
INSIDE THIS ISSUE

The CA-IDMS Database and Applications User Association

http://iuassn.org

Winter 2005, Number 66

(continued on page 2)

FOLLOW-UP TO INTERVIEW WITH
ANTHONY GAUGHAN, SENIOR V.P. AT CA

In the summer we published an interview with Tony Gaughan,
the (then) new head of the Computer Associates mainframe
software tools (including IDMS). One of his stated objectives
was to review the policy of selling users a separate license for the
SQL Option as opposed to bundling it into the IDMS package.
Tony has completed this review and has come back to us with his
conclusions by way of Judy Kruntorad, the IDMS Product
Owner who has provided us with this response:

 “The IUA Board recently followed up with Tony
Gaughan to get an update regarding bundling the
Advantage CA-IDMS SQL Option with the base product.

“Tony advised that after the IUA interview, he launched
an initiative within CA to review the existing contracts for
Advantage CA-IDMS and the SQL Option and to review
the value that the SQL Option adds to the base Advantage
CA-IDMS/DB Database product.

“After a long analysis and discussion at several levels of
management, the decision reached was that SQL for
application and end user access will continue to be an
option to the base product.

“Tony commented: “The SQL Option provides significant
business value to the IDMS customers who exploit it. It
provides the foundation for creating new applications and
for accessing IDMS data and business logic from the web.
In looking at the contracts, it became apparent that the
majority of our IDMS customers are already licensed for
the SQL Option. Additionally, SQL technology for
database administration purposes is already bundled for use
with the Advantage CA-IDMS Visual DBA tool. This tool
has been available at no additional charge to all Advantage
CA-IDMS/DB customers since 2003.

Follow-up to Interview with Anthony Gaughan....1

Message from International Chair....2

EdOp2004 in Montreal....2

CA Announces CA World dates....3

Winter Corporation Launches 2005 TopTen™....3

Integration Architectures-A Primer for the Issues Topics....3

MQSeries – What’s it all about?....5

Using IDMS Server for Web Access to CICS data....6

An Overview of TCP/IP....7

Having a Go with the Release 16.0 TCP/IP Line Driver....8

The Dumbest Solution Ever?....9

Hunter-Killer Facility....11

Second thoughts....11

Handling CA-IDMS Server Errors in ASP and ASP.net....12

Topics for Connections Issues....16

Some Insights on John Swainson....16

http://iuassn.org

2

MESSAGE FROM INTERNATIONAL CHAIR
By Bob Wiklund, Tiberon Technologies

Interview with Anthony Gaughan cont’d from page 1

“We are now working with our new Mainframe sales
organization to ensure that all IDMS customers who want
to derive the benefit of the SQL Option will be able to do
so. We are embarking upon an extensive outreach
program to contact IDMS customers that do not have the
SQL Option to discuss their specific needs and to ensure
that they have the right solution. CA is committed to the
ongoing development and support of IDMS as well as the
success of our customers.

“Tony encourages IDMS customers to contact their local
sales representative if they would like to learn more about
the SQL Option and the benefits that it can provide to
their existing IDMS environment.”

[Tony Gaughan, SVP and Business Unit Executive for
Databases and Application Management at Computer
Associates, was interviewed by the IUA last year. This
interview was published in the Summer 2004 Connections
newsletter. The complete newsletter with the interview can
be viewed from the Archive page on the IUA website.]

I’m very proud to have been
elected to serve as the 2005 chair
of the IUA. As in other years, this

year is proving to be a great challenge; I’m very fortunate
to have a dedicated team of IDMSr’s on the board to help
me.

Since Computer Associates has postponed CAWorld until
this fall, the usual time for the IUA Workshop, we’re
working to determine where we can fit the EdOp this
year. We have a few irons in the fire and will let you
know when we know more.

The 2004 EdOp in Montreal was a great success. I
would like to thank the IUA board who worked to put it
together, Computer Associates’ event planning staff, our
speakers and sponsors (Computer Associates, Neon

EDOP2004 IN MONTREAL
by Dan Hall
As the out-going chair of the Education Commission, I
would like to thank everyone who helped make the
EdOp2004 in Montreal a great success. There were
sessions concerning the future of IDMS, what’s new in
release 16.0, sessions for DBA’s and sessions for
programmers. All the presenters of these sessions deserve
a special thank you for going the extra distance. I would
also like to thank all those people behind the scenes that
worked very hard to make EdOp2004 a success.

I talked with a lot of people who were attending the
conference and everyone seemed to enjoy the sessions.
Those people from out of town seemed to enjoy
Montreal.

If you attended the conference, did you fill out a survey?
We need your comments! What did you like? What didn’t
you like? Is there something you would like to see added
to the conference? Whether you were there or not, if you
have a suggestion go to the IUA website
(www.iuassn.org) and send us a comment. You can do this
by clicking on the “About the IUA” tab and then on the
“Contact Us” tab.

Systems, ObjEx Inc. and ISP/TACT/Cogito/VegaSoft)
for a great event.

We are trying a new tack with Connections this year.
Instead of publishing 3 or 4 general issues, we plan on
publishing 5 or 6 issues that will be topical and a help to
you. We are looking for IDMSr’s to contribute articles
which are worth a free year’s membership. Please see the
article on the upcoming issues and their topics on page
16.

I’d like to thank Laura Rochon, our out-going chair, for
the great job she has done for the past 2 years. Finally,
I’d like to thank those board members and volunteers
who have left us this year: Kay Sussmann, Steve Nason
and Jim Rice. Thanks for all your years of hard work on
the behalf of the IUA.

WWW.IUASSN.ORG
YOUR PORTAL TO IUA SERVICES

AND IDMS CONTACTS

CHECK OUT THE IUA
ARCHIVE LIBRARY OF
IDMS PRESENTATIONS

http://iuassn.org
http://iuassn.org

3

CA ANNOUNCES CA WORLD DATES
The IUA has received the following notice from
Computer Associates:

“We are pleased to announce our plans for CA WorldSM

2005. Our flagship customer event will be held at the
Venetian Las Vegas and Sands Expo and Convention
Center, in Las Vegas, Nevada, from November 13-17,
2005. We will be issuing a press release shortly but
wanted you to have the information before it is officially
announced.

“As the largest annual global gathering of CA customers,
user group members, business partners, CA employees
and IT leaders, CA World 2005 will provide unparalleled
networking and relationship building opportunities, as
well as allow attendees to explore the full-range of CA’s
world-class management software solutions.

“Through content-rich sessions covering CA solutions,
key strategies, product demonstrations and hands-on labs,
attendees at CA World 2005 will benefit from in-depth
training they can implement to grow and improve their
business. This year’s conference will also reflect trends and
issues in our industry and we intend to better leverage the
value of our partnerships for the benefit of our customers.
They will have an opportunity to interact with Alliance,
Service and Technology Partners, as well as with CA
product development, support specialists and key
executives.

