

0x3dc0004 E 50 A 1,0x3dc0001,U

0x3dc0002 C 0x3dc0001

Clearing Alarms Regardless of Event Discriminator Values

128 Event Configuration User Guide

In the following example, the first two event maps generate alarms. The third

event map uses event 0x3dc0009 to clear alarms with different alarm cause

codes. All alarms with an alarm cause code of 0x3dc00010 are cleared, and all

alarms with an alarm cause code of 0x3dc00011 are cleared if their values for

variables 1 and 3 match the values for the same variables in event 0x3dc0009.

0x3dc0006 E 50 A 2,0x3dc00010

0x3dc0007 E 50 A 1,0x3dc00011,1,3

0x3dc0009 C 0x3dc00010 C 0x3dc00011,1,3

Clearing Alarms Regardless of Event Discriminator Values

Use the following syntax to clear all instances of an alarm that were generated

based on event discriminators regardless of whether the values in the

alarm-clearing event match the values stored in the alarm instances:

<eventcode> E <eventseverity> C <alarmtobecleared>,A

<eventcode>

Specifies the event code of the event.

E

Indicates that the event data should be logged by the Archive Manager to the

Distributed Data Manager (DDM) database.

<eventseverity>

Specifies the relative severity of the event on a scale of 0 to 100, where 0 is

the least severe and 100 is the most severe.

C

Indicates that an alarm should be cleared when the specified event occurs.

<alarmtobecleared>

Specifies the alarm cause code of the alarm to clear.

A

Specifies that all alarm instances should be cleared regardless of the values

of the variables stored in the events.

Example:

0xffff0000 E 50 A 1,0xffff0000,1,2,3

0xffff0002 E 50 C 0xffff0000,A

In this example, all instances of alarm 0xffff0000 are cleared when event

0xffff0002 occurs regardless of whether event 0xffff0002 contains event

variables 1, 2, and 3, and, even if it does, regardless of whether their values

match those stored in the alarms.

About Defining Event Rules

Appendix B: Event Disposition Files 129

More information:

File Syntax of Event Disposition Files (see page 118)

About Defining Event Rules

Event rules let you to specify a complex decision making system to indicate how

an event should be processed. An event rule looks for a series of events to occur

on a model in a certain pattern or time frame. If the events occur as the rule

specifies, another event is generated for the given model, and that new event

must be defined in the EventDisp file so it can be processed appropriately by CA

Spectrum.

Important! While you can create event rules manually, it is strongly

recommended that you use the Event Configuration application to do so. This

section is provided merely as a reference of the underlying syntax used to define

rules in EventDisp files.

Event Rule Syntax

Event rules are implemented via event maps using the following syntax:

<EventCode> E <EventSeverity> R {<event_discriminators>} <event_rule_name>,

<event_rule_parameter1>, ...<event_rule_parameterN>

R

Indicates that an event rule is used.

{<event_discriminators>}

(Optional) Comma-separated list of one or more event variable IDs that

indicate the variables to examine to determine whether to generate the rule

output event. These are the event variable IDs that are mapped (in the

AlertMap file) to the OIDs of the variable bindings sent with the trap.

Note: Event discriminators apply to each contributing event in the event

rule. For examples of using event discriminators with event rules, see

EventRateCounter Rule and EventCombo Rule (see page 134).

<event_rule_name>

 Is expressed using the following syntax:

CA.<RuleName>

<RuleName> specifies one of the following types of rules:

■ EventPair

■ EventRateWindow

About Defining Event Rules

130 Event Configuration User Guide

■ EventRateCounter

■ EventSequence

■ EventCombo

■ EventCondition

■ EventCounter

■ Heartbeat

■ SingleEvent

■ SoloEvent

<eventruleparameter>

Varies depending on which type of rule is being used.

More information:

EventRateCounter Rule (see page 132)

EventCombo Rule (see page 134)

EventPair Rule

The syntax of an event pair rule is as follows:

<FirstEventCode> R CA.EventPair, <SecondEventCode>, <GeneratedEventCode>, <time>

For example, the following event pair rule generates event 0x0001002f when

event 0x0001002a occurs but is not followed by event 0x0001002b within 60

seconds:

0x0001002a R CA.Eventpair, 0x0001002b, 0x0001002f, 60

To also log event 0x0001002a and assign it a severity level of 50, the following

syntax is used:

0x0001002a E 50 R CA.Eventpair, 0x0001002b, 0x0001002f, 60

More information:

Event Pair Rules (see page 62)

About Defining Event Rules

Appendix B: Event Disposition Files 131

EventPairTimeAttr Rule

The EventPairTimeAttr Rule is similar to EventPair Rule. The difference is that it

the Attribute ID is the third parameter instead of the Time window.

The syntax of an event pair rule is as follows:

<FirstEventCode> R CA.EventPairTimeAttr, <SecondEventCode>, <GeneratedEventCode>,

<Attribute ID>

Attribute ID

Specifies an attribute on the current model (the one where the event was

generated one), which holds the time value for the pair rule. It can be used

to set individual, model-specific time values for the rule instead of globally

defined hardcoded ones.

EventRateWindow Rule

An EventRateWindow rule is an event rate rule that uses a sliding window (see

definition on page 165) of time.

The syntax of an EventRateWindow rule is as follows:

<TriggerEventCode> R CA.EventRateWindow, <NumberofOccurrences>, <time>,

<GeneratedHighRateEventCode>, <GeneratedLowRateEventCode>

where <GeneratedHighRateEventCode> is the event to generate if the trigger

event occurs at the specified frequency in the specified time frame. If you also

specify an event for <GeneratedLowRateEventCode>, which is an optional

parameter, if the frequency drops below the threshold, the rule generates the

low rate event. The rule generates the high rate event again only when the

frequency threshold is crossed again.

As an example, the following EventRateWindow rule generates event

0x0001002f if five events of type 0x0001002a occur within 60 seconds:

0x0001002a R CA.EventRateWindow, 5, 60, 0x0001002f, 0x000100030

Once the frequency threshold is crossed and the high rate event (0x001002f) is

generated, another rule output event is not generated until the frequency drops

below 5 events within 60 seconds. At this point, the low rate event

(0x000100030) is generated. The high rate event is not generated again until

the frequency threshold is crossed again.

More information:

Event Rate Rules (see page 62)

About Defining Event Rules

132 Event Configuration User Guide

EventRateWindowAttrParams Rule

An EventRateWindowAttrParams rule is an event rate rule that uses a sliding

window (see definition on page 165) of time.

The syntax of an EventRateWindowAttrParams rule is as follows:

<TriggerEventCode> R CA.EventRateWindow, <Attribute containing

NumberofOccurrences>, <Attribute containing time window>,

<GeneratedHighRateEventCode>, <GeneratedLowRateEventCode>,

<GeneratedStopEventCode>

where <GeneratedStopEventCode> is the event you generate to stop the rule.

Update the attributes for the model and then generate this stop event to stop the

rule instance on that model. The next rate window event starts a new rule

instance, which reads and uses the new attribute values.

The EventRateWindowAttrParams rule is similar to the EventRateWindow rule.

However, the EventRateWindowAttrParams rule accepts attribute ids instead of

direct values for the event occurrence parameter and the time window

parameter. These attributes must be present on the model where the event is

generated and should contain integer values.

Note: See EventRateWindow Rule (see page 131) for

<GeneratedHighRateEventCode> and <GeneratedLowRateEventCode> event

descriptions.

More information:

Event Rate Rules (see page 62)

EventRateCounter Rule

An EventRateCounter rule is an event rate rule that uses a sequential window

(see definition on page 165) of time.

The syntax of an EventRateCounter rule is as follows:

<TriggerEventCode> R CA.EventRateCounter, <NumberofOccurrences>, <time>,

<GeneratedEventCode>

As an example, the following EventRateCounter rule generates event

0x0001002f if 5 events of type 0x0001002a occur within 60 seconds:

0x0001002a R CA.EventRateCounter, 5, 60, 0x0001002f

About Defining Event Rules

Appendix B: Event Disposition Files 133

To also log event 0x0001002a and assign it a severity level of 50, the following

syntax is used:

0x0001002a E 50 R CA.EventRateCounter, 5, 60, 0x0001002f

Example: Using Event Discriminators with an EventRateCounter Rule

The following example shows two event discriminators used in an

EventRateCounter rule:

0x10001 E 50 R {1,2} CA.EventRateCounter, 3, 60, 0xffff0000

The event discriminator list, {1,2}, contains variable IDs 1 and 2. Therefore, in

order for event 0xffff000 to be generated, event 0x10001 must occur 3 times

within 60 seconds, and all 3 instances must contain the same values for variable

IDs 1 and 2.

