<Building>
XML applications with COOL:Gen Proxies

</Building>

[image: image1.png]
[image: image17.png]

by
Mickaël SOUSSAN,

Senior Consultant

Application International Group.
[image: image2.png]
January 2000

(last updated on 5 January, 2000)

Table of Contents

aBSTRACT
3

4Chapter 1 : Introduction

1.1
XML concepts
4
1.1.1
What is XML ?
4
1.1.2
How much can XML help you ?
4
1.1.3
Who is responsible for XML ?
5
1.1.4
Why is XML so important ?
5
1.1.5
Will HTML be replaced by XML ?
5
1.1.6
What are the main standards associated to XML ?
5
1.1.7
Learn more about XML
6
1.2
XML and COOL:Gen
6
Chapter 2 : XML data exchange and COOL:Gen COM Proxy
8
2.1
XML and Microsoft-based Platforms
8
2.1.1
Microsoft implications in XML
8
2.1.2
XML and Microsoft’s internet/intranet development tools
8
2.1.3
XML and Internet Explorer 5.0
9
2.1.4
XML and Active Server Pages 2.0
9
2.2
XML data exchange and COOL:Gen COM Proxy
9
Chapter 3 : XML data exchange and COOL:gen JAVA Proxy
10
3.1
XML and JAVATM Platforms
10
3.1.1
XML and SUN Microsystems
10
3.1.2
Java Project X Release 1.0
10
3.1.3
XML data exchange and HTTP protocol on Java platforms
11
3.1.4
XML and others JavaTM implementations
11
3.2
XML data exchange and COOL:Gen JAVA Proxy
16
3.2.1
COOL:Gen 5.1 Java Proxy and Java Server Pages
16
3.2.2
An example of XML data exchange with COOL:Gen 5.1 Java Proxy
17
Chapter 4 : XML data exchange and COOL:gen C Proxy
19
4.1
XML and C/C++ platforms
19
4.2
XML and COOL:Gen C Proxy
22
Chapter 5 : APPENDIX
25
5.1
The technical architecture
25
5.2
COOL:Gen host Server
27
5.3
XML data exchange implementation
31

ABSTRACT

This document presents a few technical architectures, showing how XML (eXtensible Markup Language) data exchange can be implemented with COOL:Gen Proxy technologies. The architecture studies have been highly motivated by the fact that XML is becoming a data exchange standard as far as heterogeneous systems interconnection is concerned.

For more details regarding the implementation, or if you do have any question, feel free to contact me (e-mail : Mickael.Soussan@sterling.com).

Document structure

The document consists of the following parts:

Chapter 1:
Introduction to XML (eXtensible Markup Language).

Chapter 2:
Describes how, on Microsoft-based platforms, COM Proxy can be integrated to design XML applications.

Chapter 3:
Describes how, on JavaTM platforms, JAVA Proxy can be integrated to design XML applications.

Chapter 4:
Describes how, on C/C++ platforms, C Proxy can be integrated to design XML applications.

Chapter 5:
Appendix presenting a fully documented implementation of XML data exchange with COOL:Gen COM Proxy.

Introduction

1.1 XML concepts

1.1.1 What is XML ?

eXtensible Markup Language (XML) is a framework for defining document markup languages and is predicted to become the primary approach to document exchange over the Internet. In simple terms, a document markup language is a set of elements (called tags) that have one or more of the following functions :

· Describe the structure of the document

· Describe the content of the document

· Control how the document is presented to the user

XML and HyperText Markup Language (HTML) are derived from the more complex Standard Generalized Markup Language (SGML). SGML’s complexity and high cost of implementation spurred the interest of developing alternatives.

An XML document is Well-Formed and/or Valid. An XML document is valid if it meets the constraints fixed by its DTD (Document Type Definition). Not all XML documents include a DTD. In such a case, if the document is W3C XML 1.0 compliant, it is Well-Formed.

1.1.2 How much can XML help you ?

XML limits have not been found yet. As far as XML is concerned, there are four main application domains :

· Electronic Document Management

· Heterogeneous systems interoperability

· EDI/e-commerce

· Customer Relationship Management (CRM).

1.1.3 Who is responsible for XML ?

XML is a World Wide Web Consortium (W3C) standard. W3C is in charge of web standards normalization. XML development is supervised by XML Activity, a group made of international experts from both the research area and the top IT companies.

1.1.4 Why is XML so important ?

XML overcomes limitations of both HTML and SGML :

· HTML inflexibility and lack of extensibility. HTML tags that control presentation are in the same file with tags that describe the document. HTML also restricts the users to a relatively small set of tags. HTML authors cannot create their own HTML tags, because commercially web browsers have no knowledge of tags that are not part of the HTML standards.

· SGML’s complexity, which makes it unsuitable for the Internet.

XML also provides capabilities that are not part of the earlier languages.

1.1.5 Will HTML be replaced by XML ?

XML is not going to replace HTML in the future. They are both complementary. For instance, XML Stylesheet Language (XSL), is compatible with Cascading Style Sheets (CSS), HTML presentation standard. XML is only more flexible and more powerful than HTML. With XML, you may define your own tags. Extensibility is XML strength since it can address any specific need.

1.1.6 What are the main standards associated to XML ?

A lot of standards are based on XML :

· Document Object Model (DOM), an API definition allowing any application to manipulate and navigate through XML documents.

· eXtensible Stylesheet Language (XSL), a stylesheet language to transform and presents information.

· Xlink and Xpointer to improve web links.

· Resource Description Framework (RDF), to standardize and exchange meta-data.

1.1.7 Learn more about XML

Review the following URLs to learn more about W3C XML recommendations :

· W3C home page : http://www.w3.org
· W3C current recommendations : http://www.w3.org/TR/#Recommendations
1.2 XML and COOL:Gen

So far, there is no import/export facility directly available to/from COOL:Gen repository. Given that XML is becoming a standard in terms of data exchange for heterogeneous systems, there is no doubt that an XML interface for COOL:Gen toolset will be available soon.

Meanwhile, with an increasing number of customers/prospects interested by XML data exchange, how can we position COOL:Gen in terms of XML applications ? The answer is part of our strategy : Integration.