“The schedule and details for the conference are still
being defined. We plan to have more information posted
to the CA World website within the next month,
including registration information and forms. Please
continue to submit your ideas and input by visiting
ca.com/caworld.”

We will pass on more information as we receive it.

WINTER CORPORATION HAS
LAUNCHED THEIR 2005 TOPTEN™
PROGRAM
You know your Advantage CA-IDMS database is large;
you know it processes a huge number of transactions each
day and that it can handle more concurrent users than you
can count; but is your database one of the world’s largest
or busiest?

The Winter Corporation 2005 TopTen™ Program
identifies the largest and most heavily used databases in
the world. The program explores the boundaries of
database scalability and celebrates the remarkable
achievements of those who have built or are managing or
using these databases.

The Advantage CA-IDMS development and support team
encourages you to participate in the Winter Corporation’s
2005 TopTen™ Program to find out how your system
ranks with the world’s largest databases. In past years,
Advantage CA-IDMS customers have placed in the
TopTen™ see results at this link.

Participation in the program is easy. If your database
contains over one terabyte of user data, fill out the short
questionnaire at this link and provide the validation for
your responses:

http://www.wintercorp.com/VLDB/
2005_TopTen_Survey/2005_TTSurvey_Frame.htm

(Find the required validation information on the Winter
Corp. website. For validation of users with Advantage CA-
IDMS databases, run the PRINT SPACE utility, run a
supplied Advantage™ CA-Culprit™ program, and perform
DCMT command screen prints.)

All participants receive a complimentary gift from Winter
Corp. TopTen™ winners earn awards ranging from
gourmet chocolate to customized plaques. In the last
campaign, 193 awards were distributed to 63 different
organizations. Participants also receive the Members
Report free of charge, which is a compilation of survey
findings and database technology insights.

Complete your survey with the required validation
information and submit it by July 15, 2005, to qualify
for being a TopTen™ winner. Plan now to complete your
entry by this date.

INTEGRATION ARCHITECTURES
A Primer for the Issues Topics
by Brock Shaw
When people refer to Application Integration in relation
to the web, client-server or multi-tier environments, they
really mean one of a set of alternative strategies for
getting applications to communicate from platform to
platform. The nature of each of these strategies and their
appropriateness for particular application areas must be
understood before choosing a particular solution for any
particular problem.

As a starting point, the strategies can be categorised in the
following short descriptions:

SQL-based
The two common examples of this are ODBC and
JDBC. These are essentially SQL calls wrapped up
in a standard message format which most SQL-
capable databases support.

EDI
This method covers all situations where a data
interface has been defined to connect two different
application platforms, which permits sending of

continued on page 4)

http://ca.com/caworld
http://ca.com/caworld
http://www.wintercorp.com/VLDB/Past_Winners.html
http://www.wintercorp.com/VLDB/2005_TopTen_Survey/2005_TTSurvey_Frame.htm
http://www.wintercorp.com/VLDB/2005_TopTen_Survey/2005_TTSurvey_Frame.htm

4
(continued on page 5)

of SQL invoked “services”, i.e. the application wishes to
have some general database service performed against the
IDMS database. A program is written (or existing
business code used) to implement this “service” and it
may be programmed in SQL or network DML language.
Once developed, any application anywhere may invoke the
“service” using SQL syntax.

This is ideal for situations where application programs can
phrase their integration need in an SQL format and
expects a synchronous response.

EDI:
This approach may be considered old fashioned but still
has some appeal because of its inherent simplicity. It also
permits existing defined transaction to be performed
locally based on data coming from another platform, with
minimum impact on the existing code. The only
requirement is that both platforms have access to a data
or file transfer protocol such as TCP/IP or even SNA,
and software be written or acquired to transmit files
between the platforms. FTP is an obvious example of a
protocol widely supported. The approach however does
not provide any security, error handling or recovery, and
hence there are design issues for this method.

It is particularly useful for passing over batches of
transactions which are in the format of an existing
transaction or can be readily converted to it. All recovery
and integrity issues are the responsibility of the
applications or the operations. Processing schedules can
however be made quite flexible on both sides.

Program to Program:
There have been facilities for communication between
platforms form earliest times and these are all essentially
program to program conversations. However, most rely
on system software provided by vendors performing them,
though there usually exist facilities which support one
application program talking to another. TCP/IP is one
which springs to mind but LU6.2 support provides an
SNA alternative (if dated).

Under this class of integration, a program must be written
on each end of a communications line: one to listen and
one to transmit. If two-way communication is required,
then a listener and a sender is required on both ends, and
each new type of conversation needs its own support.
Typically, the receiving end sets a “listener” to wait for a
message and this program does not try to read a message
until it is notified that one is ready to be received. It
needs the sender to initiate the process by initiating
connection and sending the message.

Most likely a program will perform a fairly standard
sequence of coordinated steps as shown in the figure.

The two will synchronise when a conversation is started.
It also common to allow for the use of pseudo-

data files, individually or batched. The means of
transmission can be by such standard means as FTP
or a bespoke software solution.

Program to Program
It can be any mechanism that allows two programs
to carry on a “conversation” for an application
purpose. There is normally at least a pair of
bespoke programs designed to carry on a particular
conversation and it is in general associated with a
access protocol such as TCP/IP.

Message Queue
Clearly it refers to implementations of the IBM
designed MQ protocol linking two platforms,
though the maker of the software on any platform
is not necessarily IBM. Application programs
simply send or receive defined messages to or from
particular named queues and the software is
responsible for all aspects of delivery of messages to
the right recipient.

Having defined and summaried the methods, each is dealt
with in greater detail.

SQL-based:
Such solutions are ideal for integration of applications
with logical information structures already using SQL as
the language. Code may for instance run on a PC or
midrange platform, and need never be aware of the
identity of the DBMS target of the SQL or the platform
where the data resides. This aspect is handled in a
separate data source definition.

The calling program requests an ODBC/JDBC service,
passing the text of an SQL request. This is wrapped up in
a standard message format, which can then be directed to
any connected and target platform with the database. The
calling program can be written in a standard
programming language, e.g. C#.NET, PERL, JAVA, but
can also be a tool such as Excel or Access. The return is
either an error code or a set of one or more rows which
satisfy the SQL request.

For IDMS users, the clear advantage is that such requests
can be made to any IDMS database, including network.
Hence, application integration can be very simple through
IDMS Server with no programming required. If the
database is a network, then an SQL schema must be
defined for the existing non-SQL schema and of course
there are some network facilities which may not be fully
supported in SQL. It may limit some SQL requests.

Far more important in the long run may be the Table
Procedure and the SQL Procedure facilities of IDMS
which mean that SQL requests can be defined to be
handled by application programs running under IDMS.
This permits a way around the incompatible network
structures but more importantly it permits the definition

Integration Architectures continued from page 3

5
(continued on page 6)

Integration Architectures continued from page 4

conversations to be established between any of the
“reveive” and “send” operations to improve efficiency.