For example, if event 0x10001 occurred 3 times in 60 seconds, and each time

variable ID 1 had a value of 10.253.40.57 and variable ID 2 had a value of 65,

then event 0xffff0000 would be generated. However, if event 0x10001 occurred

3 times in 60 seconds but the first 2 times variable ID 1 had a value of

10.253.30.57 and the third time it had a value of 10.253.89.60, then 0xffff0000

would not be generated.

More information:

Using Event Variable Discriminators to Generate Alarms (see page 50)

Event Rate Rules (see page 62)

EventSequence Rule

An EventSequence rule is an event series rule that requires the series of events

to occur in a specific sequence.

The syntax for the EventSequence rule is as follows:

<FirstEventCode> R CA.EventSequence, <GeneratedEventCode>, <time>,

<SecondEventCode>, <ThirdEventCode>,…<NthEventCode>

As an example, the following EventSequence rule generates event 0x0001002f

when events 0x00010002a, 0x0001002b and 0x0001002c occur, in that order,

within 60 seconds.

0x0001002a R CA.EventSequence, 0x0001002f, 60, 0x0001002b, 0x0001002c

To also log event 0x0001002a and assign it a severity level of 50, the following

syntax is used:

0x0001002a E 50 R CA.EventSequence, 0x0001002f, 60, 0x0001002b, 0x0001002c

About Defining Event Rules

134 Event Configuration User Guide

More information:

Event Series Rules (see page 64)

EventCombo Rule

An EventCombo rule is an event series rule that requires the series of events to

occur but the order of occurrence does not matter.

The syntax of an EventCombo rule is as follows:

<FirstEventCode> R CA.EventCombo, <GeneratedEventCode>, <time>, <EventCodeA>,

<EventCodeB>, …<EventCodeN>

As an example, the following EventCombo rule generates event 0x0001002f if

event 0x0001002a occurs, and it is followed by at least one instance each of

event 0x0001002b and event 0x0001002c within 60 seconds and in any order.

0x0001002a R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

To specify that the new event should be generated but one of several events can

first trigger the rule, create a series of n rules where n is the number of events in

the combination, and where each rule uses a different event for the trigger. For

example, consider the following three rules:

0x0001002a R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

0x0001002b R CA.EventCombo, 0x0001002f, 60, 0x0001002a, 0x0001002c

0x0001002c R CA.EventCombo, 0x0001002f, 60, 0x0001002a, 0x0001002b

Using this set of rules, any combination of events 0x0001002a, 0x0001002b,

and 0x0001002c occurring at least once within 60 seconds and in any order

would generate event 0x0001002f.

To also log event 0x0001002a and assign it a severity level of 50, the following

syntax can be used:

0x0001002a E 50 R CA.EventCombo, 0x0001002f, 60, 0x0001002b, 0x0001002c

Example: Using Event Discriminators with the EventCombo Rule

The following example shows two event discriminators used in an EventCombo

rule:

0x10001 E 50 R {1} CA.EventCombo, 0xffff0000, 60, 0x10002

The event discriminator list, {1}, contains variable ID 1. Therefore, event

0x10001 must occur, and then event 0x10002 must occur within 60 seconds,

and each must contain the same values for variable ID 1 in order for event

0xffff000 to be generated.

About Defining Event Rules

Appendix B: Event Disposition Files 135

For example, if event 0x10001 occurred and had 10.253.40.57 as a value for

variable ID 1, and event 0x10002 occurred 45 seconds later and had a value of

10.253.40.57 for variable ID 1, then event 0xffff0000 would be generated.

However, if event 0x10001 occurred and had 10.253.40.50 as a value for

variable ID 1, and event 0x10002 occurred 45 seconds later and had a value of

10.253.40.57 for variable ID 1, then event 0xffff0000 would not be generated.

More information:

Event Series Rules (see page 64)

EventComboInclusive Rule

The EventComboInclusive rule is similar to the EventCombo rule. The difference

is that it registers all the combo events, and not just the one which the rule is

defined for.

The syntax of an EventComboInclusive rule is as follows:

<FirstEventCode> R CA.EventComboInclusive, <GeneratedEventCode>, <time>,

<EventCodeA>, <EventCodeB>, …<EventCodeN>

T

As an example, the following EventComboInclusive rule generates event

0x0001002f if either of event 0x0001002a, 00x0001002b or event 0x0001002c

occurs:

0x0001002a R CA.EventComboInclusive, 0x0001002f, 60, 0x0001002b, 0x0001002c

More information:

EventCombo Rule (see page 134)

EventCondition Rule

The conditional expressions in an EventCondition rule can compare a variable

binding value or a CA Spectrum attribute value to a user-specified value using

standard comparison operators as follows:

<FirstEventCode> R CA.EventCondition, “<conditional expression 1>”, <event to

generate when 1 is TRUE>,“<conditional expression n>”, <event to generate when n is

TRUE>, “default”, <default event>

About Defining Event Rules

136 Event Configuration User Guide

“<conditional expression x>”

Consists of one or more expressions comparing a variable binding value or a

CA Spectrum attribute value to a user-defined value (x represents any value

from 1 to n).

<event to generate when x is TRUE>

Specifies the event that is generated if the conditional expression evaluates

to TRUE.

“default”, <default event>

(Optional) Specifies a default event that is generated if none of the

conditions are met. For example, if the following syntax was included at the

end of the rule, event 0xffff1234 would be generated if none of the other

conditions expressed in the rule were met:

“default”, 0xffff1234

Note: Default can be expressed as ―DEFAULT‖, ―default‖, or ―Default‖.

Conditional expressions are evaluated from left to right and, with some

simplification, follow C programming-style evaluations. If the whole condition

evaluates to TRUE, then the event is generated.

Condition Syntax

The conditional text is always enclosed in quotation marks as follows:

―condition‖

A simple condition is made up of data or objects and comparison operators or

methods.

About Defining Event Rules

Appendix B: Event Disposition Files 137

Data or Objects

Each data element or object to be compared in the condition must be contained

within curly brackets and must have both a type and a value:

{ TYPE VALUE }

For example, a comparison that involves an integer value of 2 is expressed as

{ I 2 }.

The following lists the supported types and their meanings:

Short

Symbol

Alternate

Names

Meaning Type Values Examples

A

Addr

ADDR

address

IP Addr

IP Address

IP_ADDRESS

Contains an IP

address

XXX.XXX.XXX.XXX

where each XXX

subterm is a number

from 0 to 255, and the

whole term forms a

valid IP address

{ Addr 192.168.1.1 }

a attr

ATTR

attribute

ATTRIBUTE

References a model

attribute of the

model for which the

event rule is being

processed.

When evaluated, the

attribute‘s current

value is read. The

attribute‘s type is

used to determine if

comparison is valid.

An attribute ID,

specified as a hex

number. The leading 0x

is optional. The letters

a-f may be lower- or

uppercase.

The reading of table

attributes using an

object ID or variable

data as an index is also

supported (see

examples).

{ attr 0x11564 }

{ Attribute A00044 }

{ attr 0xffff0001 obj

1.1.6.8.0.1 }

would read table

attribute 0xffff0001,

with "1.1.6.8.0.1" as the

OID suffix (index).

{ attr 0xffff0001

VARDATA 2 }

would read table

attribute 0xffff0001

using the object id

contained in the second

variable binding as the

OID suffix (index).

B BOOL

Bool

Boolean

boolean

A boolean value False, true

This value is not

case-sensitive

{ B True }

{ boolean false }

About Defining Event Rules

138 Event Configuration User Guide

Short

Symbol

Alternate

Names

Meaning Type Values Examples

H HEX

Hex

Hex_ID

HEX Id

A hex attribute ID

value (this is just a

value, not an

attribute reference,

use ‗a‘ for that

purpose)

An attribute ID,

specified as hex

number. The leading 0x

is optional. The letters

a-f may be lowercase or

uppercase.

