[bookmark: _GoBack]Node.JS Cluster Support 
Summary
Since single Node.js process executes all transactions on single thread, it makes sense on most multi-CPU servers to run multiple node processes in some kind of load sharing arrangements. Node.js runtime provides cluster API to facilitate running multiple node processes in loadsharing mode, however this is just an API and users are expected to implement cluster manager themselves.
 
Standard Cluster Implementations
 
Clustering Support Matrix
Following is a list of clustering schemes that we have tried:
	

	PM2
	Supported. See below.

	Strongloop SLC
	Not supported.

	Docker
	Not using cluster API. Work in progress.

	 
	 


PM2 Process Manager 
PM2 is a production process manager for Node.js applications with a built-in load balancer. It allows you to keep applications alive forever, to reload them without downtime and to facilitate common system admin tasks. PM2 also includes clustering support, which internally uses node.js cluster API.
When application is started in PM2 cluster mode, then first node process running executes pm2 script and it becomes master process that forks off multiple worker processes that execute application script. CA APM Node.js probe should only run inside these worker processes. It is not possible to attach probe using ca-apm-run script, instead application needs to be instrumented with our code snippet that loads the probe. This is usually done by adding following line to first line of the application script:
Probe installation code snippet
	var probe = require('ca-apm-probe').start('localhost');
...



There are two ways to separate metrics between PM2 worker processes. 
1. Separate all worker process metrics to separate agent node.
2. Aggregate all application metrics across worker process into single application node, but break out run-time metrics by worker process number. 
Option 1 - Separate all worker process metrics
In order to separate all worker process metrics to distinct agent node, we need to give each worker process different probe name. However, it is important that the name of a single worker stays same after worker or cluster is restarted, in order to avoid metric explosion in EM. So we cannot use PID or start time of worker process to separate metrics. Luckily PM2 master process provides environment NODE_APP_INSTANCE variable with worker number for each worker, when it's forked. This number will be always the same even after worker process restart.
The easiest way to create probe name containing worker id is to use config.json of ca-apm-probe and set probeName field to desired name containing environment variable. The syntax for variable replacement is ${variable}.
config.js
	{
  "probeName": "${name}-${NODE_APP_INSTANCE}",
  "probeNameEnvKey": "",
  "workerIdEnvKey":"",
  "collectorAgent": {
    "host": "localhost",
    "port": 5005
  },
...
}


 [image: https://cawiki.ca.com/download/attachments/751556143/image2016-4-11%2010%3A55%3A48.png?version=1&modificationDate=1460397349363&api=v2]
Option 2 - Aggregate Application Metrics
In order to separate only worker process run-time metrics we want all worker process use same probe name. But provide worker id separately Again, it is important that the id of a single worker stays same after worker or cluster is restarted, in order to avoid metric explosion in EM.
 
config.js
	{
  "probeName": "${name}",
  "probeNameEnvKey": "",
  "workerIdEnvKey":"NODE_APP_INSTANCE",
  "collectorAgent": {
    "host": "localhost",
    "port": 5005
  },
...
}


 
 
[image: https://cawiki.ca.com/download/attachments/751556143/image2016-4-11%2010%3A42%3A30.png?version=1&modificationDate=1460396551257&api=v2]
 
Docker Containers 
Another clustering approach is to run each node.js instance inside docker container. This model assumes that we run CA APM Collector Agent in a separate docker container and the probes running in node process containers connect to Collector Agent in separate controller. This arrangement violates the current assumption that Collector Agent runs on same network host as probes. There is a hidden setting in IntroscopeCollectorAgent.profile  to allow connections from remote network hosts i.e. other docker containers.
 
· introscope.remoteagent.collector.tcp.local.only=false 
The second problem with docker implementation is host name visibility. Due to way docker containers work, the container where Collector Agent runs is usually not able to do reverse name lookup of incoming probe IP address. As a result probe agent node is placed into investigator tree under the host identified by it's internal docker IP address. Unfortunately this IP address is usually reused by other docker servers, resulting in conflict and wrong aggregation of metrics.
We are actively working on the host name visibility issue.   
image1.png
Workstation Edt _ Manager _Properties  Viewer _Help

T ey ——————

0 ) e cngef s B ool

=@ “superdomain® 14 Resources | Traces | Errors | Search | Mefric Cout | Location Map ' SOA Dependency Map |
Resource Metrics for: Agent(hello2)

@ TaLua0sTra00 % CPU Utization (Host)

ninelo2) (S
@ Agentinelo2-0) (*SuperDomain’)
[ emost
@ euror
£ Agentstas I o e T T o T T T R O T T e T T
&-ER) Node js Runtime:
{8 P system (%)
@ cpuTotai o)
{8 cpuuser o)
+[@ HTTP Connection Count
+[@ HTTP Connections / sec.
[ esp ot
8 Hespuses k
[ Resicent Set Size- B T T A T T T T P T T T
=@ agentrelon) (uperdoman) Thveads n Use 4DBC Comnections in Use.
[ emost
@ euror
5y Agent stats
&-ER) Node js Runtime:
{8 P system (%)
@ cpuTotai o)
{8 cpuuser o)
+[@ HTTP Connection Count
+[@ HTTP Connections / sec.
e

o
B
eg
woe b0

% Time Spent in GC.

[SPRPN

o
AT e Tetem  ededn  edia AT e Tetem  ededn  edia





image2.png
[ Investigator -

Workstation  Edit

Manager Properties  Viewer Help

@ cron phosgert sinas o com

®[e[Jo]]

(k) (<] i) o]

Time range:

C_ I

i5 seconas

F3 & o

Trage isp  Wer Browser |

=@ “SuperDomain®
@ custom Metric Host (Virtual)
SNKAOBH4300
@ TALIAGE 7400
rion phpagent taima
&4 nodefs-probes
@ Agentnello2) (‘SuperDomain’)
=
[ =
BBy agent stats
&-ER) Node js Runtime:
B workerd
~{B cpu system (%)
@ cPu Total (%)
@ cPu User (%)
[ #77P Connection Count
[ #7TP Connections /sec
@ hesp ot
B respuses
[ Resicent set Size-
&R workert
~{B cpu system (%)
@ cPu Total (%)
@ cPu User (%)
[ #77P Connection Count
[ #7TP Connections /sec
@ hesp ot
B respuses
[ Resicent Set Size-
@ siiats-uisess

[

o)

] use Reguir Expresson

-] Snow i, ana Court

Valie

Apr 11,2016 10:42:08 Al POT