The main idea of the architecture described in this document is to see a Proxy as a connector to an existing back-office server. Thus, there is no need for XML data exchange between the Proxy and the server. XML data exchange takes place outside the Proxy, within the application that wraps the Proxy call. To illustrate this concept, let us take a look at the following architecture :

[image: image3.png]
Such a 3-tier architecture is becoming a standard in terms of web development. Where should XML data exchange take place within such an architecture ? The next figure shows where XML data exchange should take place with respect to such an architecture.

[image: image4.png]
The next three chapters describe how COOL:Gen Proxy can be integrated within XML applications. They include :

· Microsoft-based front-end server (IIS/ASP/COM/DCOM) with a COOL:Gen COM Proxy wrapped within an XML application.

· JAVA-based application server with a COOL:Gen JAVA Proxy wrapped within an XML application.

· Microsoft and UNIX based platforms with a C Proxy wrapping within an XML application.

XML data exchange and COOL:Gen COM Proxy

1.3 XML and Microsoft-based Platforms

1.3.1 Microsoft implications in XML

Microsoft’s implication in W3C XML normalization is very important. They were one of the first Software company to implement and support XML-DOM and XSL.

Microsoft also uses XML on its Windows platform for :

· Channel Definition Format (CDF) allows an XML definition for Internet Explorer channels.

· Open Software Distribution (OSD) used by Windows systems.

· Active Data Object (ADO) to access Microsoft databases via ODBC and OLE DB interfaces.

· Office 2000 includes XML import/export for all document types.

For more information about Microsoft’s implication in XML, review the following URL :

http://msdn.microsoft.com/xml
1.3.2 XML and Microsoft’s internet/intranet development tools

Microsoft’s internet/intranet development tools already include XML support. Internet Explorer 5.0 and Active Server Pages technology enable development of large-scaled XML internet/intranet applications. Microsoft’s XML implementations are available on both client and server sides. For instance the DOM interface is available on Internet Explorer 5.0 through an Active X (that can be manipulated in JavaScript) and on web servers through a COM object (that can be manipulated in ASP).

1.3.3 XML and Internet Explorer 5.0

Internet Explorer 5.0 include the following XML implementations :

· XML documents direct viewing through XSL and CSS.

· An XML parser W3C XML 1.0 compliant.

· XML data exchange

· DOM level 1

· An XSL processor

1.3.4 XML and Active Server Pages 2.0

Two main COM objects are very useful to navigate through XML documents and to send/receive XML documents using HTTP/HTTPS protocols :

· ‘Microsoft.XMLDOM’ COM object is Microsoft’s implementation of DOM interface. It provides developers with an API to navigate through XML documents in order to manipulate its content. This object can be instantiated with the following VBScript instruction in ASP :

Set XMLQuery = Server.CreateObject(“Microsoft.XMLDOM”)

· ‘Microsoft.XMLHTTP’ COM object provides developers with an interface to facilitate XML data exchange through HTTP/HTTPS protocols. This object can be instantiated with the following VBScript instruction in ASP :

Set XMLServer = Server.CreateObject(“Microsoft.XMLHTTP”)
1.4 XML data exchange and COOL:Gen COM Proxy

COOL:Gen Active X/COM Proxy is a generated COM object that provides an automation interface to COOL:Gen servers. Providing a COM automation interface allows Web applications with Active server Pages access to COOL:Gen servers.

A fully documented example of XML data exchange with COOL:Gen COM Proxy is presented in appendix.

Chapter 2 : XML data exchange and COOL:gen JAVA Proxy

2.1 XML and JAVATM Platforms

2.1.1 XML and SUN Microsystems

SUN Microsystems is highly implicated in XML standard. They support XML through a set of JAVA packages called ‘the JAVA Project X’. JAVA software is portable code and XML is portable data. If you combine both, you get highly distributed objects. ‘JavaTM API for XML Parsing’ (based on JAVA project X reference implementation) is available to JAVA developers who are Java Developer Connection (JDC) members (free registration) at the following URL :

http://java.sun.com/jdc/earlyAccess/xml
2.1.2 Java Project X Release 1.0

XML library by SUN consists of six JAVA packages to manage XML document through DOM interface :

· com.sun.xml.parser : This package includes two W3C XML 1.0 compliant XML parsers.

· org.xml.sax : This library includes Simple API for XML (SAX), which is used to analyze XML documents and fire events when an XML document tag is opened/closed.

· org.xml.sax.helpers : It includes a set of very useful tool classes to facilitate SAX API use.

· com.sun.xml.tree : This package contains a set of W3C DOM level 1 compliant classes, used to manipulate XML documents loaded in memory.

· org.w3c.dom : This library contains all JAVA interfaces definitions used for W3C DOM level 1 recommendation.

· com.sun.xml.util : This package includes a set of tool classes to easily build applications manipulating XML documents.

2.1.3 XML data exchange and HTTP protocol on Java platforms

Java Project X includes a package of classes that facilitates development of XML messaging clients and servlets which use HTTP/HTTPS POSTing to synchronously exchange XML documents.

XML HTTP POSTing implementation proposed by SUN consists of sending a DOM document through a pre-defined URL. XmlRpcClient class call() method is used to send the DOM document. A servlet receives the DOM document through its XmlRpcServlet class rpc() method, and sends back a DOM document as a response to the client. Thus, a typical XML data exchange through HTTP protocol requires the following steps :

· The definition of the XML protocol used between the client and the server

· The DTD definition in order to enable data exchange validation

· Writing the client-side application (Java application or applet) using XmlRpcClient Java class. XmlRpcClient class facilitates development of XML messaging clients, which use HTTP/HTTPS POSTing to synchronously exchange XML documents. This may be used directly, or be subclassed to add application-specific behaviors such as specialized processing for some element vocabularies found in those documents.

· Writing the server-side application (servlet) using XmlRpcServlet Java class. XmlRpcServlet facilitates development of HTTP/HTTPS messaging services, which add application-specific behaviors and handle specific kinds of request and response documents. It is only “RPC” in the sense that it is a synchronous exchange of structured messages, directed at a specific object (identified by the target of the POST).

2.1.4 XML and others JavaTM implementations

SUN Microsystems is not the only company focusing on XML Java implementation. Large ranges of tools are available, including :

· Parsers and engines

XAF

PRIVATE
By:
Megginson Technologies

By:
JXML

Version:
05.Mar.99 release

Platforms:
Java 1.1.