{ Hexid 0xffff0123 }

{ H ABCD }

{ HEX 0X91 }

I Int

integer

INTEGER

INT

An integer value Any number within the

range of -214783648 to

214783647

{ Int 10 }

{ I 98765 }

{ integer -300 }

L Unsigned long

int

LONG

long

UNSIGNED_LON

G_INTEGER

LongInt

An unsigned long 64

bit integer

Any number within the

range of 0 to

184467440737095516

15

{ L 0 }

{ LongInt

123456789098}

o Object ID

obj

obj_id

OBJECT

An object ID X

X.X

X.X.X and so on where

X is an unsigned integer

(>= 0)

{ o 1.2.3.4.5.6 }

{ object_id 1.3.6.1.2.1

}

{ OBJ 100000.4.5 }

O Octet

Octet String

Decimal Octet

String

DEC Oct_Str

Dec_OCTET_str

A tagged octet string

comprised of decimal

values

#.#.#....

where # is any number

between 0 and 255

{ Oct Str 1.2.3.4 }

{ OCTET_STR

255.0.1.20 }

{ OCTSTR

10.20.30.40.50 }

R REAL

real

Real

A real number

(double)

Any number containing

a ‗.‘ , and possibly

followed by an

exponent:

E|e +|- EXP

EXP any number

{ R 1. }

{ Real 3.1415 }

{ REAL -2.843E-17 }

{ R .00001e+20 }

S String

str

Str

STRING

A string Any characters

enclosed in double

quotes

{ S \‖ a string \‖ }

{ String \‖another

string\‖ }

{ str \‖12345a@b?c*\‖

}

About Defining Event Rules

Appendix B: Event Disposition Files 139

Short

Symbol

Alternate

Names

Meaning Type Values Examples

{ S \‖\‖ }

U unsigned

unsigned long

unsigned long int

ULONG

U INT

U_long_integer

An unsigned long

integer

Any number in the

range from 0 to

4294967295

{ uint 1234567890 }

{ UNSIGNED INT 0 }

v

variable data

VARDATA

Var_DATA

EventAttr

event_attr

References an event

attribute (variable

data) from the

current event.

Like a model

attribute reference,

this is evaluated

when needed, and

the event attribute

type is used to check

if the comparison is

valid

A unsigned integer (>

0)

{v 1 }

{ VARDATA 2 }

{ event attr 3 }

X Hex octet string

HEXOCT_STR

Hex_Octet

HEXOctet

A tagged

hexadecimal octet

string

XX.XX.XX.....

Where XX is a hex

number from 0 to FF

{ X 12.01.AB.EF }

{ HEXOCT AB.CD.EF.01

}

{ Hex octet string 2.3 }

{ X a.b.c }

Using the Escape Character

In addition to enclosing the entire condition within quotation marks, you must

also enclose a string in quotations marks. Also, to help ensure that the entire

condition is parsed properly, the opening and closing quotation marks enclosing

the string both must be preceded by a backslash. The following condition, which

includes string xyz, serves as an example:

“{ S \“xyz\” } == { v 1 }”

About Defining Event Rules

140 Event Configuration User Guide

If you want to include a backslash '\' or a double quote in the string itself, you

need 3 backslashes before each of these characters, as shown in the following

example where:

■ Backslash 3 represents the escape for the literal backslash or quote

■ Backslash 2 represents the escape character needed to escape backslash 3

within the string

■ Backslash 1 represents the escape character needed to escape backslash 2

This same logic holds true for a double quote example.

Regular expressions also use the backslash ‗ \‘ as an escape character. Because

the regular expression can be used in a condition, the backslash used within the

regular expression as the escape character must be preceded by several

backslashes.

Comparing Strings

The strcmp method is used to compare characters in a string (for example, in

strings, octet strings, IP Addresses, and so on). Note that the implementation of

this method differs slightly from the standard C implementation of strcmp. This

method returns TRUE if the two strings are equal, and it returns FALSE if the

strings are not equal.

To make use of this method, use the following format:

“strcmp({ TYPE <string> }, { TYPE <string> })”

For example, the following condition compares an IP Address with a CA

Spectrum attribute whose value is an IP Address. If the two strings are the same,

the condition returns TRUE.

“strcmp({ A 179.82.253.01 }, { attr 0x00011aec })”

About Defining Event Rules

Appendix B: Event Disposition Files 141

Note the following in the example:

■ Each type/string pair to be compared is enclosed in curly brackets

■ The two type/string pairs are separated by a comma and enclosed in

parenthesis

■ The name of the method, strcmp, is placed on the left hand side of the

parenthesis

■ The entire condition is enclosed in quotes

Regular Expressions

The regexp or REGEXP method is used to compare a string to an input pattern.

To do this, regular expressions use a series of meta-characters that let you

express the pattern of characters that you are looking for. The method returns

TRUE if the regular expression input pattern matches the input string; otherwise,

it returns FALSE.

To make use of this method, use the following format:

“regexp({ TYPE <string> }, { TYPE <input pattern> })”

The EventCondition rule supports the syntax of the Perl Compatible Regular

Expression (PCRE) package. The following are some of the basic

meta-characters supported by the PCRE package and examples of their usage:

Meta-character Meaning Example

^

Indicates the beginning of a

line.

The following example searches for the string ―CA‖

occurring at the beginning of a line in event

variable 1:

―regexp({ VARDATA 1 }, { S \―^CA\‖ })‖

$ Indicates the end of a line. The following example searches for lines ending

with the string ―CA‖ in event variable 1:

―regexp({ VARDATA 1 }, { S \―CA$\‖ })‖

[] Encloses a character class. A

character class shows some

literal text that you would like

to let at a certain point within

the string.

This example searches for the string ―port‖

followed by a value of 1, 2 or 3 in event variable 1:

―regexp({ VARDATA 1 }, { S \―port [1-3] \‖ })‖

* Indicates zero or more of the

specified preceding

characters.

This example searches for zero or more

occurrences of 172 in the value of the attribute

0x00011aec:

―regexp({ attr 0x00011aec }, { S \―(172)*\‖ })‖

About Defining Event Rules

142 Event Configuration User Guide

+ Indicates one or more of the

specified preceding

characters.

This example searches for one or more

occurrences of 172 in the value of the attribute

0x00011aec:

―regexp({ attr 0x00011aec }, { S \―(172)+\‖ })‖

. Represents any single

character except for a new

line character.

This example searches for an occurrence of the

word ―port‖ followed by a space and then any

single character within event variable 1:

―regexp({ VARDATA 1 }, { S \―port . \‖ })‖

|

Separates alternative

patterns.

―regexp({ VARDATA 1 }, { S\―interface|port\‖ })‖

This example searches for either the word interface

or the word port within the event variable 1.

\ Used as a general escape

character letting you to use

the literal meaning of a

meta-character. When you

use the escape character

within the regular expression,

you must be sure to also

consider the necessary

escape characters to be used

within the context of the

string and the condition..

This example searches for the string ―172.55‖

within event variable 1:

―regexp({ VARDATA 1 }, { S\―172\\\\.55\‖ })‖

Because the . character is usually treated as a

meta-character within a regular expression, it is

necessary to use the escape character (a

backslash) to indicate that you would like the . to

be treated literally. At the regular expression level,

this yields the following syntax: 172\.55.

However, since you are using this regular

expression within a string, you must precede the

backslash with an additional backslash. Reading

the expression from left to right, the first backslash

represents the escape character needed to escape

the second backslash within the string. This yields

the following syntax: 172\\.55.

Additionally, you are using the string within the

context of the condition, therefore each existing \

must have a corresponding backslash to be used as

an escape. This yields the following syntax:

172\\\\.55.

About Defining Event Rules

Appendix B: Event Disposition Files 143

Comparison Operators

The following comparison operators are supported for numeric or boolean

values:

==

equal to

!=

not equal to

>

greater than

<

less than

<=

less than or equal to

>=

greater than or equal to

Most numeric values can be compared with each other even if they are not of the

same type. For example, the following condition compares the integer 2 to the

value of a CA Spectrum attribute:

“{ I 2 } = = { attr 0x000117dc }”

Exists Operator

You can use the exists operator to check for the existence of a variable binding

value or other value:

exists(<expression>)

This can be useful, for example, when you want to evaluate a value if it exists,

and exit the event condition rule if it does not. The following spelling variants are

supported:

exists

Exists

EXISTS

An exists conditional expression returns TRUE when the expression is valid and

contains a value. For example, ―exists({ v 1 })‖ returns TRUE when event

variable 1 exists and contains any value.