This method is ideal for any situation where integration
requires a negotiation between the two applications being
integrated.

Message Queue:
This approach is particularly used in order to have related
applications on two or more platforms synchronise or co-
operate with each other. An application program on one
platform simply sends a message to a named queue. It is
the responsibility of the supporting software (MQ Series,
MSMQ, etc.) to handle the routing of the message, line
connection, error and recovery issues and to ensure the
safe delivery of the message to the other end. The reader
is invited to see the related article by Laura Rochon
giving her experience with MQ.

This method is ideal where one application internally
decides that information must be sent to another
platform, possibly many. Once sent, the application gives
no further concern to the deliver of the message unless a
“return receipt” message required from the receiver,
which of course would need application code to manage
the situation.

Conclusion
Somewhere in this list is a method which is the most
appropriate to any particular integration requirement and
the first priority of the designer is to make a decision as to
which is the best in this case. It is hoped that the notes
above may help in understanding this choice.

MQSERIES – WHAT’S IT ALL ABOUT?
by Laura Rochon

MQSeries has been a buzz word for quite a while now.
But, if you haven’t had a chance to work with it, you
might not know that much about it. Here’s your chance.
MQSeries products enable programs to communicate with
one another, regardless of where they are located, using a
consistent application programming interface. For
example, in my shop, we’re using MQSeries to pass data
between a CA-IDMS application and an Oracle
application on a HP-Unix box, and also to pass data
between another CA-IDMS application and a DB2
application running on NT. This communication is
done with message queuing. The exchange of messages
between the applications is time independent. This means
that one application can send the message, even though
the other application is not running. The message is not
lost. MQSeries guarantees that the message will be
delivered when the other application comes back online.
And that is the strength behind MQSeries.

Basically, with MQSeries, we are dealing with Queue
Managers, Messages and Queues. The queue manager is
the part of the MQSeries product that provides the
messaging and queuing services to application programs,
through the MQI (Message Queue Interface) program
calls. In other words, the application program talks to the
queue manager for the machine that the application is
running on. For example, my DB2 application on the NT
box talks to the NT Queue Manager. When the DB2
application sends a message to my CA-IDMS application,
the NT Queue Manager sends the message to the MVS
Queue Manager where my CA-IDMS application is
running. These messages are actually sent through
queues. The queue belongs to a queue manager, which is
responsible for maintaining it. A queue can be a local
queue, meaning that it actually resides on the machine
that you are running on, or it can be a remote queue,
meaning that the queue belongs to another queue
manager. This means that the queue manager must send
the message on the remote queue to the queue manager
responsible for that queue. For example, when my DB2
application sends a message to my CA-IDMS application,
the message is being sent to a queue defined as remote to
the NT Queue Manager. Therefore, the NT Queue
Manager communicates with the MVS Queue Manager
responsible for that remote queue. On the MVS box that
queue is defined as local. Have I confused you yet?

As mentionned before, application programs
communicate with the Queue Manager with MQI
program calls. Basically, the application programs
connects to a Queue Manager with the MQCONN
command and opens a queue with the MQOPEN
command. It can send messages to the queue with the
MQPUT command, and retrieve messages off the queue

Receiver Sender
Initiate session
LISTEN
…
Activate Initiate session
Receive Send
Send Receive
…

CONTRIBUTED

SOFTWARE

LIBRARY

Save time and use

the experience of

others to resolve

problems.

6

MQ Series continued from page 6

with the MQGET command. And of course, there is the
command MQCOMT to commit all changes sent to
MQSeries. Let’s use a diagram to better illustrate our
example:

So in our above example, the DB2 application would issue
a MQCONN to the NT Queue Manager to start a
conversation with MQSeries (gees, that’s sounds like a
BIND RUNUNIT to me), along with a MQOPEN
QUEUEA (and that could correspond to a READY to say
what you’re accessing). Then to send a message to the
CA-IDMS application, it would do a MQPUT to
QueueA. The NT Queue Manager receives the messages
for QueueA, and it knows that it’s a remote queue. It
sends the message across to the MVS Queue Manager
that stores it within the local QueueA queue. At some
point, the CA-IDMS application connects to the MVS
Queue Manager with a MQCONN, and opens the
QueueA with a MQOPEN. It issues a MQGET for
QueueA, and the MVS Queue Manager returns the
message that was sent by the DB2 application. To send
information to the DB2 application, a remote queue must
be defined to the MVS Queue Manager, with a
corresponding local queue defined to the NT Queue
Manager.

There is one other concept that is important to MQSeries,
it’s triggers. You can define trigger events to MQSeries,
thru the use of initiation queues. When a specified
condition on a queue is satisfied, a message is sent the to
initiation queue. A trigger monitor program reads the
initiation queue and starts the appropriate application to
process the message.

From a CA-IDMS point of view, it all depends on
whether it’s a batch program or an online program.
However, in either case, the program needs to be put
through the MQSeries pre-compiler, as well as the CA-
IDMS pre-compiler. If it’s a batch CA-IDMS program,
the program can issue MQ commands without any
problem, and you can access a Queue Manager on the
mainframe. With R16 of CA-IDMS, even two-phases
commit is available with the z/OS or OS/390 RRS
services. For an online program running within CV,
another piece of software is needed to talk to the Queue
Manager. There are two products available on the
market: OCA-MQSeries from Neon Systems and VEGA
MQSeries from Vegasoft. Basically, both products attach
an opsys subtask within the IDMS region. When a

MQSeries command is executed, the command is passed
to the subtask who talks to the Queue Manager. Both
products allow triggers to be defined within the CA-
IDMS region. Both products allow Cobol, Assembler
and CA-ADS programs to call the standard MQSeries
commands. And both products support Trigger Monitors
within CA-IDMS.

Overall, MQSeries is a very powerfull and robust tool that
allows applications to pass data back and forth regardless
of their location, using a common interface. It can easily
be used by CA-IDMS applications to pass data to other
applications running on other platforms.

 NT Queue Manager MVS Queue Manager

QueueA - remote QueueA - local

QueueB - local QueueB - remote

USING IDMS SERVER FOR WEB
ACCESS TO CICS DATA
by Dan Hall

Sometimes we can use tools in different ways than they
were originally intended. We had that happen here. We
had a requirement for web access to an application
running in CICS. This application allows customers to see
their expedited orders. A copy of the current order
database on a server, updated hourly, was not considered
timely enough. We needed real time access to the data
that is on the mainframe. The CICS region did not have
the web interface installed, but we were already accessing
IDMS data in an intranet web application on that
platform. The IDMS Server apps on the NT Server called
the IDMS CV on the mainframe, allowing real time access
to legacy data. Since this procedure was already in place,
and the Unix programmers already knew these apps, we
took a novel approach to accessing the VSAM files in
CICS. We defined these VSAM files to IDMS as read only
files and then told the Unix programmers to go for it.