Info on web:
http://www.jxml.com/mdsax/src/com/megginson/xml/xaf/

XAF is an architectural forms engine which offers a SAX 1.0 interface to the transformed document. XAF can be used with any SAX 1.0 parser. Only a subset of architectural forms is supported and this release should be considered of beta quality.

Parser for XPointer

PRIVATE
By:
Patrice Bonhomme

Version:
03.Mar.98 release

Platforms:
Java 1.1

Info on web:
http://www.loria.fr/~bonhomme/Xpointer/

Is an XPointer parser developed with the JavaCC parser generator. So far it does no more than just parse XPointers, and does not attempt to actually locate any nodes in a document.

XLink SAX Parser Filter

PRIVATE
By:
Simon St.Laurent

Version:
11.Nov.98 release

Platforms:
Java

Info on web:
http://www.simonstl.com/projects/xlinkfilter/

The XLink SAX Parser Filter is based on John Cowan's Parser Filters and provides a simple way to extract XLinks from a SAX event stream for later use.

This parser filter follows the 19980303 XLink Working Draft.

XPathDOM

PRIVATE
By:
Sean Chen

Version:
0.2

Platforms:
Java

Info on web:
http://falconwing.com/~schen/

XPathDOM is a Java implementation of the XPath working draft on top of the DOM level 1. A GUI demo utility is included.

XPath4XT

PRIVATE
By:
Takuki Kamiya

Version:
0.90

Platforms:
Java

Info on web:
http://www.246.ne.jp/~kamiya/pub/XPath4XT.html

XPath4XT is an XPath implementation that can evaluate XPath expressions against a DOM tree. XPath4XT uses XT and comes with a special version of XT which has to be used. It also requires a DOM implementation. Java Project X is supported, but support for other DOM implementations can easily be added.

LotusXSL

PRIVATE
By:
IBM alphaWorks

Version:
09.Nov.99

Platforms:
Java

Info on web:
http://www.alphaworks.ibm.com/formula/LotusXSL

LotusXSL is an experimental implementation of the tree transformation part of the XSLT 13.Aug.99 WD. It is built on top of the DOM 1.0 and can be used with any DOM implementation. It also contains some logic for namespace quoting. The LotusXSL distribution contains an XSLT servlet implementation.

XP

PRIVATE
By:
James Clark

Version:
0.5

Platforms:
Java 1.1

Info on web:
http://www.jclark.com/xml/xp/

XP is written to be fully conforming and as fast as possible, with an emphasis is on server-side production use. There is no validation, only well-formedness checking. Even though 0.5 is a beta release it is very stable and extremely fast. A SAX 1.0 driver is included. XP supports several Unicode encodings.

XML Parser for Java

PRIVATE
By:
IBM alphaWorks

Version:
2.0.15

Platforms:
Java 1.1

Info on web:
http://www.alphaworks.ibm.com/formula/xml/

This parser was written by Kent Tamura and Hiroshi Maruyama of the Tokyo Research Laboratory, IBM Japan. It is a validating parser that conforms to the XML recommendation, and also contains a DOM 1.0 implementation, an XML namespaces (19981117 PR) implementation and a prototypical XPointer implementation. It also supports a large number of EBCDIC character encodings.

There is also a SAX 1.0 interface, and the parser gives access to DTD information. It used to be called XML for Java, but is most commonly referred to as xml4j.

Version 2.x has a modular architecture, better performance and also adds XCatalog support.

OpenXML

PRIVATE
By:
OpenXML.org

Version:
1.0.7beta

Platforms:
Java

Info on web:
http://www.openxml.org/

OpenXML is a validating XML parser written in Java, with DOM 1.0 and XCatalog support. It can also parse HTML and supports the HTML parts of the DOM. SAX support is expected before too long.

Xerces Java

PRIVATE
By:
The Apache XML Project

Version:
1.0.0

Platforms:
Java

Info on web:
http://xml.apache.org/xerces-j/

Software on web:
http://xml.apache.org/dist/

Xerces Java is a validating XML parser with support for the DOM level 1 and SAX 1.0. In addition, it also includes preliminary support for the DOM level 2, SAX 2.0 and XML Schemas.

· DOM implementations

DataChannel DOM Builder

PRIVATE
By:
DataChannel

Version:
0.9beta1b

Platforms:
Java 1.1 with JFC

Info on web:
http://www.datachannel.com/products/dom_builder.shtml

This is an implementation of the DOM that lets client applications build XML documents in memory, access them and write them out. It is not updated to the final recommendation.

Docuverse DOM SDK

PRIVATE
By:
Docuverse

Version:
Preview Release 3

Platforms:
Java

Info on web:
http://www.docuverse.com/domsdk/index.html

The Docuverse DOM SDK is a Java implementation of the Document Object Model (DOM 1.0) that uses any SAX 1.0 client (just use the SAX package and any of the parsers you like) to build the DOM document tree. The DOM builder part of the implementation is very general, so one can extend it to use other kinds of builders as well. The DOM SDK also supports the DOM HTML API.

The Docuverse DOM SDK was previously called FREE-DOM and before that SAXDOM.

InDelv Java DOM

PRIVATE
By:
InDelv

Version:
2.2beta

Platforms:
Java

Info on web:
http://www.indelv.com/open-source-java.htm

The InDelv Java DOM is a DOM 1.0 implementation written in Java. It can use any SAX 1.0 parser to build a DOM.

· XML middlewares

SAX

PRIVATE
By:
Megginson Technologies

Version:
1.0

Platforms:
Java

Info on web:
http://www.megginson.com/SAX/index.html

SAX is a simple event-based API for XML parsers. It is not an official standard, since it was developed by the participants of the xml-dev mailing list instead of a standards body. However, SAX is very much a de facto standard, since it is supported by at least 13 parsers, has been translated to Python and is used by at least 3 other applications.

This library contains the Java implementation of SAX, but no drivers.

SAXON

PRIVATE
By:
Michael H. Kay

Version:
5.0

Platforms:
Java

Info on web:
http://users.iclway.co.uk/mhkay/saxon/

SAXON is a Java framework for processing XML documents optimized for XML->XML/SGML/HTML conversions. SAXON is built on top of SAX 1.0 and DOM 1.0, and should work with any compliant implementation of these. SAXON gives you a nice framework based on the concept of element handlers and some element handlers for the most common tasks.