About Defining Event Rules

144 Event Configuration User Guide

To terminate an event condition rule without action when an exists conditional

expression returns FALSE, you can use the ―no action‖ action (which sends the

0x00010000 null event). The following spelling variants are supported in either

all lower case, all upper case, or initial capital letters:

no action

no-action

no_action

As an example, the following event condition rule checks whether event variable

1 exists in event 0xffff0000. If it does not exist, no action is taken. If it does

exist, event 0xffff0001 is generated.

0xffff0000 E 50 R CA.EventCondition, \

 " ! Exists({ v 1 })", “No-Action", \

 " { v 1 } == { I 1 } ", 0xffff0001

The Logical NOT (!)

You can use the logical NOT (!) operator to reverse the logical value of an

expression. Apply the logical NOT (!) in the same way as you would when writing

C++ code. For example, the following condition compares variable binding 1 and

variable binding 2. The logical NOT (!) is applied to the outcome of the

comparison. Thus, if variable binding 1 is equal to variable binding 2, the entire

expression evaluates to false.

“! ({ v 1 } = = { v 2 })”

Complex Conditions

More complex conditions can be created which use logical operators and

parenthesis to combine simple conditions. Valid logical operators are the

following:

&&, which represents AND

||, which represents OR

The following condition includes several subconditions enclosed in braces and

linked together using logical operators.

“({ I 2 } = = { I 2 }) && ({ I 2 } != { I 3 })”

About Defining Event Rules

Appendix B: Event Disposition Files 145

For this condition to evaluate to TRUE, both of the subconditions on either side of

the && must evaluate to TRUE. Since an integer value of 2 is equal to an integer

value of 2, the left side of the condition is TRUE. Since an integer value of 2 is not

equal to an integer value of 3, the right side of the condition also evaluates to

TRUE. This means that the whole condition evaluates to TRUE.

“({ I 3 } = = { I 4 }) || ({ I 4 } > { I 2 })”

For this condition to evaluate to TRUE, the subcondition on the left hand side of

the || or the subcondition on the right hand side of the || must evaluate to TRUE.

Since 3 is not equal to 4, but 4 is greater than 2, the entire expression evaluates

to TRUE.

Multiple subconditions can be used to create the necessary expression. For

example, the following condition evaluates to TRUE since 4 is greater than 2, and

3 is less than 8.

“({ I 3 } = = { I 2 } || { I 4 } > { I 2 }) && ({ I 3 } < { I 8 } || { I 2 } = = {

I 4 })”

Nested Conditions

Although simple conditions can be combined together using logical operators to

create complex conditions, you cannot use simple conditions as a part of other

expressions. A simple condition can have only one comparison operator in it.

For example, the following syntax is not supported. The result of a strcmp()

cannot be used as the argument for an equals (==) operator:

“strcmp ({ S \“a\” }, {S \“a” }) = = { B TRUE }”

Example: Basic EventCondition Rule

The following example shows a basic EventCondition rule that uses some of the

condition syntax described in the previous sections. The first condition that

evaluates to TRUE is used, and the event code immediately following that

condition is generated.

0x00045678 R CA.EventCondition,

 \

 “regexp({ VARDATA 1 }, { S \“port [1-3] \” })”,

\

 0x00012345,“{ VARDATA 2 } == { attr0x000117dc }”,

 \

 0x00012344, “strcmp({ A 179.82.253.01 }, \{ attr 0x00011aec } \

)”, \

0x00122334

About Defining Event Rules

146 Event Configuration User Guide

Example: (Complex EventCondition Rule) Generating an Event Based on

a Variable Binding Value

The following example shows an EventCondition rule that generates an alarm

based on the value of one of the variable bindings sent with the trap. The event

condition rule generates a second event, 0xffff0000, if the value of variable

binding 1 is equal to any of the following values: DAT0005, DAT0006, DAT0007,

DAT0008, DAT0011, DAT0012, DAT0013, DAT0014, DAT0021, DAT0022, or

DAT0023.

0x1030f E 50 R CA.EventCondition, \

 "regexp({ v 1 }, \

 { S \"DAT00(05|06|07|08|11|12|13|14|21|22|23) \" } \

)", \

 "0xffff0000 -:-"

There is a space at the end of the regular expression, which indicates that each

pattern must end with a space.

The regular expression first looks for a match between variable binding 1 and

DAT00 combined with any of the choices in the brackets (05 , 06 , 07 , etc.).

There is a -:- at the end of the event condition. This symbol specifies that all of

the variable binding values from the originating event (0x1030f) should be

copied to the new event (0xffff0000).

To generate an alarm when the event condition evaluates to true, an event map

for the new event (0xffff0000) that specifies to generate an alarm is needed in

the EventDisp file.

More information:

Event Condition Rules (see page 61)

Copy Event Variables from One Event to Another (see page 151)

About Defining Event Rules

Appendix B: Event Disposition Files 147

EventCounter Rule

The EventCounter rule implements a counter, counting up for 'up' and down for

'down' events. The rule creates an event if a certain threshold is reached.

The syntax of EventCounter rule is as follows:

<CountUpEventCode> R CA.EventCounter, <CountDownEventCode>, <threshold>,

<ThresholdBreachedEventCode>, <ThresholdResetEventCode>

CountUpEventCode

Counts up by one. The first one also initiates the counter rule.

CountDownEventCode

Counts down by one.

threshold

The counter threshold (integer number). Once the count reaches (equals)

that threshold, the target event is generated

ThreaholdBreachedEventCode

Generates when the count threshold is reached

ThresholdResetEventCode

Generates when the count is below the threshold again

Example: EventCounter rule

0x0f420001 E 50 R CA.EventCounter, 0x0f420002, 3, 0x0f420003, 0x0f420004

Use events 0x0f420001 to count up, and events 0x0f420002 to count down.

When the counter is greater or equal to 3, event 0x0f420003 will be generated.

Once the count falls below 3 again, event 0x0f420004 will be generated.

Heartbeat Rule

The Heartbeat rule is set to watch a 'heartbeat' event. The event is seen at a

regular interval. In case any instance of the heartbeat is found missing, the rule

creates an event.

<TriggerEventCode> R CA.Heartbeat, <HeartbeatEventCode>,

<MissingHeartbeatEventCode>, <timeout>, <StopEventCode>

TriggerEventCode

Instantiates the heartbeat event rule

HeartbeatEventCode

The heartbeat event code

About Defining Event Rules

148 Event Configuration User Guide

MissingHeartbeatEventCode

The event generated in case a heartbeat is missing

timeout

The time gap between individual heartbeats (in seconds)

StopEventCode

(Optional) The event code that stops the rule. The rule instance is running

forever, looking for a heartbeat until stopped

Example: Heartbeat Rule

0x0f440001 E 50 R CA.Heartbeat, 0x0f440002, 0x0f440003, 10, 0x0f440004

Event 0x0f440001 instantiates the heartbeat rule. Next, it will look for event

0x0f440002 to occur at least once every 10 seconds. If a heartbeat event is

found missing, the rule creates event 0x0f440003. Use event 0x0f440004 to

stop the heartbeat rule instance.

About Defining Event Rules

Appendix B: Event Disposition Files 149

SoloEvent Rule

The SoloEvent rule finds an instance of the target event that is not followed by or

preceded by any other event in a defined time window. The events that are in the

prevent list may not occur. Other events will not affect the Solo event.

As an example, you may want to have a rule triggered when event A occurred,

but only none of events B, C or D (the 'prevent' events) occurred within five

minutes before or 10 minutes after it.

The syntax of the SoloEvent Rule is as follows:

<TriggerEventCode> R CA.SoloEvent, <StopEventCode>, <SoloEventCode>,

<prePreventPeriod>, <postPreventPeriod>, <TargetEventCode>, <PreventCode 1>,

<PreventCode 2 (optional), … , <PreventCode N (optional)>

TriggerEventCode

Initiates the 'solo' event rule.