Here are all the steps we followed to accomplish this task.
I hate to admit it, but we spent more time verify this was
all we had to do, then actually accomplishing our goal.

• Run the old COBOL copybooks of the VSAM records
into a batch IDMSDDDL job to add the to the
dictionary.

• Create a small schema that defines the CICS records
and areas.

ADD SCHEMA CICSREAD.

ADD AREA CICS-VSAM-AREA.

ADD

RECORD NAME IS TABLES-FILE

 SHARE STRUCTURE OF RECORD TABLES-FILE VERSION 1

 RECORD ID IS 1001

 LOCATION MODE IS VSAM CALC USING (TABLES-KEY)

 DUPLICATES ARE NOT ALLOWED

 WITHIN AREA AREA07 OFFSET 0 PERCENT FOR 100

PERCENT

 . continued on page 7)

7

ADD

SET NAME IS TABLES-SET

 ORDER IS SORTED

 MODE IS VSAM INDEX

 MEMBER IS TABLES-FILE

 MANDATORY AUTOMATIC

 KEY IS (

 TABLES-KEY ASCENDING)

 DUPLICATES ARE NOT ALLOWED

 NATURAL SEQUENCE

 .

• Define the new areas and files to the DMCL.

CREATE

SEGMENT CICSAPP

 FOR NONSQL

 PAGE GROUP 0

 ;

 CREATE

 FILE CICSAPP.FILE01

 ASSIGN TO FILE01

 DSNAME ‘CICS.VSAM.FILE01’

 DISP SHR

 KSDS FOR CALC

 ;

 CREATE

 PHYSICAL AREA CICSAPP.AREA01

 PRIMARY SPACE 6000 PAGES FROM PAGE 4000001

 MAXIMUM SPACE 6000 PAGES

 PAGE SIZE 0 CHARACTERS

 WITHIN FILE FILE01

 FROM 1 FOR ALL BLOCKS

 ;

MODIFY DMCL IDMSDMCL.

 INCLUDE SEGMENT CICSAPP

 DEFAULT BUFFER CICSAPP-BUFFER

 ON STARTUP SET STATUS TO RETRIEVAL

 ON WARMSTART MAINTAIN CURRENT STATUS

 DATA SHARING NO

 DEFAULT SHARED CACHE NULL

.

Once the DMCL was generated and then new copied into
the CV, we had web access to the CICS VSAM data.
There was no outage to either CICS or IDMS to
implement this. The cost to allow web access to CICS
VSAM files was 1 or 2 days work from the IDMS DBA.
As mentioned before, most of this time was reading
manuals to make sure we were not missing any steps.
Since we were already using IDMS Server, nothing else
needed to be added or changed to allow the Unix Servers
to have SQL access to CICS VSAM data. Our internal
customers were very happy with the speed at which we
were able to “web enable” the CICS data. They were
under the misconception that any changes on the
mainframe took weeks, if not months, to perform. Also,
they certainly enjoyed the low cost associated with the
web access to their legacy mainframe data.

Using IDMS Server continued from page 6 AN OVERVIEW OF TCP/IP
by Terry Schwartz

TCP/IP (Transmission Control Protocol/Internet
Protocol) is the basic communication language of the
web. When you utilize TCP/IP, the data you are sending
is assembled into a packet in which is embedded the
address of the destination of the packet. For example,
when you bring up a web site in a browser, you are
exchanging TCP/IP packets back and forth with the IP
address that represents that web site (i.e. 192.168.33.25)
TCP/IP packets are simply buffers of data that must be
dissected by a program on the receiving end. Programs
communicate over TCP/IP by using simple commands
such as Get Socket, Connect, read, write, and close
socket.

In OS/390 there is one TCP/IP address space that
receives and sends all incoming/outgoing TCP/IP
packets. The TCP/IP address space determines where to
send a packet of data by the port number that is included
in the message. For example if you code a browser URL
like HTTP://192.168.33.25:3000 , the number 3000
after the colon tells TCP/IP to route the packet to the
program listening on port 3000. On the mainframe when
systems like CICS and IDMS start they inform TCP/IP
of the port(s) that they will be using to communicate.

Computer Associates added a TCP/IP interface to CA-
IDMS in version 16. This allows ADS/O, COBOL, and
Assembler programs to communicate with any platform
using the TCP/IP protocol. To facilitate TCP/IP
communications in CA-IDMS a line with a type of
SOCKET is added to the sysgen. The line definition
contains the port number that tells TCP/IP to route
messages to that port to IDMS. Enough LTERM/
PTERM pairs are added to the line to support the
maximum number of concurrent TCP/IP sessions. The
line definition also contains the name of the user task that
IDMS will pass any incoming TCP/IP packets. There are
two types of programs that can utilize the TCP/IP
interface. Listener programs that receive incoming packets
and client programs that send data out to a host.

The new TCP/IP interface opens IDMS up to new
functionality. Below are a few of the uses that the TCP/
IP interface can be used for:

• Send and receive data from/to a Java or Web
application

• Real time Electronic Data Interchange
• Data exchange with programs on Unix or AS400
• Send and receive Email

One functionality that I have implemented in our shop is
sending email from IDMS. We use this as a simple work
flow tool to notify users that they have items to approve.
Email is sent using TCP/IP and SMTP (Simple Mail
Transfer Protocol). SMTP is a structure that governs the

(continued on page 8)

8
(continued on page 9)

conversation between your program and a mail server.
TCP/IP is used to connect to the mail server and then a
conversation with the mail server is held using TCP/IP
packets. Packets sent to the mail server contain SMTP

keywords and a response is then read from the server with
a response to your message. Example of these keywords/
responses conversations are as follows:

I will be posting the code for sending email from IDMS
in the IUA’s User Contributed library. As you can see the
new functionalities built into CA-IDMS are opening up
new avenues of communication and accessibility to data
kept in IDMS databases. I encourage you to find new uses
for CA-IDMS so that you can bring more value to your
corporate IT solutions.

HAVING A GO WITH THE RELEASE
16.0 TCP/IP LINE DRIVER
by Gary Cherlet
Most readers would be aware that one of the major new
features in Release 16.0 of CA IDMS-DC is the TCP/IP
line driver. This is a great addition because TCP/IP is a
leveler in terms of communication between disparate types
of hardware and operating systems in an “open world”.
The TCP/IP line driver will allow your mainframe, online
applications to operate as equal partners in today’s mutli-
varied computing landscape.

This is not a tutorial on TCP/IP – but there are a few
things that we should probably mention by way of
introducing the protocol for the uninitiated. At its
simplest it is a non-propietary client:server
communications protocol – in contrast to APPC which is
a proprietary protocol.

In a similar way that your Subschema Control area
represents a database unit of work once you’ve done the
BIND, a SOCKET represents a TCP/IP unit of work –
not dissimilar to an APPC conversation.