SAXON also includes an XSLT implementation (1.0 recommendation), which is both an interpreter and a compiler that generates Java code. This code can subsequently be compiled and run directly, with no need for the original stylesheet. This gives speed benefits, especially in a servlet environment. SAXON also has extensions for integrating with Java, generating output in any text format (not just XML) and for extensibility. The XSLT compiler is available separately under the name 'Instant SAXON'.

XML BeanMaker

PRIVATE
By:
IBM alphaWorks

Version:
29.Apr.99 release

Platforms:
Java

Info on web:
http://www.alphaworks.ibm.com/formula/xmlbeanmaker

XML BeanMaker reads a DTD and generates Java bean code that can be used to turn documents conforming to the DTD into an in-memory set of beans with get and set attributes. Events are fired when the properties of these beans change, and javadoc documentation can be generated automatically.

See also the XML EditorMaker.

XML Productivity Kit for Java

PRIVATE
By:
IBM alphaWorks

Version:
26.Apr.99 release

Platforms:
Java

Info on web:
http://www.alphaworks.ibm.com/formula/xmlproductivity

The XML Productivity Kit for Java (XPK4J) is a toolkit of filters and adapters that make it easier to use DOM 1.0 and SAX 1.0 for different purposes using JavaBeans for various Java IDEs. XPK4J also supports data access through JDBC.

XML Bean Suite

PRIVATE
By:
IBM alphaWorks

Version:
14.Jan.99

Platforms:
Java

Info on web:
Http://www.alphaworks.ibm.com/alphaBeans

The XML Bean suite consists of seven XML beans: DOMGenerator, DTDSourceView, XMLAttributeView, XMLChildren, XMLSourceView, XMLTokenizer, XMLTreeView.

Xml2Beans

PRIVATE
By:
Robbie Schäfer

Version:
1.0beta

Platforms:
Java

Info on web:
http://www.c-lab.de/~robbie/XML2Beans/

Xml2Beans reads XML DTDs and generates a JavaBean for each element that can process XML according to the DTD. With specialized bean editors (not yet available) it will be possible to make application-specific editors for any DTD.

· Converters

The World Wide Web Wrapper Factory

PRIVATE
By:
Fabien Azavant

By:
Arnaud Sahuguet

Version:
1.0.3

Platforms:
Java 1.1

Info on web:
http://db.cis.upenn.edu/W4F/

W4F is a package that lets you convert HTML from various online sources to XML. This is done by writing a specification file that describes the mapping from HTML to XML and also how to retrieve the information to be converted from the web. Based on this W4F automatically produces Java code, which can be compiled and used in programs.

DB2XML

PRIVATE
By:
Volker Turau

Version:
1.2.1

Platforms:
Java 1.1

Info on web:
http://www.informatik.fh-wiesbaden.de/~turau/DB2XML/

DB2XML is a tool for generating XML from database queries. It is a GUI-driven application written in Java, but can also be used as a servlet and as a command-line application. The XML generated is configurable, and metadata (types etc) can optionally be included, dates can be customized and currency representation can be localized. The generated XML can be processed with an XSLT stylesheet, using the embedded LotusXSL XSLT engine.

DB2XML can generate external and internal DTDs for the XML produced, and can also handle binary data (either encoded in the generated XML file or externally). It can also handle different character encodings and primary keys. The generated XML is available as a stream, as a file or through a DOM interface.

2.2 XML data exchange and COOL:Gen JAVA Proxy

COOL:Gen Java Proxy is a full Java interface that allows Java applets and Java applications to re-use COOL:Gen servers.

2.2.1 COOL:Gen 5.1 Java Proxy and Java Server Pages

COOL:Gen GEN5102 PTF enables JSP generation in addition to the JAVA Proxy. As shown within the following figure, for a given method, four sample jsp files will now be generated :

· PstepImport.jsp, for displaying the HTML form to accept import data

· PstepExport.jsp, to display the results of an execute

· PstepError.jsp, an error file for displaying all exceptions

· Pstep.jsp, to control all the other files

[image: image5.png]
It would be interesting to use the generated JSP files as it provides a relevant mapping to COOL:Gen data definition. It would have to be manually updated in order to include XML data mapping.

2.2.2 An example of XML data exchange with COOL:Gen 5.1 Java Proxy

The following figure shows a potential implementation of XML data exchange between both a web server and the client (browser) and between the HTTP server and the XML server. Using Sun’s Java classes requires valid XML documents sent to the browser (DTD included). Some parts of the generated JSP files would be used in order to include XML data transfer. XML/XSL files would have to be manually created.

[image: image6.png]
· PstepImport.jsp would be modified in order to only map the XML data received to the Proxy import views.

· PstepExport.jsp would be modified in order to only map the Proxy export views data to XML data sent back to the HTTP server.

· XML data exchange between the HTTP server and the XML server would be implemented through HTTP protocol.

· Pstep.jsp would be responsible for handling the HTTP connection between the HTTP server and the XML server as well as sending back XML/XSL data to the browser.

· XML and XSL files would be sent back to the navigator. Thus, the HTTP server would only be responsible for presenting the XML data received by the XML server to the browser.

XML data exchange and COOL:gen C Proxy

2.3 XML and C/C++ platforms

W3C XML interfaces are also available to C/C++ application programmers on a large range of platforms. Most of the available XML APIs and tools are listed below :

· XML parsers

expat

PRIVATE
By:
James Clark

Version:
1.1

Platforms:
Platform-independent C source

Info on web:
http://www.jclark.com/xml/expat.html

expat is a non-validating parser written in C, and is the parser previously known as XMLTok. It is used in Mozilla 5.0 and in parser modules for several different scripting languages.

expat does no validation, but can read external entities and aims to be a fully conforming well-formedness parser. XML namespaces are supported.

expat supports Unicode, and through a callback the application can extend the number of encodings supported. expat is also designed to support multi-language error messages. Applications are also given access to the raw markup of the document, for the applications that need lexical information.

libxml

PRIVATE
By:
Daniel Veillard

Version:
1.0

Platforms:
C

Info on web:
http://rufus.w3.org/veillard/

libxml is an XML parser written in C that builds an in-memory DOM 1.0 tree of the parsed document. It is used by the GNOME project, among others.

LTXML

PRIVATE
By:
Edinburgh Language Technology Group

Version:
1.1

Platforms:
Win32 binary, and C source for Unix platforms.