StopEventCode

Stops the rule. The rule will run endlessly, unless you set the stop event.

SoloEventCode

Sets the solo event.

prePreventPeriod

Sets the time period before the solo event where none of the 'prevent'

events may occur (in seconds).

postPreventPeriod

Sets the time period after the solo event where none of the 'prevent' events

may occur.

TargetEventCode

Defines the event that will generate when the rule triggers (when just the

'solo' event was seen).

PreventCode 1 to PreventCode N

Defines a list of 'prevent' events.

Example: SoloEvent Rule

The following example will create event code 0x0f400005 if the solo event

0x0f400003 was seen, and none of the events 0x0f400006, 0x0f400007,

0x0f400008 or 0x0f400009 were seen within 20 seconds before or after it. The

first event 0x0f400001 will have to be generated to instantiate the rule. Event

0x0f400002 is available to stop the rule.

0x0f400001 E 40 R CA.SoloEvent, 0x0f400002, 0x0f400003, 20, 20, 0x0f400005,

0x0f400006, 0x0f400007, 0x0f400008, 0x0f400009

About Defining Event Rules

150 Event Configuration User Guide

SingleEvent Rule

The SingleEvent rule reduces an event stream where one event ('up' event) may

occur multiple times, before a reset ('down') event is seen. Instead of the

multiple 'up' events, a single event is set that can be reused in other rules,

denoting the condition ('up' or 'down').

The syntax of SingleEvent rule is as follows:

<TriggerEventCode> R CA.SingleEvent, <ResetEventCode>, <SingleTargetEventCode>,

<SingleResetTargetEventCode>

TriggerEventCode

Occurs multiple times and should be converted into a 'single' occurrence.

This will also trigger the rule to be instantiated when it occurs the first time.

ResetEventCode

Sets the reset event. When this event is seen, the rule is ready to create

another single event again.

SingleTargetEvent

Generates the first time the trigger event is seen either when the rule is

instantiated, or the first time the trigger event occurs after reset event is

seen.

SingleResetTargetEvent

(Optional) Generates when the reset event is seen.

Example: SingleEvent Rule

0x0f430001 E 50 R CA.SingleEvent, 0x0f430002, 0x0f430003, 0x0f430004

Generates event 0x0f40003 every time event 0x0f430001 is seen for the first

time. The SingleEvent is instantiated either at initial rule creation, each time

after the trigger is seen the first time or after the reset event 0x0f430002 was

seen. Event 0x0f430004 will also be generated when the reset event has been

seen.

Using Multiple Event Rules in a Single EventDisp Entry

You can specify that a single event be processed using multiple event rules. For

example, the following event disposition entry specifies that event 0x0001002a

be processed using both the EventSequence rule and the EventPair rule:

0x0001002a R CA.EventSequence, 0x0001002c, 60, 0x0001002d,0x0001002e \

 R CA.EventPair, 0x0001002b, 0x0001002f, 60

About Defining Event Rules

Appendix B: Event Disposition Files 151

This entry specifies that event 0x0001002c will be generated when events

0x0001002a, 0x0001002d, and 0x0001002e occur in that order within 60

seconds, and event 0x0001002f will be generated if event 0x0001002a occurs,

but is not followed by event 0x0001002b within 60 seconds.

The backslash character is used at the end of the line to show that the event

disposition entry continues onto the next line.

Note: Multiple rules must be specified within a single event disposition entry. If

you were to create two separate event disposition entries for an event, only the

first event disposition entry would be processed.

More information:

Syntax Errors in EventDisp Files (see page 157)

Copy Event Variables from One Event to Another

When you use event rules to trigger events, depending on the rule, the event

that is generated as the output of the rule might be generated only after

multiple, contributing events occur or certain complex conditions are met.

By default, a rule output event does not have any event variables. However, you

can specify that the values of the event variables in the events that contribute to

the rule‘s processing should be copied to the rule output event. This lets you to

specify event processing behaviors for the rule output event based those values,

which you can do using event variable discriminators. Moreover, because the

values of event variables in events that generate alarms are also stored in those

alarms, you can also use event discriminators to specify alarm processing

(generation or clearing of alarms) based on the values of the copied variables.

This section provides reference information on event variable copying syntax.

More information:

Generating Alarms for Events Based on the Values of Event Variables (see page

121)

Clearing Alarms (see page 124)

Event Variable Copying and Event Discriminators (see page 157)

Event Variable Copying Syntax

Consider the following EventCombo rule that generates event 0xa000f when

events 0x10002, 0x10003, and 0x10004 are all received within 10 seconds of

event 0x10001:

0x10001 R CA.EventCombo, 0xa000f, 10, 0x10002, 0x10003, 0x10004

About Defining Event Rules

152 Event Configuration User Guide

Now assume that the contributing events have variable bindings that have

values, some of which you want to copy to event 0xa000f as follows:

Contributing

Event

Event Variables to Copy Event Variables in

0xa000f to Receive the

Copies

0x10001

2, 3

1, 2

0x10002 1, 5 3, 4

0x10003

none

none

0x10004 2, 3, 4, and 5 5, 6, 7, and 8

Note: An event generated by an event rule does not have any event variables

unless they are copied from contributing events.

To copy the event variables as specified in the preceding table, the following

event variable copying syntax is used:

0x10001 R CA.EventCombo, "0xa000f 2-3:1-2", \

 10, \

 "0x10002 1:3, 5:4", \

 0x10003, \

 "0x10004 2-5:5-8"

This syntax copies event variables 2 and 3 in 0x10001 to event variables in

0xa000f, copies event variables 1 and 5 in 0x10002 to event variables 3 and 4 in

0xa000f, and copies event variables 2, 3, 4, and 5 in 0x10004, respectively, to

event variables 5, 6, 7, and 8 in 0xa000f.

Event Parameters and Variable IDs

Event parameters specify the event variables to copy from a contributing event

to the event generated by the rule. This information is associated with the

contributing event, and it is entered after the event ID. To specify that the event

copy information is part of the event parameter and not the next rule parameter,

the event ID and the copy information need to be enclosed in double quotes, as

shown:

"0x10002 1:3"

About Defining Event Rules

Appendix B: Event Disposition Files 153

Event Variable Copy Information

The event variable copy information section of an event parameter can consist of

several parts, each separated by a comma. Each part specifies a source variable

ID or range of IDs. followed by a target variable ID or range of IDs. A colon

separates the source IDs from the target IDs, as shown:

"0x10001 1:1, 2:3"

If the source IDs and the target IDs are the same, either can be left empty.

Variable IDs

A single event variable is identified by its ID, which typically is a small number.

To copy a specific source event variable, enter its ID in the source position (left

of the colon) in the copy information section. Similarly, to copy to a specific event

variable, enter its ID in the target position (right of the colon).

For example, the following syntax copies variable 1 in event 0x10001 to variable

1 in the rule-generated event:

"0x10001 1:1"

Similarly, the following syntax copies variables 1 through 5 in event 0x10003 to

variables with the same IDs in the rule-generated event:

"0x10003 1:1, 2:2, 3:3, 4:4, 5:5"

Variable IDs Using Ranges

Ranges of source and target variable IDs can be specified using a start ID

followed by the dash ('-') character and then a stop ID. The start and stop IDs are

included in the range.

The start ID, the stop ID, or both IDs can be left out. An entry with no start ID

copies all of the IDs in the range from 1 to the stop ID, inclusive. An entry with

no stop ID copies all of the variables with IDs equal to or greater than the start

ID. An entry without either the start ID or the stop ID copies all of the variables

(the dash can be left out too).

The number of variables in the source and target ranges need to be the same. If

the numbers do not match, the number of IDs in the smaller range is used to

copy variables, and a warning is generated.