Outbound Messages
When establishing a TCP/IP conversation you initialize
the API, allocate a SOCKET and then point TCP/IP to

the IP Address and Port that you wish to communicate
with. For outbound messages TCP/IP will dynamically
allocate you to any free port. Depending on the
application you will either simply send your message to
the indicated destination, or you will send it and wait for
a reply – probably the more common situation in a
distributed application.

Inbound Messages
Your outbound message was directed to a specific IP
Address and Port – there is a “listener” on that port that
will read and process incoming message traffic. If there is
nobody “listening” on that Port at that IP address – an
error is returned – similar to the case when you point
your browser to a URL and it comes back with an error
because the server is down.

The Generic Listener
The “listener” is the “server” in this scenario – it sits
there waiting for a message to arrive for it to act on. You
have two basic choices in the design of your listener:

1) It can both Read and Process the message – and
then Write the reply back to the originator, or

2) The listener can attach another task, pass the
Socket to that task, and then establish another Socket and
continue listening for the next message.

It should be clear that there is the potential for
performance problems in the first case, and that there is a
fair deal of technical knowledge required in the second
case.

This is the beauty of the “generic listener” that is
provided by CA. In system generation you can specify a
PTERM that will have a listener active on a user specified
Port, and the name of the Task (with its associated
program already defined in sysgen) that will be invoked
when a message arrives on that port.

This allows you as the developer to code the “server” end
of a client:server application with the minimum amount of
technical knowledge and a minimal TCP/IP verb set –
basically at the READ/WRITE/CLOSE level – no need
for the equivalent of an “OPEN” because this was already
done for you by the listener. So you can see there is a very
small learning curve.

Message Formats
Once again you’ve got two basic choices – you can go
with the tightly coupled, data dependent design using
fixed format records, kind of like a sequential file with
only one record in it (the inbound or outbound message).
This choice of course is very inflexible and in today’s
dynamic world is not very desirable – since somebody
who wants to use your server must know and understand
your record layouts.

An Overview of TCP/IP continued from page 6

9
continued on page 10)

Having a Go with the Release 16.0 continued from page 9
Far more desirable is to use a “data independent” format
such as XML (eXtensible Markup Language). The beauty
of XML is that it gives you a great deal of data
independence. The incoming document can have more
information in it than your application requires – but as
long as it has the minimum content that you require you
will be able to process the transaction.

In a fixed format design if you get too much information
you will have a “wrong length record” problem, and data
may be shifted to the left or right of where you expect it
to be. When you process an XML document from one
source the data content may be in a different sequence or
location within the document than the same document
from another source – but this is all sorted out by the
“XML Parsing” process.

Parsing XML
In an IDMS-DC application you can use the Cobol
XMLPARSE verb. This is a SAX style parser – Simple
Access to XML. Basically it starts at the beginning of the
document and works its way through – each start and end
“tag” for identifying data content is an “event” which you
can choose to process or not.

This can be contrasted to the DOM processors
(Document Object Model) which parse the entire
document and effectively create a hieararchical database in
memory that you can “navigate” from parent to child
down any of the “branches” of the tree.

The SAX style parser provided by Cobol is easy enough to
learn to use – certainly simple documents can be parsed
and the required data content can be extracted with
relatively small amounts of code. I expect that more
complex documents with variable numbers of “children”
in the tree may prove to be more “challenging”.

Sample Architecture
The diagram above shows one architecture that helps to
simplify application coding by isolating technologies
(note: all programs are Cobol). The “Service Manager” is
the only program (other than the “client”) that needs to

know how to speak TCP/IP. It works out the right
program to invoke and passes the inbound XML
document through the “requestXML” Scratch Area.

The “Server Program” is the only program that needs to
understand the peculiarities of the specific XML
document that carries the data content for the transaction
that it will process. The results of the transaction are
formatted as XML and passed back to the “Service
Manager” through the “replyXML” Scratch Area.

One advantage of this architecture is that other
applications running in the same IDMS-DC environment
can use the Server Programs through the Scratch Area
interface – so you really do only need one copy of the
code to service all environments – be they 3270, green
screen based, or mid-range or other mainframe
application based.

Bottom Line
The Release 16.0 TCP/IP line driver allows you to code
mainframe applications that can act as either a client or
server in today’s highly networked world. By using XML
as the “common language” at each end of the
conversation these applications will be able to stand the
test of time as message formats change and grow. Existing
applications can continue to process as they always have
without change – while new applications that use the
same message can take advantage of the new data content.

With enough time, and enough space we could try to
explain how all of this fits into the WWoA – Wonderful
World of Acronyms: UDDI, WSDL, SOAP, SOA, MOM
and so forth. But for now this hopefully gives you some
idea of what you can do with the TCP/IP line driver in
Release 16.0, and how you can put it to good use almost
straight away.

THE DUMBEST SOLUTION EVER?
by Gary Cherlet

This is a story about IDMS system throughput issues that
required us to take an approach that is contrary to the
usual approaches that I have seen taken – in fact it is
probably the dumbest solution to a performance problem
that I have ever seen.

Police trainers at the South Australian Police Academy
regularly have 30+ Officers, spread across two training
rooms, logged on to the system. The number of deadlocks
and the number of times that the system froze completely
had become unacceptable. The problem is exacerbated by
the fact that all the trainees are doing the same type of
work – and so hit all the database “hot spots” very hard
for such a small number of users (our production system
regularly has 520-530 users on at the same time).

10

The Dumbest Solution Ever continued from page 9

The level of deadlocking made the job difficult, if not at
times impossible for the trainers. The number of ABORTs
and the amount of lost work would be very frustrating for
the students, and for new Officers would not create a very
good first impression of the computer systems that they
will be expected to use.

Normally, all other things being equal in terms of
program and storage pool sizes and buffering and IO
subsystem performance for example, you start by tuning
MAX TASKs so that you have the smallest number that
allows you to not to sit permanently in the MAX TASK
condition. This is an attempt to help the system run faster
by keeping dispatch and resource chains as short as
possible.

The problem with starting up lots of tasks, especially if
you are running close to the limits of the amount of
available CPU cycles, is that the system works harder and
runs slower, the tasks take longer to complete and so have
a greater chance of deadlocking with each other, which
the system has to work harder to manage and resolve. So
generally – less (tasks) is better.

We tried looking into application changes – but this
proved to be impossible for a number of fundamental
design as well as political issues. So we were left with
trying to find a system level solution to the problem.

Attempt 1
Our first attempt was to try making task ADS2 non-
concurrent to try to enforce some single-threading – this
actually made the problem worse because the students
were blasted right out of their emulator sessions when
they got a message about the task being non-concurrent.
Next - by trial and error, we determined that the smallest
number that we can set MAX TASKs to, and not clag the
system, is 22.

This did not quite force single threading to avoid
deadlocks - but came pretty close (there are 19 system
tasks). At that number we can not afford anybody to get
into the Performance Monitoring tool (PMRM) - so set
task PMRM disabled. We have a CLIST that enables
PMRM, bumps MAX TASKs by 1 on entry, and reverses
the procedure on exit.