Info on web:
http://www.ltg.ed.ac.uk/software/xml/

LTXML is a set of tools (including a parser) written in portable C. Included are: a program to strip out all XML markup, an XML normalizer (mainly useful for well-formedness checking), an ESIS outputter, an element occurrence counter, a tokenizer, a down-translation tool, a grep tool, a sorting tool, some linking tools as well as some other minor utilities. The executables are mainly intended to be pipelined to produce various kinds of output, but provide a C API that can be used to extend them for other purposes.

The parser used in this toolkit is RXP. LTXML has full support for 16-bit characters and the parser is claimed to be both fully conformant and validating. The parser also supports namespaces.

RXP

PRIVATE
By:
Richard Tobin

Version:
1.1

Platforms:
C source has been compiled under Win32, Solaris and FreeBSD.

Info on web:
http://www.cogsci.ed.ac.uk/~richard/rxp.html

RXP is a thread-safe validating parser written in C. It is distributed as C source and must be compiled before use. It supports Unicode and XML namespaces and comes with a command-line application that prints out the parsed document. RXP is also available as part of the LTXML package. RXP also supports the ISO 8859-1 to ISO 8859-9 character encodings.

SP (General SGML/XML tool)

PRIVATE
By:
James Clark

Version:
1.3.4

Platforms:
Win32, MS DOS, Solaris 2.3 SPARC and 2.5 i386, Linux i386, OSF/1 Unix DEC Alpha V3.2 with C++ source for other platforms.

Info on web:
http://www.jclark.com/sp/

SP is an SGML/XML parser, and is fast, complete, highly conformant and very stable. SP has been the parser of choice for most of the SGML community for many years and has been embedded in lots of other applications. SP supports architectural forms as well as SGML Open catalogs.

The SP package includes the SX program, which can convert arbitrary SGML documents to XML automatically.

Windows Foundation Classes

PRIVATE
By:
Sam Blackburn

Version:
Release 39

Platforms:
C++ source for Win32 and Unix

Info on web:
http://ourworld.compuserve.com/homepages/sam_blackburn/wfc.htm

WFC is a collection of C++ classes for Windows programming. Included are a non-validating XML parser as well as other tools for working with XML documents. The parser has been tested on Unix too.

Xerces C++

PRIVATE
By:
The Apache XML Project

Version:
1.0

Platforms:
Portable C++ source, tested on Linux and Win32.

Info on web:
http://xml.apache.org/xerces-c/

Software on web:
http://xml.apache.org/dist/

Xerces C++ is a validating XML parser written in a portable subset of C++. It supports XML Namespaces, the DOM level 1 and SAX 1.0. Preliminary support for DOM level 2 and SAX 2.0 is also available.

XML for C++

PRIVATE
By:
IBM alphaWorks

Version:
2.3.1

Platforms:
Portable C++ source, known to work on AIX, Linux, Solaris, Win32, HP-UX, OS/2 and OS/390.

Info on web:
http://www.alphaworks.ibm.com/tech/xml4c

XML for C++ (or xml4c as it is also known) is a validating XML parser with both SAX 1.0 (non-standard, since SAX is not yet standardized for C++) and DOM 1.0 interfaces.

· DOM implementations

tDOM

PRIVATE
By:
Jochen Loewer

Version:
0.3

Platforms:
C, to be used from tcl

Info on web:
http://sdf.lonestar.org/~loewerj/tdom.cgi

tDOM is a C implementation of the DOM level 1 core using expat for parsing. tDOM also includes C implementations of the 13.Aug.99 working drafts of XPath and XPointer. tDOM is written to be accessed from tcl.

C++DOM

PRIVATE
By:
Dashamir Hoxha

By:
Aurel Cami

Version:
20.May.99 release

Platforms:
C++ source

Info on web:
http://www.ceng.metu.edu.tr/~e106708/Dir/dom/

C++DOM is a C++ implementation of the DOM 1.0 core, built on top of expat. It reads and stores DTDs using DOM extensions, but does not validate. Also, some parts of the DOM 1.0 specifications have not been implemented.

· XML middlewares

PHP

PRIVATE
By:
The PHP development team

Version:
4.0b2

Platforms:
Win32, Unix and C source.

Info on web:
http://www.php.net/

PHP is an HTML-embedded scripting language which can be compiled into the Apache web server or run as CGI. It has been extended with XML support in version 3.0.6, using the expat parser.

SAX in C++

PRIVATE
By:
Jez Higgins

Version:
Release B

Platforms:
C++

Info on web:
http://www.jezuk.demon.co.uk/SAX/

This is a C++ port of the SAX 1.0 API for XML parsers, based on the Java implementation. This package includes an in-progress SAX driver for expat.

· XML converters

Tidy

PRIVATE
By:
Dave Raggett

Version:
15.Apr.99 release

Platforms:
Win32, Linux, Macintosh, BeOS, SunOS, Solaris, IRIX, HP-UX, AIX, Amiga and C source.

Info on web:
http://www.w3.org/People/Raggett/tidy/

Tidy is a tool that can read your XML and HTML markup and detect and to some extent also fix errors in it. This can be used to clean up bad HTML and XML and also to convert from poor HTML to XML. Tidy can also pretty-print your markup.

2.4 XML and COOL:Gen C Proxy

COOL:Gen C Proxy is a generated C language header file that provides customers the flexibility to call COOL:Gen server components from any C language application or any application that supports a C language interface. COOL:Gen C Proxy is available on both windows and Unix platforms. The application programmer can use the generated C header file through a provided API to call the server component. The C Proxy API functions are documented within the “C Proxy API Handbook for COOL:Gen” manual.

As far as XML data is concerned, any API listed in the previous section might be used in addition to the C Proxy API in order to built XML applications.

For instance we can imagine the following architecture in order to build an XML application :

[image: image7.png]
· The “Customized browser” would be a Win32 C/C++ application written with Microsoft Foundation Classes receiving/sending XML data through HTTP protocol to a UNIX server.

· The UNIX server would handle the “customized browser” requests through a C written HTTP listener. The listener would be responsible for managing the threads and pass/receive XML data flow to a C/C++ process.

· The C process would be a C/C++ program, wrapping C Proxy calls to remote COOL:Gen servers. The program could also include XML calls to other business systems (ERP, XML applications, etc.) through the standard APIs provided.