About Defining Event Rules

154 Event Configuration User Guide

As examples, the following 3 rule fragments are all equivalent. Each copies

variables 1 through 73 in event 0x10004 to variables with the same IDs in the

rule-generated event:

"0x10004 1 - 73 : 1 - 73"

"0x10004 1-73 :"

"0x10004 :1-73"

To copy variables 1 through 3 in event 0x10005 to the rule-generated event

using new IDs 6 through 8:

"0x10005 1-3:6-8"

To copy all variables up to and including variable 5 to the rule-generated event

using new IDs beginning with 1:

"0x10006 -5:1-"

To copy variables 2 through 5 to new IDs 1 through 4, and to also copy all

remaining variables beginning with ID 7 using the same target IDs in the

rule-generated event:

"0x10007 2-5:1-4, 7-:7-"

To copy all of the variables in event 0x10008 to the rule-generated event, use

any of the following:

"0x10008 -:-"

"0x10008 -:"

"0x10008 :-"

"0x10008 :"

"0x10008 1-:1-"

The following example copies variables 3 to 5 from event 0x10009 to the

rule-generated event where the source event has fewer variable entries then the

target event. This example will succeed, but a warning will be generated:

"0x10009 3-5:3-"

Copying Variables from the Initial Event

Copying variables from the initial event (the event that the event disposition

entry is for) is a special case. In this case, the copy information for the initial

event is attached to the event to be generated rather than the source event.

About Defining Event Rules

Appendix B: Event Disposition Files 155

As an example, consider the following EventCombo rule and EventRate rule, both

of which watch for event 0x10001. If event 0x10001 occurs in combination with

event 0x10002, its event variable 1 is important; if it occurs frequently, its event

variable 3 is of interest:

0x10001 R CA.EventCombo, "0xa000f 1:1", 10, 0x10002 \

 R CA.EventRateCounter, 10, 3600, "0xa000e 3:1"

Different types of rules specify the event to generate in different parameter

positions. In the preceding example, the EventCombo rule uses the first variable

position, and the EventRateCounter rule uses the third variable position.

Multiple Event Occurrence

When two event rules watch for multiple occurrences of an event (for example,

an EventRateWindow rule and an EventRateCounter rule), the final occurrence of

the event is used to copy the event variables, since they are the most current.

As an example, assume that event 0x10001 is a security alert from an intrusion

detection system that holds information about the severity of a potential

intrusion. Also assume that the following event rate rule exists, which generates

event 0xa000f when event 0x10001 is received at least 5 times during a 100

second interval:

0x10001 R CA.EventRateCounter, 5, 100, "0xa000f 1:1"

A possible sequence of contributing events might be as follows:

Note: For readability, the severity event variable is shown as a text string.

0x10001 Warning

0x10001 High

0x10001 Warning

0x10001 Critical

0x10001 Critical

where the fifth 0x10001 event received triggers the generation of the rule output

event, creating event 0xa000f with its variable 1 set to ―Critical.‖

As an alternative and more specific approach, the following EventCondition rule

could be used so that the rule output event is only generated in response to five

critical 0x10001 events (instead of in response to five 0x10001 events of any

severity):

0x10001 R CA.EventCondition, \

 "regexp ({ variable 1 } , { S \"Critical\" })", "0xa0001 1:1"

0xa0001 R CA.EventRateCounter, 5, 100, "0xa000f"

About Defining Event Rules

156 Event Configuration User Guide

More information:

Variable Descriptions and Syntax (see page 34)

Event Variable Copying and Event Discriminators (see page 157)

Event Variable Copy Example

Having reviewed Event Variable Copying Syntax (see page 157) for information

about how to copy event variables from contributing events to rule-generated

events, examine again the following event variable copy example:

0x10001 R CA.EventCombo, "0xa000f 2-3:1-2", \

 10, \

 "0x10002 1:3, 5:4", \

 0x10003, \

 "0x10004 2-5:5-8"

When this EventCombo rule generates event 0xa000f, the event variables in the

contributing events are copied as shown in the following table:

Source Event Source

Variable ID

0xa000f (Target)

Variable ID

0x10001

2

1

0x10001 3 2

0x10002 1 3

0x10002 5 4

0x10004 2 5

0x10004 3 6

0x10004

4

7

0x10004 5 8

Syntax Errors in EventDisp Files

Appendix B: Event Disposition Files 157

Event Variable Copying and Event Discriminators

The event copying syntax can be used in conjunction with event discriminators to

differentiate events that generate alarms. For example, assume alarm

0xffff0000 should be generated when event 0x10001 is received, and event

variable 1 contains the index of the board that failed. Event variable 1 can be

used as the alarm discriminator. Also assume that the device sometimes falsely

reports errors, and the alarm should be cleared if supporting event 0x10002 is

not received within 10 seconds. The following event maps satisfy these

requirements:

0x10001 E 50 \

 A 2, 0xffff0000, 1 \

 R CA.EventPair, 0x10002, "0xa000f 1:1", 10

0xa000f C 0xffff0000, 1

The EventPair rule is used to watch for the second event and issue the clearing

event containing the correct variable needed to clear the alarm. Note the use of

the event discriminator to determine whether to generate and to clear the alarm,

as well as the copy information contained in the rule.

Syntax Errors in EventDisp Files

All of an event‘s processing syntax must exist as a single event map. An

EventDisp file that lists the same event code twice as the first entry on a line is

considered to be improperly formatted. In this situation, the first line that applies

to a particular event code is processed, and any additional entries are discarded.

The following example illustrates incorrect syntax:

0x3e00002 E 50

0x3e00002 A 2,0x3e00002

The following example illustrates correct syntax:

0x3e00003 E 50 A 2,0x3e00003

In the incorrect example, only the first event map is processed. Thus, when

event 0x3e00002 is received, it is logged with an event severity of 50. However,

no alarm is generated.

The correct example shows how to specify that CA Spectrum should log an

event, assign an event severity to it, and generate an alarm as a result of the

event.

More information:

Logging Event-Related Errors (see page 25)

Add Comments in EventDisp Files

158 Event Configuration User Guide

Add Comments in EventDisp Files

You can add comments to an EventDisp file using the # identifier. Any text that

follows this identifier on a line is ignored when the EventDisp file is processed.

You must enter the # identifier as the first character on the line. Do not enter a

space and then #, as this produces an error when the EventDisp file is processed.

If the comment must span multiple lines, enter the # identifier as the first

character on each line.

The following example shows proper usage:

This is a valid comment.

This is a valid comment.

0x3dc0004 E 50 A 2,0x3dc0001

0x3dc0002 C 0x3dc0001

Appendix C: Event Format Files 159

Appendix C: Event Format Files

This section contains the following topics:

About Event Format Files (see page 159)

Location of Event Format Files (see page 159)

Contents of an Event Format File (see page 160)

About Event Format Files

An event format file contains the message about the event that is displayed to

users on the Events tab in OneClick when the event occurs. The message can

contain references to the event variables that hold data retrieved from the

variable bindings of the trap. There exists an event format file for each event

generated by CA Spectrum.

The events provided with CA Spectrum all have event format files that define

appropriate event messages. In addition, whenever you create a new, custom

event (either using MIB Tools when you are mapping a trap to the new event or

later using Event Configuration) the associated event format file is automatically

created. This means that typically you should not need to manually create an

event format file.

Important! It is recommended that you create and modify all event messages

using Event Configuration, which updates the appropriate event format files on

(only) the OneClick web server to which you are connected when you save the

changes to a landscape. However, this appendix provides reference information

on event format files if manual modifications are ever required.

Location of Event Format Files

The event format files that support the events provided with CA Spectrum are

installed in the following folder:

<$SPECROOT>/SG-Support/CsEvFormat

Custom event format files that are created by MIB Tools or Event Configuration

are installed in the following folder:

<$SPECROOT>/custom/Events/CsEvFormat

Contents of an Event Format File

160 Event Configuration User Guide

Each event format file is named Event<event_code>, where <event_code> is

the 4-byte, hexadecimal event code assigned to the event. For example, an

event with an event code of 0x12345678 has an event format file named

Event12345678.

Contents of an Event Format File

If you modify an event format file manually, note the following:

■ As you compose the event message, keep in mind that most of the

information that a OneClick user receives about an event is via the message

text that is associated with the event. For this reason, provide as much

information about the event as possible in the message.

■ An event message can consist of plain text and variables that reference

specifics about the instance of the individual event. For information on the

correct syntax for including variables, see Variable Descriptions and Syntax

(see page 34).

■ If there exists an event format file for an event, but no event map for the

event exists in an event disposition file, the contents of the event format file

are still displayed on the Events tab in OneClick when the event occurs.

■ If no event format file exists for an event, a default message indicating this

is displayed on the Events tab in OneClick.