We modified the control record for “Hunter/Killer” to
“look around” every 60 seconds instead of 150 seconds,
the “maximum time” that a task will be allowed to
execute has also been lowered from 150 seconds to 60
seconds. This should help to “clean up” the system faster
when long queues of users build up waiting for access to
particular database records.

Attempt 2
Still looking for “quick fix” options to apply specifically to
the Training environment. We tested a system generation
option for the ADSOMAIN program that forces it to
“single thread”. ADSOMAIN is the program that

“drives” all ADS applications for all users. By forcing it to
“single thread” we are telling the system that it’s OK for
lots of users to start executing an ADS task (i.e. press
<enter> or any other attention key), but whenever that
task wants to use ADSOMAIN it can only do so if there is
no other user of that program.

Our problem with tightening up the maximum number of
concurrent tasks to force single threading had now
reversed. We now wanted to allow a large number of tasks
to start up - but force them to pass through ADSOMAIN
one at a time. The appearance to the users, that is the
students and trainers, is that they are all running their
tasks at the same time - there is no apparent difference or
change in appearance of the online application processing.
We then implemented the following changes to the
Training environment:

1) Change system generation to make ADSOMAIN
NONCONCURRENT, and

2) Increased the maximum number of concurrent tasks
from 22 to 26 (although we have since discovered that
30-40 or more was a better number).

Attempt3
I noticed that even with only 7-9 users on the system
Hunter/Killer was cancelling user tasks because they were
waiting for a program to be loaded. This would no doubt
have been waits for ADSOMAIN (the program we are
using to force a “single server queue”).

In an earlier effort to clean up database deadlocking
(waiting) earlier rather than later one of the changes made
was to shorten the amount of time that Hunter/Killer
would allow tasks to be active from 150 seconds to 60
seconds. I have since changed the amount of time from
60 seconds to 90 seconds to allow for the waits for access
to ADSOMAIN.

Also – we applied put an “Hunter/Killer override” to
allow this specific condition - in other words tasks that are
waiting for a program to load will be allowed to run
indefinitely (although we will be sent “warning” e-mails) -
but other tasks waiting for other reasons will be cancelled
after 90 seconds.

Final Word?
In recent weeks Police have had a number of training
sessions in the Training environment and there have been
no “events” in the log: no deadlocks, no abends caused by
our adjustments, no task terminations by Hunter/Killer.
It looks like we are getting a handle on TRN even
without the recommended application changes being
made.

So our final solution was to, as much as possible, create a
situation where we forced the system to all but single
thread, we allowed a lot of tasks to start up to cater for

continued on page 11)

11

SECOND THOUGHTS
Denise read the “dumb idea” article and decided
that people might need to know what “Hunter/
Killer” is (several references to it) - so here is a
“teaser” that might precede the “dumb idea” article.
As mentioned in the last paragraph - we could make
the “package” available to UCL if there’s any
interest in it. Don’t worry if this one isn’t useful - it
was a 5 minute <cut> <paste> job from the
documentation that comes in the “package”.

HUNTER-KILLER FACILITY
by Gary Cherlet

Task GUT0042T tries to identify (“hunt”) and terminate
(“kill” with a dcmt v active task terminate command)
online tasks which have been running in the system for
too long.

There are other ways of trapping tasks that have been
running for too long in IDMS-DC/UCF systems, but the
most likely way would be with system resource limits for
online tasks. Unfortunately there is a performance penalty
of around 5-7% additional CPU for the region – in
addition to another 10% (varies site to site and also
depends on options in sysgen) to have statistics collection
ON. Another technique would be to put code in the task
termination exit to do a “look around” for online tasks
that have been running for too long. This has the
drawback of doing a bit too much work in this exit and
may have performance consequences.

How it Works
GUT0042T is executed automatically when the CV/DC
system starts up, as a startup autotask. Each time it runs
this program CALLs an assembler program (GUT0062O
– the “hunter”) – this program looks through system
control blocks to determine if there are any tasks that
have exceeded one of the following limits: duration (wall
clock time), IOs, calls to DBMS or page requests. Any
such tasks are reported back to GUT0042O (the Cobol
driver), which then determines whether to do one of 3
things:

the situation where many users are waiting for access to
ADSOMAIN, but lots of active tasks didn’t matter
because in this scenario because they don’t use any CPU
or acquire resources that might cause deadlocks. Dumb or
what? Who would ever think to make ADSOMAIN non-
concurrent?

• Nothing (ALLOW override)

• Report – to the log and by e-mail (WARN override)

• Terminate (“kill” the task) everything else - with
appropriate notifications

Successive executions of GUT0042T are scheduled
programmatically with a set timer interval command -
where the time interval is based on a value obtained from
a queue record, modifiable by a mainline ADS dialog.

Exempt Tasks and Programs - Overrides
It is not desirable to terminate some IDMS tools that run
in conversational mode as they are used by developers and
administrators alike to support the various environments.
In development environments you want to let compilers
finish, in production environments you (we) don’t want
them running at all. Just as an example though here are
some typical development “overrides”:

 • PMRM and OPER are not reported and not
terminated

• ADS/Alive and DMLO are reported but not
terminated

• Compilers are excluded (ADSC, ADSA, MAPC,
IDD, Schema, Subschema)

• Specific known dialogs in production are
“churners” and are “allowed”

A second mainline dialog is available to allow authorised
users to modify these “override specifications as to which
tasks or programs are either “allowed” (never terminated
and no warnings) or are to generate warning messages
sent out by e-mail to specified production support
personnel.

Hunter/Killer has previously been made available to other
users through IDMS-L – if anybody is interested we can
update the last distribution “package” and make it
available to the IUA’s User Contributed Library – any
takers?

The Dumbest Solution Ever continued from page 10

IDMS-L
WHERE IDMS
TECHIES MEET

BE AN IUA VOLUNTEER
DO SOMETHING YOU LIKE TO DO

AND EARN A FREE YEAR’S
MEMBERSHIP

12
(continued on page 13)

HANDLING CA-IDMS SERVER ERRORS IN ASP AND ASP.NET PROGRAMS
by Kay Rozeboom

ASP and ASP.net are just like any other language in that accessing data often generates errors. A well-written program will
trap these errors for two purposes: 1) to inform your application code that an error has occurred so that it can proceed in
an appropriate manner, and 2) to display or log details about the error for further debugging. This article will
demonstrate how to do both. It assumes that you have some programming experience in ASP and/or ASP.net.

CA-IDMS Server often generates more than one message for a single error. The information that you need is not always in
the first message. This means that your error-handling code must loop through a series of error messages. The sample
code below shows how to do this in both ASP and ASP.net.

It has been my experience that you can save a lot of time by including error-handling code in your program from the very
beginning, rather than trying to add it later. You will have better luck persuading programmers of this if you supply them
with error-handling routines that they can call from, or copy into, their programs.

