_—

NAS
Technical Brief

Version: 3.60
Date: October 25, 2011
Author: Carstein Seeberg

Technical Brief Nimsoft Corp

Table of contents

(] N Y A TP PR OPPPPRPRTRNE 3
TECHNICAL OVERVIEW ...ttt et e e et sttt e e e sttt e e a4 ast b be e e e e a4 as s bb e e e e e e a4 s e bbb et e e e e as e b be e e e e e e aa s bbeeeaeeassebbeaeaessanbbbeaaanaanes 3
SUBSCRIBER ...v.vuvivatsivsesisss st bssesesse s st s st s st b st b st 4 st 4 st 4 s 12 s 4 s 22 st 2 s 4 s+ b bbb s+ b s bbb bbb s bbb bbb
NAME SERVICE

REPLICATION ENGINE1cvettivtsits et ea et s s s ettt et ea st s bbb bbb bbb bbb a bbb bbbt bbbt bbbttt b 5
TRANSACTION LOGGERvuvivuiviiaceiasssssse st st ss st s st bt bttt bbb bbb s bbb bbbt bbbttt 5
ACTIVITY LOGGER
CORRELATION ENGINE0ucviveivtacstisstess s sttt s st b s s st bbb s bt 4 st s s 408 b st st b bbb bbb bbb bbbt bbbt 5
AAUTO-OPERATOR. ... ettt siaessetssetasseaesse st se s s s st st bbb b4 s s b s s o4 s s b s s b s b s e s bbb s b s b s bttt bttt b e
NIMBUS PUBLISHER ..
NIS BRIDGEuvetiitet ettt sttt a et sttt es bbb 4 bbbt b4 bbbt bbb bbbt bbb b bbb bbbt b et bbb s
INTERNATIONALIZATION. ...t ttte ettt e e et otttettt e e s sttt e e s s s et baetaeaaassteeeeaeaaasssbeeeeaeesaasbbeeeaeesansbbaeeaeesasbbeeeaeeasssbbeeeaeesssbbbeeaens 6
CONFIGURATION AND DATA FILES ... ettt ittt ettt ettt e e e e s st e et e e e s e sk bbb et e e e s s st be e e e e e s s sttt eeaaeasnssbbeaaaeesannnnees 7
COMMAND INTERFACE DESCRIPTION. . .ciiiiiitttttttas oottt e e s s sttt ae s s sttbaeaaeassstbeaeaaassassbbaeeaesssasbbseasaessassbseeaeessasssseeeasssnsssnses 8
ASSIGN_ALARMScvosiivessitssesssesessesesss st e s sse st eae s eae s bt 2 b1 4 s 14 s s b s s b s s b s s s s bbb b s b s s b s b bttt 8
DATE_FORECAST0ucvituititaistaesetssssessesess s esse s st st s b st 4 s s b s s b s s b s s 4 e 24 b1 s 2 s s bbb bbb bbb bbb s bbb bbbt 8
DB_QUERY ...outtituititaisssesssssbssebesss s st st sss b s s b st b s b s b s 41 b s b st b A bbb bbb bbb bbb bbbt s et
GET_ALARMS
GET_AO_STATUS 1.vitueetaisitsessssssssssesssssse st st bess b ss b st sttt et bbb bbb bbb b bbb bbb bbb bbbt bbb 9
GET_INFO w.vutttuttetattetese st s esse sttt b et bes et 4 st b s et et bbbt bbbt et bbb bbbt b bbb bbbttt 9
GET_SID
HOST_SUMMARYc0vuititaisissesssssssessssssssessssssesessessssesassesasssbess b ss b ss 2 s s b s s b s s bbbt bbb bbb bbb s s bbb s b s bbb 9
NAMESERVICE_CREATE0vivutttatstssessssssssssssessssessssesessesass bt s bssebess s es s b s s b st b a1 b s s bbb bbb bbb bbb bbb bbb 9
NAMESERVICE_DELETE
NAMESERVICE _LIST 1..v.tuititsetitset et ses s st s sse s s sssa et b st et s 4444444 b a4 bbb bbb bbb bbb bbb bbb
NAMESERVICE_LOOKUPc0vuitititttsissesesssesssessssesssses st s st s st s s bbb b a s bbb a bbb bbbt bbb bbb bbb bbb
NAMESERVICE_SETLOCK ..
NAMESERVICE_UPDATEucvuvuititsititsessssessssssessssesssse s st st s b4t bbb 444 bbb a bt bbb bbbt bbb bbb
NOTE_ATTACH 11.v1tvittetitsettet s et sttt s ese s s s sss b et bbb et bbb bbb bbb b4 bbbt a bbb bbb bbb bbbt b et bbb b
NOTE_CREATE.....
NOTE_DELETE