We could also imagine the following Internet/Intranet architecture :

[image: image8.png]
· The browser would submit/receive requests/responses as XML data through HTTP protocol.

· The web server would invoke CGI scripts to fire C programs.

· The C program would wrap C proxy calls to COOL:Gen remote servers.

Chapter 3 : APPENDIX

A fully documented example of

XML data exchange with COM Proxy

on Microsoft-based plateforms

The aim of this example is to demonstrate the ability to build large-scaled XML web applications with Sterling Software’s COM Proxy technology. The COM Proxy added value in such an architecture is to deliver XML-based web-enablement in days. With respect to such an architecture, the generated COM Proxy is seen as a host connector.

It is very important to understand that this architecture is only an example, with XML data exchange (Well-formed XML documents) limited to HTTP data flows between the HTTP front-server and the application server (XML server). As explained within the introduction, we could also imagine XML data exchange with ERP systems (SIEBEL for instance includes a COM interface that can be manipulated in ASP) or XML data directly sent back to the navigator. We could also use HTTPS XML data flow instead of HTTP.

3.1 The technical architecture

As explained above, XML data exchange is limited to data flows between an HTTP front server and an application server. Such a 3-tier architecture is realistic and the following assumptions can be made :

· The HTTP front-server is responsible for managing accessibility from outside the system. It is also responsible for the security. We could imagine a firewall installed on that server.

· The Application Server (XML server) is responsible for the application manageability, and availability. It is also responsible for XML validation.

The technical architecture is described within the following figure :

[image: image9.png]
The figure below details the platforms and protocols used for the implementation :

[image: image10.png]
As explained within the figure, the following platforms have been used :

· Client : NT 4.0 (SP5) workstation with Internet Explorer 5.0.

· HTTP Server : NT 4.0 (SP5) Server with

· Internet Information Server 4.0

· ASP 2.0

· XML Server : NT 4.0 (SP5) workstation with

· Personal Web Server 4.0

· ASP 2.0

· COOL:Gen 5.1 COM Proxy runtimes

· COOL:Gen 5.1 TCP/IP runtimes

· Host Server : UNIX HP 10.20 with

· COOL:Gen 5.1 Implementation Toolset

· COOL:Gen 5.1 Transaction Enabler

3.2 COOL:Gen host Server

COOL:gen data model used to perform the tests is shown below :

[image: image11.png]
XML data exchange between the HTTP Server and the XML Server have been implemented for only one transaction. Basically, the server takes an account number as input and returns either the current list of operations for that given account or an error if the account number is invalid.

The server action diagram code is listed below :

[image: image12.png]
Both the DDL and the server have been generated and remotely installed on the UNIX system, targeting an ORACLE database.

The COM Proxy related to the server load module has been generated and installed on the XML Server. It has been successfully tested on a direct access basis from the XML Server to the UNIX system.

The list obtained with COOL:Gen generated ASP/HTML interface is shown in the following figure.

[image: image13.png]
[image: image14.png]
3.3 XML data exchange implementation

As explained earlier, the assumption has been made that XML data exchange takes place between the HTTP front-end server and the XML Server. Data exchange between the different systems is shown within the figure below :

[image: image15.png]
1) The Client (Navigator) requests the AccountIdForm form to the HTTP server.

2) The server sends the form to the client.

3) The client posts the form to the HTTP server (HTTP POST).

4) The HTTP server converts the HTML form data received to XML and passes it to the XML server. Microsoft’s HTTPXML COM object is used to transfer XML data through HTTP protocol.

5) XML data received by the XML server is mapped to the COM Proxy import view and the proxy call is executed (execute method).

6) COOL:Gen Host service is executed and the resulting list is sent back to the XML server.

7) The COM Proxy export views are converted to XML data and sent back to the HTTP server.

8) XML data received is passed to a script (DisplayList.ASP) responsible for the data presentation to the client. This script consults the XSL file (AccountOperationList.XSL) associated to the XML data received before sending it back to the navigator.

9) Both the XML data and its associated stylesheet (XSL) are sent back to the navigator.

All the files are listed below :

· AccountIdForm.ASP

<%@ LANGUAGE="VBSCRIPT" %>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Sterling Software, Inc.: COOL:Gen">

<META HTTP-EQUIV="Content-Type" content="text/html">

<TITLE>Run AccountOperationList</TITLE>

</HEAD>

<BASEFONT FACE="Arial, Helevetica, sans-serif">

<BODY bgcolor="#AEAEFF" text=black>

<SCRIPT RUNAT=Server LANGUAGE="VBScript">

'-----Start User editable section-----

'Entities

' Edit the constant values to change

' the edit entity labels on you ASP

'

'Inputs

' Edit the constant values to change

' the edit field label on you ASP

'

Const ImportAccountId_form_name = "Id"

'Outputs

' Edit the constant values to change the

' name of the results field on you ASP

'

Const ExportAccountOperationId_form_name = "Id"

Const ExportAccountOperationReference_form_name = "Reference"

Const ExportAccountOperationAmount_form_name = "Amount"

Const ExportAccountOperationOperationDate_form_name = "Operation Date"

Const ExportAccountOperationValueDate_form_name = "Value Date"

Const ExportAccountOperationComment_form_name = "Comment"

Const StatusReturnCode_form_name = "Return Code"

Const StatusErrorMessage_form_name = "Error Message"

'Action Buttons

' Change the text on the action button

' by changing the constant value below

'

Const ResetButton_form_name = "Reset"

Const ActionButton_form_name = "Run Account Operation List"

Const RerunActionButton_form_name = "Run Account Operation List again"

'-----End User editable section-------

'

'-----Constants used by the active server page

' DO NOT EDIT THIS SECTION

'

Const vbQuote = """"

dim i

</SCRIPT>

<!-----DO NOT EDIT BELOW THIS LINE-----><!-----DO NOT EDIT BELOW THIS LINE----->

<!-----DO NOT EDIT BELOW THIS LINE-----><!-----DO NOT EDIT BELOW THIS LINE----->

<script language="JavaScript">

function Validate(theForm)

{

if (theForm.ImportAccountId.value == "")

{

 window.alert("Account Id required !");

 theForm.ImportAccountId.focus();

 return(false);

}

return(true);