This article has two sections: the first section is for the old version of ASP, and second section is for ASP.net. In both
cases, the error-handling code is encapsulated into subroutines. Each section also includes a fragment of sample
application code that calls the subroutines. Please remember that these are code fragments that illustrate error-handling.
They are not meant to be all-inclusive.

ASP (old version)
The sample ASP code consists of three pieces:

1) The first piece defines some working storage fields to be used for error handling. It should be placed near the
beginning of your program, with your other ‘dim’ statements.

2) The second piece consists of two callable subprocedures that process the errors. It should be placed near the end of
your program, with your other called subroutines.

3) The third piece is a sample section of application code that shows how to call the subprocedures.

Notes about the sample code:

1) If you put the first two pieces (the working storage fields, and the subprocedures) into ASP ‘include’ files, you can
call them from multiple programs.

2) The “On Error Resume Next” statement turns off the regular ASP error-handling. So you must be sure to check for
all potential errors yourself.

3) Note the “MoveFirst” command in the sample application code. Most programmers skip this step, and just use
MoveNext to get every row. However, when accessing IDMS data, it is important to use MoveFirst for the first row.
MoveNext contains a bug, which Microsoft has no plans to fix: If the first row of data returned contains a data exception
(S0C7-type of error), MoveFirst will catch the error, but MoveNext will not.

‘ ***

‘ * CAServer working storage fields (piece #1) - start

‘ ***

dim CAServer_connection

dim CAServer_error

dim CAServer_did_error_occur

dim CAServer_error_message_table(20)

dim CAServer_error_message_sub

dim CAServer_number_of_error_messages

dim CAServer_display_message_sub

CAServer_did_error_occur = “no”

‘ ***

‘ * CAServer working storage fields (piece #1) - end

13
continued on page 14)

Handling CA-IDMS Server Errors continued from page 12
‘ ***

‘ ***

‘ * CAServer called code (piece #2) - start

‘ ***

‘ ***

‘ * Subprocedure “CAServerErrorSub”

‘ * - Check for errors.

‘ * - Loop through errors, storing messages in a table.

‘ ***

sub CAServerErrorSub(CAServer_connection)

 CAServer_did_error_occur = “no”

 CAServer_error_message_sub = 0

 CAServer_number_of_error_messages = 0

 If CAServer_connection.Errors.Count > 0 Then

 CAServer_did_error_occur = “yes”

 CAServer_error_message_sub = 0

 For Each CAServer_error in CAServer_connection.Errors

 CAServer_error_message_table(CAServer_error_message_sub) =

 CAServer_error.Description

 CAServer_error_message_sub = CAServer_error_message_sub + 1

 Next

 CAServer_number_of_error_messages = CAServer_error_message_sub

 End If

end sub

‘ ***

‘ * Subprocedure “CAServerDisplayErrorMessages”

‘ * - Loop through error message table, displaying messages.

‘ ***

sub CAServerDisplayErrorMessages

 response.write (“<table border=’’1'’>”)

 If CAServer_number_of_error_messages > 0 then

 For CAServer_display_message_sub = 0 to CAServer_number_of_error_messages

 response.write (“<tr> <td> “ _

 & CAServer_error_message_table(CAServer_display_message_sub) _

 & “</td> </tr>”)

 Next

 Else

 response.write (“<tr> <td> No CA-Server error messages. </td> </tr>”)

 End If

 response.write (“</table>”)

end sub

‘ ***

‘ * CAServer called code (piece #2) - end

‘ ***

14
continued on page 15)

Handling CA-IDMS Server Errors continued from page 13
‘ ***

‘ * Sample application code (piece #3) - start

‘ ***

 On Error Resume Next

 myConnection.Open ws_connection, ws_userID, ws_password

 Call CAServerErrorSub(myConnection)

 if CAServer_did_error_occur = “yes” then

 Call CAServerDisplayErrorMessages

 else

 myRecordset.open ws_SQL_Command, myConnection

 Call CAServerErrorSub(myConnection)

 If CAServer_did_error_occur = “yes” then

 Call CAServerDisplayErrorMessages

 else

 myRecordSet.MoveFirst

 Call CAServerErrorSub(myConnection)

 If CAServer_did_error_occur = “yes” then

 Call CAServerDisplayErrorMessages

 else

 ‘ — further processing here —

‘ ***

‘ * Sample application code (piece #3) - end

‘ ***

ASP.net
The sample ASP.net code consists of two pieces:

1) The first piece is a callable function that processes the errors. It should be placed near the end of your program,
with your other called subroutines.

2) The second piece is a sample section of application code that shows how to call the function.

Notes about the sample code:

1) If you put the first piece (the callable function) into a class library, and compile it separately, you can call it from
multiple programs.

2) Note that we are passing the line break character to the function. This allows the function to format the CA-Server
error messages for other types of processing, such as writing them to a log file or sending them in an email. This will also
let you use the same function for VB.net forms such as a text box or pop-up message box.

‘ ***

‘ * CAServer called code (piece #1) - start

‘ ***

 Public Function FormatError(ByVal myException As OdbcException, _

 myLineBreak As String) As String

 Dim i As Integer

 Dim messageText As String

 messageText = “”

 For i = 0 To myException.Errors.Count - 1

 messageText = messageText & “Message #”

 messageText = messageText & (i + 1)

 messageText = messageText & “: “

15

Handling CA-IDMS Server Errors continued from page 14
 messageText = messageText & myException.Errors(i).Message

 messageText = messageText & myLineBreak

 Next i

 Return messageText

 End Function

‘ ***

‘ * CAServer called code (piece #1) - end

‘ ***

‘ ***

‘ * Sample application code (piece #2) - start

‘ ***

 myLineBreak = “
”

 OK_to_continue = True

 Try

 objConnection.Open()

 Catch myException As OdbcException

 messageText = messageText _

 & “CA-Server connection error: “ & myLineBreak _

 & FormatError(myException, myLineBreak)

 OK_to_continue = False

 Catch myGenericException As System.Exception

 messageText = messageText _

 & “CA-Server connection error (system): “ _

 & myGenericException.Message & myLineBreak

 OK_to_continue = False

 End Try

 If OK_to_continue = True Then

 objDataAdapter.SelectCommand = New OdbcCommand

 objDataAdapter.SelectCommand.Connection = myConnection

 objDataAdapter.SelectCommand.CommandText = mySQL

 objDataAdapter.SelectCommand.CommandType = CommandType.Text

 Try

 objDataAdapter.SelectCommand.ExecuteNonQuery()

 Catch myException As OdbcException

 messageText = messageText _

 & “CA-Server SQL command error: “ & myLineBreak _

 & FormatError(myException, myLineBreak)

 OK_to_continue = False

 Catch myGenericException As System.Exception

 messageText = messageText _

 & “CA-Server SQL command error (system): “ _

 & myGenericException.Message & myLineBreak

 OK_to_continue = False

 End Try

 End If

 If OK_to_continue = True Then

 ‘ — further processing here —

 End If

‘ ***

‘ * Sample application code (piece #2) - end

‘ ***

16

TOPICS FOR CONNECTIONS ISSUES
by Brock Shaw

The IUA Board has decided to change the focus of the
Connections issues for the following year or so, to see if
this meets our members needs and interests better. It has
tentatively set up the following topic areas for articles in
the proposed issues of Connections below.