NOTE_DETACH.....
NOTE_LIST........
REORGANIZE
REPL_QUEUE_POST
REPL_QUEUE_INFO.
SCRIPT_DELETE...
SCRIPT_RENAME .
SCRIPT_LIST........
SCRIPT_RUN........
SCRIPT_VALIDATE
BT B N PR
SET _LOGLEVEL ..cituiiiii ittt e e e b e e et e e e s e e e s e a e e e a e e e e e e rara s
SET_VISIBLE
LY N T O 1 L PR
LIt PR

TROUBLESHOOTING ...ttt bbb bbb e b b e b s b e s b e e s b e s b e e s b e e s b b e s b e e b e e sb e e s ebe s sb e s ab e b e 14

LARGE DATABASESceeiuttteittteeittte e st e e sttt e e aste e e aate e e e aa bt e e 1a ket o4k et o4k R et e 4s b et e 4a b s £ 44k bt e e n b et o4k bt e e 1R R et e 1A b et a4 bbbt e ah b e e e eab et e e b b e e e anre e e et s
DATABASE SEEMS LOCKEDtttittiteiutitestteeesuteeessteeeatse e e st e e abb e e e ek b e e e 1a ket a4k e e e 4k bt e 4 4s b et 44t et a2 s e e e o4k et e o b b et e aa b et e aab et e e bbb e e anbeeennnneas
NEED TO BROWSE THE EMBEDDED DATABASES
OLD TRANSACTIONS ARE NOT BEING COPIED
RESET USER-INTERFACE VIEWScciuttttittteeitteteiuteeeaatseeessteeeaate e e e ssse e e sabe e a4 kst e o1k b et e 4a ket a4 be e e e s bt e e aab e e e e ah b e e e aab et e aabe e e e bbb e e nnbeeesnnneas

APPENDIX A — THE NAS — LUA EXTENSIONS
CUSTOM PRE-PROCESSINGtttiutiteiuttteiattteeaitetesteeeasseeaaatetessbe e e asbe e e 4a b et a4k et a4 1s b et e 1a b et e aae e e e e s b et e o b bt e e ab bt e e aa b et e e bbeeennbeeenabeeeannne 25

APPENDIX B — DATABASE SCHEMAS (DATABASE.DB AND TRAN SACTIONLOG.DB)cccciiuiiiiieiiiiieieiies e 26

25 October, 2011 2/26

Technical Brief

Nimsoft Corp

General

The NimBUS Alarm Server (NAS) subscribes to ‘raw alarm’ messages. These messages is

generated by the NimBUS spooler under the ‘alarm’ subject. The NAS attaches to a hub queue
named ‘nas’, and processes each incoming alarm according to its current configuration settings.
The NAS performs pre-processing and post-processing of the alarms, through the auto-operator

mechanism. The data is maintained in an embedded database and published back onto the

NimBUS as the following events: alarm_new, alarm_update, alarm_close, alarm_delete,
alarm_assign and alarm_stats. The target audience for these events are the NimBUS consoles

and gateways.

Technical Overview

NimBUS

HUB

]

Subject:
"alarm” CI|ent nteraction

‘\
Database

| PreProcessing Rules | INSERT
UPDATE
DELETE

— Name
Service

Subscriber

Event

Publisher

®

ransactiol
Logger

Activity
Logger

Auto-
operator

NimBUS
Publisher

orrelatio
Engine

[Transaction
Log
.