}

</script>

<% On Error Resume Next %>

<%

 response.write "<form action=" & vbquote & "XMLServerCall.asp" & vbquote & " method=" & vbquote & "POST" & vbquote & " onsubmit=" & vbquote & "return Validate(this)" & vbquote & ">" & vblf

 response.write "<TABLE WIDTH=100% BORDER=0 CELLSPACING=0 CELLPADDING=2>" & vblf

 response.write "<TH ALIGN=Left VALIGN=MIDDLE WIDTH=100% Bgcolor=" & vbQuote & "#000080" & vbQuote & ">" & vblf

 response.write "Run Account Operation List</TH>" & vblf

 response.write "</TABLE>" & vblf

 response.write "<TABLE BORDER=0 CELLSPACING=3 CELLPADDING=2>"

 response.write "<TR><TD><h3>Account</h3></TD></TR>" & vblf

 response.write "<TR><TD></TD>"

 response.write "<TD><h4>" & ImportAccountId_form_name & "</h4></TD>" & vblf

 response.write "<TD><INPUT TYPE=" & vbQuote & "TEXT" & vbQuote & " NAME=" & vbQuote & "ImportAccountId" & vbQuote & " MAXLENGTH=" & vbQuote & 11 & vbQuote & " SIZE=" & vbQuote & 13 & vbQuote & "></TD>" & vblf

 response.write "</TABLE>" & vblf

 response.write " "

 response.write "<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=2>"

 response.write " "

 response.write "<TR><TD><INPUT TYPE=" & vbQuote & "SUBMIT" & vbQuote & " NAME=" & vbQuote & "Action" & vbQuote & " VALUE=" & vbQuote & ActionButton_form_name & vbQuote & "></TD></TR>"

 response.write "</TABLE>" & vblf

 response.write "<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=2>"

 response.write "<TR><TD><INPUT TYPE=" & vbQuote & "RESET" & vbQuote & " NAME=" & vbQuote & "Action" & vbQuote & " VALUE=" & vbQuote & ResetButton_form_name & vbQuote & "></TD></TR>"

 response.write "</TABLE>" & vblf

%>

</BODY>

</HTML>

· XMLServerCall.ASP

<%@ LANGUAGE="VBSCRIPT" %>

<%

'**

' Sets XmlData string for XML data exchange

'**

XmlData = "<XMLRequest><AccountId>" & Trim(Request("ImportAccountId")) & "</AccountId></XMLRequest>"

Set Demande = Server.CreateObject("Microsoft.XMLDOM")

Demande.loadXML(XMLData)

'**

' POST XML Request using XMLHTTP COM object

'**

Set Valid = Server.CreateObject("Microsoft.XMLHTTP")

Valid.open "POST", "http://localhost/XmlServer/HostServerCall.asp", False

Valid.send(Demande)

'**

' Parses the response recieved from the XML server

'**

Dossier = Valid.responseText

Set Offre = Server.CreateObject("Microsoft.XMLDOM")

Offre.loadXML(Dossier)

'**

' XML Error

'**

If (Offre.parseError.errorCode <> 0) Or (ErrorCode <> 0) Then

%>

 <HTML>

 <HEAD>

<TITLE>Error recieved from XML Server</TITLE>

 </HEAD>

 <BODY>

<H1>Error recieved from XML Server</H1>

<H4>Account # <%= XmlData%></H4>

<H4>XML response : <%= Dossier%></H4>

 </BODY>

 </HTML>

<%

'**

' XML Parsing Successful

'**

Else

 Set docOffre = Offre.documentElement

'**

' Saves XML String and XSL stylesheet into User Session

'**

 Session("Offre") = docOffre.xml

 Session("StyleOffre") = "/xsl/accountoperationlist.xsl"

'**

' Displays the result

'**

 Response.redirect("/bankdemo/DisplayList.asp")

End If

%>

· HostServerCall.ASP

<%@ LANGUAGE="VBSCRIPT" %>

<% On Error Resume Next %>

<%

Dim XMLString

'***

' Gets XML Request

' Parses the XML Request

'***

Set XMLServer = Server.CreateObject("Microsoft.XMLDOM")

XMLServer.load(Request)

'***

' XML Parsing Error occured

'***

If XMLServer.parseError.errorCode <> 0 Then

XMLString = "<AccountOperations>"

XMLString = XMLString & "<StatusCode>4</StatusCode>"

XMLString = XMLString & "<StatusMessage>Unexpected XML Error</StatusMessage>"

XMLString = "</AccountOperations>"

Set NewXML = Server.CreateObject("Microsoft.XMLDOM")

NewXML.loadXML(XMLString)

Response.ContentType = "text/xml"

NewXML.save(Response)

else

'***

' Retrieves XML data

'***

Set RootInfos = XMLServer.documentElement

Set XMLAccountId = RootInfos.getElementsByTagName("AccountId")

Account = XMLAccountId.item(0).text

'***

'COM Proxy object instanciation

'***

Set op = Server.CreateObject("Bankdemo.AccountOperationList.1")

'***

'Populates the Proxy Import view

'***

op.ImportAccountId = Account

'***

'Call the host server through the COM Proxy execute method

'***

op.execute

'***

'Test the COM Proxy call validity and Retrieves the COM Proxy Export Views

'***

Set NewXML = Server.CreateObject("Microsoft.XMLDOM")

XMLString = "<AccountOperations>"

if op.operationStatus > 0 then

 XMLString = XMLString & "<StatusCode>1</StatusCode>"

 XMLString = XMLString & "<StatusMessage>" & op.OperationStatusMessage & "</StatusMessage>"

elseif Err.Number <> 0 then

 XMLString = XMLString & "<StatusCode>2</StatusCode>"

 XMLString = XMLString & "<StatusMessage>" & Err.Description & "</StatusMessage>"

elseif op.operationStatus < 3 then

 if op.StatusReturnCode <> 0 Then

 XMLString = XMLString & "<StatusCode>" & op.StatusReturnCode & "</StatusCode>"

 XMLString = XMLString & "<StatusMessage>" & op.StatusErrorMessage & "</StatusMessage>"

 else

 for i = 1 to op.GroupExportCount

 XMLString = XMLString & "<AccountOperation>"

 XMLString = XMLString & "<Id>" & op.ExportAccountOperationId(i) & "</Id>"

 XMLString = XMLString & "<Reference>" & op.ExportAccountOperationReference(i) & "</Reference>"

 XMLString = XMLString & "<Amount>" & op.ExportAccountOperationAmount(i) & "</Amount>"