Appendix D: Event Table Files 161

Appendix D: Event Table Files

This section contains the following topics:

About Event Table Files (see page 161)

Location of Event Table Files (see page 161)

Contents of an Event Table File (see page 162)

About Event Table Files

An event table file does the following:

■ Enumerates the possible values of a variable binding that is sent with a trap.

The values can be attribute values in MIB tables, OID values, and integer bit

values.

■ Provides corresponding text values for the enumerated values.

When a trap is mapped to a CA Spectrum event, the variable bindings sent with

the trap are mapped to event variables. This means that by referencing an event

variable and the event table file for the appropriate variable binding you can

define event messages that include the text values for the variable binding

values. In turn, this means that the event message that is displayed to users in

OneClick contains data that is specific to the trap that is sent.

You do not need to manually create event table files. All of the events provided

with CA Spectrum that are mapped to traps that contain variable bindings with

enumerated definitions in the MIB have supporting event table files. In addition,

whenever you add trap support for a device that is not supported by default in CA

Spectrum, and you map the traps to new, custom events using MIB Tools, an

event table file is automatically created for each variable binding that meets this

same criterion.

Note: This appendix provides reference information on the proper syntax for an

event table file. However, typically you should not need to modify these files.

Location of Event Table Files

The event table files that support the events provided with CA Spectrum are

installed in the following folder:

<$SPECROOT>/SG-Support/CsEvFormat/EventTables

Contents of an Event Table File

162 Event Configuration User Guide

Custom event table files created by MIB Tools are installed in the following

folder:

<$SPECROOT>/custom/Events/CsEvFormat/EventTable

Each event table file is named based on the associated device and variable

binding.

Contents of an Event Table File

Event table files are used to enumerate the possible attribute values, OID values,

or integer bit values in a variable binding sent with a trap, and to associate those

values with corresponding text values that can be used in event messages.

Associate the Attribute Values in a MIB Table with Text Values

To associate an attribute value in a MIB table with a text value, the file must

iterate each possible value in hexadecimal format and its associated text value,

as shown in the following example:

0x00000001 Reconfiguration

0x00000002 Signal-Loss

0x00000003 Bit-Streaming

0x00000004 Contention-Streaming

0x000000ff None

Associate OID Values with Text Values

To associate an OID value with a text value, the file must iterate each possible

OID value and its associated text value, as shown in the following example:

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.6 dot6

1.3.6.1.4.1.1563.1.2.1.1.3.2.36.2.5 dot15

1.3.6.1.4.1.1563.1.2.1.1.3.2 dot7

Associate Integer Bit Values with Text Values

To associate an integer bit value with a text value, the file must iterate each

possible integer bit value and its associated text value, as shown in the following

example:

1 dsx1NoAlarm

2 dsx1RcvFarEndLOF

3 dsx1XmtFarEndLOF

4 dsx1RcvAIS

Appendix E: Probable Cause Files 163

Appendix E: Probable Cause Files

This section contains the following topics:

About Probable Cause Files (see page 163)

Location of Probable Cause Files (see page 163)

Contents of a Probable Cause File (see page 164)

About Probable Cause Files

A probable cause file is an ASCII text file that defines the symptoms, probable

causes, and recommended corrective actions for an alarm. When an alarm is

generated as a result of an event, the text in the associated probable cause file

is displayed on the Alarm Details tab in OneClick. In this way, OneClick users are

provided with information that can assist in resolving the abnormal condition.

There exists a probable cause file for each alarm generated due to a CA

Spectrum event.

The events provided with CA Spectrum that generate alarms all have probable

cause files that define appropriate alarm-related messages. In addition,

whenever you create a new, custom event that generates an alarm (either using

MIB Tools when you are mapping a trap to the new event or later using Event

Configuration) the associated probable cause file for the alarm is automatically

created. This means that typically you should not need to manually create a

probable cause file.

Important! It is recommended that you create and modify all alarm-related

messages using Event Configuration, which updates the appropriate probable

cause files on (only) the OneClick web server to which you are connected when

you save the changes to a landscape. However, this appendix provides reference

information on the proper syntax to use if manual modifications are ever

required.

Location of Probable Cause Files

The probable cause files that support the events and alarms provided with CA

Spectrum are installed in the following folder:

<$SPECROOT>/SG-Support/CsPCause

Custom probable cause files that are created by MIB Tools or Event Configuration

are installed in the following folder:

<$SPECROOT>/custom/Events/CsPCause

Contents of a Probable Cause File

164 Event Configuration User Guide

Each probable cause file is named Prob<alarm_cause_code>, where

<alarm_cause_code> is an 8-digit (including leading zeros), hexadecimal code

that identifies the probable cause of the alarm.

As a convention, events that generate alarms typically use their event codes as

alarm cause codes.

Contents of a Probable Cause File

The contents of a probable cause file should include text only. On the first line,

specify the cause of the alarm in all capital letters; this information is displayed

as the alarm type (or title) on the Alarm Details tab. Also provide one section

each on the following:

■ The symptoms of the alarm

■ The probable causes

■ Recommended corrective actions

If there are multiple items under a category, enter the information in numbered

list format.

Example: Probable Cause File Using Appropriate Syntax

UNKNOWN USER

SYMPTOMS:

The user's SMTP mail transaction failed with error code 550 - unknown user.

PROBABLE CAUSES:

1) The user may have entered an invalid SMTP mail login.

2) The SMTP server login account information may be incorrect.

RECOMMENDED ACTIONS:

1) Have the user check their username and try again.

2) If the username is correct, check the SMTP server login account information.

Glossary 165

Glossary

alarm

An alarm is a CA Spectrum object that indicates that a user-actionable, abnormal

condition exists in a model.

alert

An alert is an unsolicited message sent out by a managed element on a network.

A more specific definition of an alert depends on the management protocol that

is used to report the alert. In general, CA Spectrum uses SNMP as the

management protocol to communicate with devices on a network.

event

An event is a CA Spectrum object that indicates that something significant has

occurred within CA Spectrum itself or within the managed environment. Events

always occur in relation to a model. When CA Spectrum receives an alert from a

managed element on the network, in response, it generates a CA Spectrum

event for the corresponding model if the received trap is mapped to an event.

event discriminators

Event discriminators are references to event variables that let you to generate

alarms for events based on the values of the variables.

event format file

An event format file contains the message about the event that is displayed to

users on the Events tab in OneClick when the event occurs.

event message

The event message is the message that is displayed on the Events tab in

OneClick when the event occurs.

probable cause file

A probable cause file is an ASCII text file that defines the symptoms, probable

causes, and recommended corrective actions for an alarm.

sequential window

A sequential window is a type of type time window in which non-overlapping time

windows are examined, one after another, to determine if the requisite number

of events has occurred within the time window. This type of time window is best

suited for detecting a long, sustained train of events.

sliding window

A sliding window is a type of time window where if the specified number of events

(or more) ever occurs within any window of the specified time period, the output

event is created in response. This type of time window is best suited for

accurately detecting a short burst of events.

166 Event Configuration User Guide

trap

A trap is an alert that is generated by an SNMP-compliant device.