Y

N

Activity
Log

~

Scheduler,
Profiles,
Scripting

)

The NAS is built around the embedded database SQLite3 (www.sqglite.org) and an internal
message pump. Each module runs in a separate thread receiving internal events. An incoming
alarm message is received by the subscriber and checked against the pre-processing rules
(custom, exlude or invisible). The ip-address in the alarm source field is looked up according to
name resolution rules. The alarm message is then checked for possible suppression, and stored
as a new or a updated record in the database. All changes to the database is transformed into

events by database triggers and is stored in the NAS_EVENTS table. The events are read and

placed on the internal message bus and removed from the table by the event publisher.

alarm_stat
alarm_new
alarm_update:
alarm_close !
alarm_assign |
alarm_trigger :

alarm_delete

25 October, 2011

3/26

Technical Brief Nimsoft Corp

Subscriber

The subscriber connects the “nas” queue and decodes each incoming message. It will attempt to
bulk-read as many messages as possible to increase speed. If suppression is enabled then the
following algorithm is used to generate a MD5 suppression-key based on:
1) determine the source :
alarm-source|message-source [/domain/robot]
2) determine suppression:
a. source/alarm-suppression-key or
b. source/alarm-message-text/alarm-sid/alarm-severity or
c. alarm-message-text/alarm-sid/alarm-severity

The pre-processing rules are checked prior to any database operation. The “exclude” rule will
prevent the event from any further processing. The “invisible” rule will turn the matching event
into an invisible alarm, only when it is detected as new to the NAS. Finally the “custom” rule
causes the NAS to run a pre-processing script allowing for advanced exclude/invisible
possibilities as well as alarm-laundering for the fields message, sid, source, hostname,
user_tagl, user_tag2, visible and origin. Please note that a positive match on any of the
configured pre-processing rules inhibits further processing of rules for this event.

The subscriber will connect to the “nas” queue which typically is configured to subscribe for the
“alarm” subject. As of version 3.25 it is possible to configure for a different subject than “alarm”,
this is meant for environments that is in need of a pre-processing/laundering filter in front of the
NAS. You can also specify multiple subjects by separating them with a comma.

The following user-data fields in the incoming alarm are used: level, subsys, source, message,
and custom_1 to custom_5.

The subscriber (NAS 3.60) will pick subscr_block_size from the NAS queue and operate on this
as a single transaction. The default value is O (disabled), causing a singular (i.e. non-bulk)
message dispatching. Please note that the block size needs to by synchronized with the HUB’s
setup/bulk_max_size (default: 1000). So if you want to increase the block size to 3000 then you
need to configure the NAS (setup/subscr_block_size) and the HUB (setup/bulk_max_size).

Failure to insert messages into the database, caused by malformed packets etc. will be stored
into the failrepo directory. The fileformat is PDSFILE with the nimid as the filename. These files
can be decoded with the various API's and the built-in script language, but is also somewhat
readable in notepad.

Name Service

The hostname is determined by the following ip-to-hostname resolution schema below. Note
that this behavior is enabled/disabled in the NAS Ul Name Services properties.

NimSource NimRobot AlarmSource Source Hostname

Yes Undefinded Undefined NimSource Lookup

Yes Undefined Yes AlarmSource Lookup

Yes Yes Undefined NimSource NimRobot

Yes Yes Yes AlarmSource NimRobot or Lookup”

Y An IP to name resolution is performed when the AlarmSource differs from the NimSource and
the Source is a valid IP address. Otherwise NimRobot is used.

25 October, 2011 4/26

Technical Brief Nimsoft Corp

Replication Engine

This module is responsible for replicating alarm data, script files and configuration data to its
replicating endpoints by export and import mechanisms. The replication data is stored in a
outgoing queue in the replication directory structure. Each queue is a SQLite database
containing two tables, REPL_CONFIG and REPL_QUEUE. The current replication configuration
is serialized and stored in the REPL_CONFIG table. Changes to the configuration will result in a
full cold-start of the queue i.e the queue file is removed.

