
Invasion of APIs and the BLOB,

or how I learned to stop worrying and love the acronym.

By Eamonn Foley – Senior Programmer Analyst

Who I Am

 15+ Years in Synon/2e

 DBA, Architect, Developer, Instructor, Consultant,

Cantankerous old coot.

 Currently Sr. Programmer Analyst/General Know It

All at the warranty group®

Target Audience

 2e developers with the following skills

 Basic 2e skills (you can create a function)

 Very basic RPG skills (You can spell RPG if spotted

2 letters and given 26 guesses)

 Basic SQL skills (Create Table, Select, Insert and

Update)

Agenda

 Using APIs in a 2e Model

 Using the SQL BLOB data type.

 Q & A

So why are we here

 Issues arose with traditional method for listing

spool files

 Concerns over system upgrades

 Speed

 Left over spool filess

 Solution was to use API

 Faster

 Upgrade resistant

 Sounds good, but what is it, and how do we use it

API Overview

 What is an API

 An Application Programming Interface (API) is an

interface between different software programs.

 An API can be generic (like a JAVA API) or specific

to an application (like Google Maps API).

 OS/400 provides APIs that replicate commands (but

with greater control/results.

API Overview cont.

 So, what can it do.

 Information found on IBM Infocenter

 “List” programs

 Spool Files (hey that could work), Jobs, Objects,

Object locks.

 “Detail” programs

 Object information, Job Information

 Cool Other Stuff

 User Spaces (sort of like large flat files) Used to

store the “list” results

 Validate User Password

 Encryption

API How to Use It

 Multiple methods to access APIs

 Traditional RPG Programs (OPM and ILE)

 Requires source code skills, limits

enhancement/maintenance

 CL Programs

 Greater access to skills required, but still not a home

run

 2e Functions

 Pretty sure all 2e developers have the skills to

enhance/maintain

API and how to use it

 So how do we get started

 What API do I need?

 List Spool Files

 Create/Delete User Space

 Retrieve User Space

 Um, these don’t look like 2e functions.

 How do I deal with Binary fields?

 Have no fear, lets break it down.

API How to Use It cont.

 2e function required

 Execute User Source

 Used to convert decimal to binary back

 Execute User Program

 Used to define the API call

 Execute Internal Functions

 Wrapper

 2e Arrays

 Used as parameter lists

 Extensive use element feature

API Getting Started

 User Source

 Not as scary as it seems

 2e stores binary values as 4 character text

API Getting Start Cont.

 Execute User Program

 Placeholder for calls

 Use arrays to handle parameter lists

 Nearly all API calls return error messages

API How to Use It cont.

 Execute Internal Function

 Basis for Modular Design

 Functions limited to a single purpose

 Build once use many times.

API Sample

 Defining the functions

 Fields required, Binary data is defined as 4

character text field in the model.

 One time setup – Binary to Decimal, Decimal to

Binary User Source

 Define API as an Execute User Programs.

 All API functions define an Error Structure as part of

each call. This returns blank or the message ID if

there is a problem.

API Sample – Defining Fields

API Sample – Create Conversion Source

API Sample – User Program Stubs

API Sample cont.

 Define Execute Internal Function to wrap around

the call to the API (Create User Space).

 Users provide the name/library for object and get

the return code to test for success/fail.

 This creates a “black box” approach.

 Hides the formatting and other logic from the

developer.

 Rinse and repeat for the Delete User Space API

API Sample cont.

 Define a EXCINTFUN around the call to the list

spool files API.

 API Format (common to lists and some other types)

is used to define the information returned.

 Reading from the User Space

 A user space is nothing more then a flat file.

 When you read, you define the starting point and

how far to read

API Sample cont.

 Reading from the User Space cont.

 List functions all define their information in a header

the same way

 Information header tells you how many records,

where to start and how big a record is

 Break down the process into 2 functions

 Get User Space Record and Get Header Information

 First create a EXCINTFUN that passes in user

space name, starting point and length to read and

returns what was read and a return code

 Get Header Information calls the prior function.

API Sample cont

API Sample cont

API Sample cont.

 Now we need to setup our call to list the spool

files.

API Sample cont.

 Lastly we setup our retrieve of the spool file list

entry.

API Sample cont.

 Now take the returned data and parse it out. (An

array element is nice here).

API Sample cont.

 Seems like a lot of work.

 Nearly all of the functions are built to be resuable.

 Modular, Modular, Modular.

Sample in the wild

SQL And the Blob

SQL & the BLOB

 What is a BLOB

 Not the latest blockbuster summer movie monster

 Binary Large Object

 Useful for storing items such as PDF / images /

documents / Jimmy Hoffa

 Not native to the 2e world (yet?)

SQL & the BLOB

 Getting Started

 All code on an article from Scott Klement

 http://systeminetwork.com/article/rpg-vs-blob

 Will require User Source

 Not beyond the skill of a bad RPG developer (like

me)

.

SQL & the BLOB

 3 Main Items of source code

 SQL Source for your table

 EXCUSRSRC – Define BLOB data type

 EXCUSRSRC – The Read and Write of object

SQL & the BLOB cont.

 SQL Source for your table

 Plenty of ways to define this

 STRSQL

 SQL editor in Ops Navigator

 <Insert name of favorite SQL editor here>

 Just so long as you have defined the BLOB SQL

data type for one of your fields.

SQL & the BLOB cont.

 EXCUSRSRC – Define BLOB data type

 Only lines needed are to define the data type for RPG

 D BlobObj S SQLTYPE(BLOB_FILE)

 Compiler will convert this to a data structure that

consists of the IFS path (BlobObj_NAME), length of the

IFS path(BlobObj_NL) , and the file

operation(BlobObj_FO).

SQL & the BLOB cont.

SQL & the BLOB cont.

 EXCUSRSRC – The Read and Write of object

 First we setup the file operation

 Defined constants by compiler SQFRD for reading in and

SQFOVR to write out, overwrite if it exists

 Select or Insert depending on which way you are going

with the object.

 Lastly we test if the SQL operation was successful

 Test SQLCOD

SQL and the BLOB cont.

Questions?