Index 167

Index

A

A flag • 119, 128

about mapping to events • 105

alarm severity mapping

creating • 53

defined • 52

modifying • 55

alarm severity parameter • 119

alarms

alarm cause codes • 47

defined • 11

generating using event discriminators • 50

persistent • 49

recommended actions • 49

severity levels • 45

severity mapping files • 52

unique • 49

user-clearable • 49

AlertMap files • 14

alert codes • 107

comments • 109

defined • 103

error messages and • 110

location • 106

mapping variables • 110

OID map in • 108

processing alerts with • 106

syntax • 107

alerts • 9

C

C flag examples • 125, 127

CA-authored events, modifying • 59

columns, modifying • 25

conditional alarm severity • 45

conditional alarm severity mappings

creating • 53

defined • 52

modifying • 55

D

D flag • 123

developer IDs, obtaining • 13

E

E flag • 118

enable_event_variable_warnings parameter •

25

errors in event disposition file syntax • 157

event codes • 108

event condition rules

configuring • 66

defined • 61

Event Configuration

overview of the user interface • 17

starting from MIB Tools • 15

starting from OneClick • 15

event counter rules

configuring • 80

defined • 64

event discriminators • 121

event disposition files

comments in • 158

defined • 115

location of • 116

synchronizing across landscapes • 20

syntax • 118

syntax errors in • 157

event format files

contents • 160

defined • 159

location • 159

event messages

defined • 33

event messages, example • 40

referencing attribute values in a MIB table •

37

referencing integer bit values • 39

referencing OIDs • 38

event pair rules

configuring • 70

defined • 62

event rate rules

configuring • 73

defined • 62

sequential window • 62

sliding window • 62

event rules

creating • 65

168 Event Configuration User Guide

deleting • 93

modifying • 92

syntax • 129

event series rules

configuring • 76

event series rules • 64

event table files

attribute values in MIB tables • 162

contents • 162

defined • 161

integer bit values • 162

location • 161

OID values • 162

event variables

copying to rule output events • 91

file syntax for copying • 151

event_custom_override_warnings parameter •

25

event_disp_default_log parameter • 25

event_disp_error_file parameter • 25

event_duplicate_action_warnings parameter •

25

EventCombo rule syntax • 134

EventCondition rule syntax • 135

EventCounter rule syntax • 147

EventPair rule syntax • 130

EventRateCounter rule syntax • 132

EventRateWindow rule syntax • 131

EventRateWindowAttrParams rule syntax • 132

events

clearing alarms with • 57

configuring • 32

creating from scratch • 30

defined • 10

error handling • 25

generate alarms from • 42

refreshing • 18

saving to landscapes • 18

searching for • 29

specify options for • 40

EventSequence rule syntax • 133

F

F flag • 123

filtering events • 25

G

generic trap identifier • 103

H

Heartbeat rules

configuring • 83

defined • 64

syntax • 147

I

initial alarm severity • 45

L

landscapes • 20

M

maintenance alarm severity • 45

major alarm severity • 45

MIB Tools • 9, 10, 14

minor alarm severity • 45

N

N flag • 122

normal alarm severity • 45

P

probable cause files

contents • 164

defined • 163

location of files • 163

procedure_error_file parameter • 25

R

R flag • 129

Critical alarm severity level • 45

S

sequential window • 62

severity levels, alarm • 45

Single Event Rules

configuring • 86

defined • 64

sliding window • 62

SNMPv2 InformRequest • 111

SNMPv2 support • 111

Solo Event Rules

defined • 65

Solo Event Rules, configuring • 89

suppressed alarm severity • 45

Index 169

T

T flag • 122

traps

defined • 9, 103

mapping to events • 14, 105

U

U flag • 121

user-defined event rule • 65

V

variable alarm severity • 45

	CA Spectrum Infrastructure Manager Event Configuration User Guide
	Contents
	1: CA Spectrum Event and Alarm Concepts
	About Alarms and Events
	Alerts
	Events
	Event Codes

	Alarms

	2: Getting Started with Event Configuration
	Before You Begin
	Obtaining a Developer ID
	Mapping Traps to CA Spectrum Events

	Preserving Customizations Across Upgrades of CA Spectrum
	Starting the Event Configuration Application
	Overview of the User Interface
	Loading All Events from All Landscapes
	Saving Events to Landscapes
	Synchronizing Events in a Distributed Environment
	Synchronizing Event Disposition Files on SpectroSERVERs
	Synchronizing Event and Alarm Support Files on OneClick Web Servers

	Updating the Overall Alert and Event System for a Landscape
	Add and Remove Columns from the Events Table
	Logging Event-Related Errors
	event_disp_error_file
	event_custom_override_warnings
	enable_event_variable_warnings
	event_duplicate_action_warnings
	event_disp_default_log
	procedure_error_file

	3: Working with Events and Alarms
	Finding Events
	Create Events from Scratch
	Create Events from a Copy
	About Configuring Events
	Entering an Event Message
	Variable Descriptions and Syntax
	Referencing Attribute Values in a MIB Table
	Referencing OIDs
	Referencing Integer Bit Values
	Example Event Message

	Specify Event Options
	Configure Events to Generate Alarms
	Specify an Alarm Severity
	Enable or Disable Alarms of a Severity Type
	Specify an Alarm Cause Code
	About Specifying Symptoms, Causes, and Recommended Actions
	Specify Alarm Options
	Using Event Variable Discriminators to Generate Alarms
	Creating Dynamic Alarm Title
	Configuring Alarm Severity Mappings for the Conditional Severity Level
	Create Alarm Severity Mappings for the Conditional Severity Level
	Modifying Alarm Severity Mappings for the Conditional Severity Level

	Configure Events to Clear Alarms

	Modify Events
	Delete Custom Events

	4: Working with Event Rules
	Event Rules
	Event Condition Rules
	Event Pair Rules
	Event Rate Rules
	Event Series Rules
	Event Counter Rules
	Heartbeat Rules
	Single Event Rules
	Solo Event Rules
	User-Defined Event Rules

	Create Event Rules
	Configuring Event Condition Rule Settings
	Configuring Event Pair Rule Settings
	Event Variable Discriminators in Event Pair Rules

	Configuring Event Rate Rule Settings
	Configuring Event Series Rule Settings
	Configuring Event Counter Rule Settings
	Configuring Heartbeat Rule Settings
	Configuring Single Event Rule Settings
	Configuring Solo Event Rule Settings
	Copy Variable Values from Contributing Events to the Rule Output Event

	Modifying Event Rules
	Delete Event Rules

	5: Using Procedures in Event Processing
	Using Procedures in Event Disposition Files
	Input Parameters
	Parameter Types
	Constants

	Return Values

	Examples of Procedures in Event Disposition Files
	Logging Errors in Event Procedures
	Troubleshooting Event Procedures

	A: AlertMap Files
	SNMP Trap Overview
	About Mapping a Trap to a CA Spectrum Event
	About Processing Alerts with AlertMap Files
	AlertMap File Location
	AlertMap File Syntax
	Alert Code
	Event Code
	OID Map
	Comments
	How CA Spectrum Maps Alert Variables to Event Variables

	Error Messages

	SNMPv2 Support
	InformRequest Support
	How an SNMPv2 Trap is Mapped to a CA Spectrum Event

	B: Event Disposition Files
	About Event Disposition Files
	Location of Event Disposition Files
	File Syntax of Event Disposition Files
	Generating Alarms
	Generating Alarms for Events Based on the Values of Event Variables
	Generating Alarms Unconditionally for Each Event
	Generating Alarms That Users Cannot Clear
	Generating Alarms That Are Not Persistent
	Combining the U, N, and T Flags
	Specify an Event Frequency
	Specify an Event Duration

	Clearing Alarms
	Clear Alarms Created Without Event Discriminators
	Clear Alarms Based on Event Discriminator Values
	Examples of Event Maps That Clear Alarms

	Clearing Alarms Regardless of Event Discriminator Values
	About Defining Event Rules
	Event Rule Syntax
	EventPair Rule
	EventPairTimeAttr Rule
	EventRateWindow Rule
	EventRateWindowAttrParams Rule
	EventRateCounter Rule
	Example: Using Event Discriminators with an EventRateCounter Rule

	EventSequence Rule
	EventCombo Rule
	EventComboInclusive Rule
	EventCondition Rule
	EventCounter Rule
	Heartbeat Rule
	SoloEvent Rule
	SingleEvent Rule
	Using Multiple Event Rules in a Single EventDisp Entry
	Copy Event Variables from One Event to Another
	Event Variable Copying Syntax
	Event Parameters and Variable IDs
	Event Variable Copy Information
	Variable IDs
	Variable IDs Using Ranges
	Copying Variables from the Initial Event
	Multiple Event Occurrence

	Event Variable Copy Example
	Event Variable Copying and Event Discriminators

	Syntax Errors in EventDisp Files
	Add Comments in EventDisp Files

	C: Event Format Files
	About Event Format Files
	Location of Event Format Files
	Contents of an Event Format File

	D: Event Table Files
	About Event Table Files
	Location of Event Table Files
	Contents of an Event Table File
	Associate the Attribute Values in a MIB Table with Text Values
	Associate OID Values with Text Values
	Associate Integer Bit Values with Text Values

	E: Probable Cause Files
	About Probable Cause Files
	Location of Probable Cause Files
	Contents of a Probable Cause File

	Glossary
	Index