 XMLString = XMLString & "<OperationDate>" & op.ExportAccountOperationOperationDate(i) & "</OperationDate>"

 XMLString = XMLString & "<ValueDate>" & op.ExportAccountOperationValueDate(i) & "</ValueDate>"

 XMLString = XMLString & "<Comment>" & op.ExportAccountOperationComment(i) & "</Comment>"

 XMLString = XMLString & "</AccountOperation>"

 next

 end if

end if

XMLString = XMLString & "</AccountOperations>"

'***

' Loads the XML String built

'***

NewXML.loadXML(XMLString)

'***

' Sends the Response to the HTTP Server

'***

Response.ContentType = "text/xml"

NewXML.save(Response)

end if

%>

· DisplayList.ASP

<%@ LANGUAGE="VBSCRIPT" %>

<HTML>

<HEAD>

<TITLE>Account Operations List</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#330000" VLINK="#330000" ALINK="#300000">

<SCRIPT language="JavaScript">

function affSimul()

{

 // Parses the XML data

var source = new ActiveXObject("Microsoft.XMLDOM");

source.async = false;

source.loadXML("<%= Session("Offre")%>");

 if (source.parseError.errorCode == 0)

 {

 // Parses the XSL stylesheet

 var style = new ActiveXObject("Microsoft.XMLDOM");

 style.async = false;

 style.load("<%= Session("StyleOffre")%>");

 if (style.parseError.errorCode == 0)

 {

 if (style.documentElement && source.documentElement)

 {

 // Displays the list

 document.write(source.transformNode(style));

 }

 }

 }

}

</SCRIPT>

<center>

<TABLE>

<TR>

<TD vALIGN=top ALIGN=right>

Account Operations List</TD>

</TR>

<TR> </TR>

</TABLE>

<TR> </TR>

<TR> </TR>

<script language="JavaScript">affSimul()</script>

</body>

</HTML>

· AccountOperationList.XSL

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template>

<xsl:script><![CDATA[

function displayPrice(e, tag)

{

node = e.selectSingleNode(tag);

if (node == null)

return "" ;

return "$ " + formatNumber(node.text, "#.00");

}]]>

</xsl:script>

<DIV>

<STYLE>

BODY {margin:0}

.bg {font:10pt Arial; background-color:#006666; color:white}

H1 {font:bold 20pt Arial; width:100%; margin-top:1em}

.row {font:10pt Arial; text-align:right; border-bottom:1px solid #006666}

.header {font:bold 10pt Arial; cursor:hand; padding:1px; border:1px outset gray}

</STYLE>

<TABLE width="100%" cellspacing="0">

<THEAD class="bg">

<TH class="header">Id</TH>

<TH class="header">Reference</TH>

<TH class="header">Amount</TH>

<TH class="header">Operation Date</TH>

<TH class="header">Value Date</TH>

<TH class="header">Comment</TH>

</THEAD>

<xsl:for-each select="AccountOperations/AccountOperation">

<TR>

<TD class="row" style="text-align:left"><xsl:value-of select="Id"/></TD>

<TD class="row" style="text-align:left"><xsl:value-of select="Reference"/></TD>

<TD class="row" style="text-align:left"><xsl:eval>displayPrice(this, "Amount")</xsl:eval></TD>

<TD class="row" style="text-align:center"><xsl:value-of select="OperationDate"/></TD>

<TD class="row" style="text-align:center"><xsl:value-of select="ValueDate"/></TD>

<TD class="row" style="text-align:left"><xsl:value-of select="Comment"/></TD>

</TR>

</xsl:for-each>

</TABLE>

</DIV>

</xsl:template>

</xsl:stylesheet>

Resulting screen copies are shown on the following page. Please note that the Account Id form has not been modified.

[image: image16.png]

With respect to this example, here are the XML data exchanged between the HTTP server and the XML server :

· XML request submitted by the HTTP server to the XML server.

<XMLRequest><AccountId>92065897</AccountId></XMLRequest>

· XML response sent to the HTTP server by the XML server

<AccountOperations>

 <AccountOperation>

 <Id>4</Id>

 <Reference>AMEX01</Reference>

 <Amount>-879.65</Amount>

 <OperationDate>12/15/1999</OperationDate>

 <ValueDate>12/15/1999</ValueDate>

 <Comment>AMERICAN EXPRESS - NOVEMBER BALANCE REGULATION</Comment>

 </AccountOperation>

 <AccountOperation>

 <Id>7</Id>

 <Reference>SW0001</Reference>

 <Amount>-1000</Amount>

 <OperationDate>12/15/1999</OperationDate>

 <ValueDate>12/15/1999</ValueDate>

 <Comment>SWIFT - TO SAVING ACCOUNT #698564584</Comment>

 </AccountOperation>

 <AccountOperation>

 <Id>2</Id>

 <Reference>XRT002</Reference>

 <Amount>-457.98</Amount>

 <OperationDate>12/14/1999</OperationDate>

 <ValueDate>12/01/1999</ValueDate>

 <Comment>AROUND THE WORLD TRAVEL WASHINGTON DC</Comment>

 </AccountOperation>

 <AccountOperation>

 <Id>3</Id>

 <Reference>XRF001</Reference>

 <Amount>-79.32</Amount>

 <OperationDate>12/13/1999</OperationDate>

 <ValueDate>12/01/1999</ValueDate>

 <Comment>SAFEWAY NEW YORK CITY 42TH AVENUE</Comment>

 </AccountOperation>

 <AccountOperation>

 <Id>1</Id>

 <Reference>XTR001</Reference>

 <Amount>-154.65</Amount>

 <OperationDate>12/12/1999</OperationDate>

 <ValueDate>12/01/1999</ValueDate>

 <Comment>SAFEWAY - WASHINGTON DC</Comment>

 </AccountOperation>

 <AccountOperation>

 <Id>5</Id>

 <Reference>CIBA0001</Reference>

 <Amount>-300</Amount>

 <OperationDate>12/01/1999</OperationDate>

 <ValueDate>12/01/1999</ValueDate>

 <Comment>CASH MACHINE - CITY BANK NYC 5TH AVENUE</Comment>

 </AccountOperation>

</AccountOperations>

� INCORPORER Word.Picture.8 ���

40
40

_1007383953.doc
[image: image1.png]