The first issue in this format (this one) has been on the
topic below, though not all of these subjectss have been
covered in articles:

Issue Topic Article Subject
Application •Integration Design
Integration •TCP/IP
and the Web •MQ Series

•ODBC/JDBC
•EDI
•XML
•Working with Oracle
• Future Directions
•“Webifying”
•“GUI-fication”

If members still wish to contribute on any of these topics
now, it is not too late. Articles can be published in future
issues along with the focus topic articles.

The planned issues are proposed as shown below, and we
are now seeking articles for any of these topics and
subjects:

Issue Topic Article Subject
Application •Integration Design
Integration •TCP/IP
and the Web •MQ Series

•ODBC/JDBC
•EDI
•XML
•Working with Oracle
• Future Directions
•“Webifying”
•“GUI-fication”

Application •ADS Application Design
Development •ADS Tips

•Batch Issues
•Accounting Principles
•SQL
•Configuration Management

DBA Topics •DBA tricks of the trade
•Database Design
•24x7 Processing
•R16 Features (list)
•R16 Experience

Issue Topic Article Subject
Safety and •IDMS Security Overview
Security •User Security

•Resource Security
•Dictionary Security
•Backup issues
•Recovery issues
•Journalling issues

IDMS Internals •Operating System Basics
•IDMS Exits
•CSL Highlights
•Indexes and Rebuilding
•Journalling

Performance and •Performance Tips
Tuning •Approach to Tuning

•System Performance
•Database Performance
•Application Performance
•Real-time Performance

3rd Party [sources: vendors and users; no
Products sales pitches]

All members are invited to contribute, and below is the
schedule of issues currently planned.

Issue Issue Topic Call for Articles
05/1 Application Integration & the Web 10 Jan 2005
05/2 Application Development 10 Apr 2005
05/3 DBA Topics 11 Jul 2005
05/4 Safety and Security 11 Oct 2005
06/1 IDMS Internals 10 Jan 2006
06/2 Performance and Tuning 10 Apr 2006
06/3 3rd Party Products 10 Jul 2006

Remember that publication of an article is an automatic 1
year free membership of IUA, so please do respond soon
to cover this year’s fee.

SOME INSIGHTS ON JOHN
SWAINSON
Because of the importance of the good health of CA to
IDMS and because the new CEO is a complete outsider
some extracts have been made here from a recent articel
in eWeek.com. The selection of the Q&A below is
reproduced for members information. In order to use any
of this material, you are directed to the source website.

After months of uncertainty sparked by corporate scandal,
Computer Associates International Inc. earlier this month
embarked on a new era, naming CEO-elect John
Swainson to his official post as president and chief
executive. A veteran of IBM’s software division, Swainson
said he comes prepared to restore credibility and
accountability at CA by paring offerings to a few core

continued on page 17)

17

Communications Commissioner
Linda Campbell, Informatix

Editor
Brock Shaw, Torridon Associates (UK)

Graphic Design
Rebecca Shaw, Torridon Associates (UK)

IUA International Chairperson
Bob Wiklund, Tiberon Technologies

IUA CONNECTIONS
IUA Connections is a quarterly publication of the
CA-IDMS Database and Applications User
Association (IUA). It is designed to promote its
members’ objectives. IUA Connections is not
responsible for the opinions expressed by its writers
and editors.

Information User Association
401 N. Michigan Ave.
Chicago, IL 60611-4267
Phone: 312/321-6827
Fax: 312/245-1081

Internet: iua@iuassn.org
www: http://iuassn.org

We’re going to try to do those two things astonishingly
well and use that to rebuild the franchise.

We have a very important install base of mainframe
database customers, but I’d be quick to tell them that the
mainframe database is not where we’re going. We’ll
support them as long as they want us to, but we’re not
going to really fight that battle. It’s yesterday’s battle.

Is there a culture change going on at CA?

I think so. CA didn’t have a strong culture. It’s a function
being built by acquisition over the course of a relatively
short period. IBM had a chance over 100 years to build a
strong culture. One of the things I have to do is make
sure we build a culture that is customer-focused-that is
about being a trusted adviser to our customers. To be an
ethical company in everything we do. That all needs to be
inculcated into the body of the organization.

The good news is that our employees have seen firsthand
what happens when a company loses its way. It’s not as
though you have to go out and convince them that
something is needed. It’s about showing them a vision of
what the company can do and their role in it.

What parts of your experience from IBM are your bringing to
the task at CA?

I’m not consciously trying to bring any parts of IBM
culture to CA. IBM does a lot of good things around
process and focus on customer. I’ll bring those. On the
other hand, one of the things I’ve learned from CA is the
resourcefulness of the people, their entrepreneurship, their
ability to endure almost any kind of [obstacle]
management throws at them and be able to persevere.

Copyright (c) 2005 Ziff Davis Media Inc. All Rights
Reserved. See their website: http://www.eweek.com

technologies and remaking the culture of the Islandia,
N.Y., company. Swainson sat down with eWEEK News
Executive Editor Chris Gonsalves and Senior Writer Brian
Fonseca before his appearance at LinuxWorld in Boston
last week to discuss the job ahead.

How would you characterize your role at CA? Is it rehab,
rescue, maintenance, other?

It sure as hell isn’t maintenance. Maintenance implies I’m
here to protect things. I don’t think that’s at all why the
board brought me here or what people are expecting.
Rescue may be overstated and overly dramatic, but it’s
more to the point.

CA has a troubled past. Companies don’t voluntarily get
themselves into this kind of dilemma where 15 of their
senior executives are indicted or otherwise implicated in
accounting fraud and various other nasty things, including
trying to mislead the government. This is a company that
has some serious problems to remedy, and, in that sense, I
am coming in as part of a team that is doing that. It’s not
John, personally, is the savior of the world. It’s me and
the management team and the employees working
together to fix some problems and to build a new CA.

Of late, we’ve seen companies such as Hewlett-Packard Co. get
into trouble by being pretty good at a bunch of things and
excellent at very few. How will CA, with its notoriously large
portfolio, avoid that trap?

We’ll concentrate on a small number of things that we can
get really good at. In our case, it’s two: system
management and security. Today, we are the market leader
in system management, and we’re tied for leadership in
enterprise security, so we’ve a got a decent starting place.
We’re going to build on that by acquisitions, as you saw
with Netegrity [Inc.]. We’re also going to build by
investing in development of products in those segments.

Some Insights on John Swainson continued from page 16

linda.campbell@informatixinc.com
http://iuassn.org
http://iuassn.org