Events will be extracted from the internal bus and stored into the various queues along with files
and configuration data. Alarms that have a complete transaction (new + close) in the queue will
not be translated to console events. The queues will be bulk exported through the NimBUS
request repl_queue_post. The bulk size is configurable, and is default 2000 queue items. The
bulk data is stored on the remote NAS as replication/*.import file.

A separate ‘replication importer’ thread is started and will attempt to read the import file from all
configured alarm servers in the replication schema on interval and will process the whole import
file as quickly as possible.

Transaction Logger

This module is only started if the NAS transaction logging is activated. It converts internal
events to database records stored in the transactionlog database (transactionlog.db). The
following tables are maintained by the transaction logger:

NAS TRANSACTION_LOG Stores the actual alarm event as received and processed
by the NAS. This is enabled by the ‘Log transaction
details’ flag. Compression is done by removing
suppressed updates. Houskeeping is done by removing
the entire transaction.

NAS_TRANSACTION_SUMMARY One record per unique alarm is maintained and updated.
Housekeeping is done by removing the alarm record.

Transaction-log filtering

The transaction-logger now has the facility to filter out events based on the same criteria as the
pre-processing filters exclude, custom and invisible. This will prevent repetitive events e.g.
heartbeats to be stored in the transaction-log which will conserve space and reduce overhead.

Activity Logger

This module maintains the NAS_ACTIVITY_LOG table in the transactionlog.db database. It is
configurable for the user through the activity logger setup dialog.

Correlation Engine

Builds and maintains the triggering data-structures used for correlation rules and the auto-
operator mode on_trigger. The trigger data-structures are maintained in memory and are usable
for the auto-operator and the scripting language.

Auto-operator

The auto-operator (AO) is configured through AO profiles and pre-processing filters. It also
controls the built-in scheduler. The AO profiles are acted upon according to its type and limited
through the operating-period (if any).

25 October, 2011 5/26

Technical Brief Nimsoft Corp

NimBUS Publisher

Generates the external events for NimBUS gateways and consoles. The following events are
generated: alarm_new, alarm_update, alarm_close, alarm_stat, alarm_trigger and alarm_delete.
Note that the alarm_delete message needs to be activated by the configuration parameter
setup/pub_alarm_delete.

NiS Bridge

The NAS bridge retrieves the connection-string from the data_engine and maintains the
NAS_ALARMS, NAS_NOTES, NAS_ALARM_NOTE, NAS_TRANSACTION_SUMMARY and
NAS_TRANSACTION_LOG tables stored in the MS-SQL server. The NAS attempts to
synchronize the embedded database and the NiS database during its startup procedure. The
NAS will automatically make the bridge visible in the Ul if the NiS is detected. The latest
addition to the NiS bridge is the ability to monitor the computer system (CS) table
(CM_COMPUTER_SYSTEM) for changes in the state field. This field indicates whether the
computer system (or rather the device(s) that is referenced by the CS) isin a
maintenance/managed mode or not. As part of the upgrade to make the probes compliant to the
NMS 4.1 data-model, then the alarms will be tagged with the sender device_id. This is then
mapped to the appropriate CS (over the CM_DEVICE table) and a state may be examined and
used by the current computer system monitor ruleset. The main purpose of this functionality is
to act towards alarms from the device regardless if it is monitored locally or from one or more
remote locations from different probes.

Internationalization

The NAS 3.50 supports the internationalized alarms published by probes supporting the new NIS
Configuration-Item bindings. The incoming alarm PDS is expanded with i18n_token and
i18n_data elements. The NAS will, if internationalization is enabled, store the i18n_token and the
base64 encoded PDS byte-stream i18n_data in the database. The get_alarm command-
interface and the event-publisher will decode the base64 PDS into a valid PDS called i18n_data.
The i18n tokens cannot be used as auto-operator filters, and is purely meant for the Ul’s.

Storm Protection

The NAS 3.60 supports a built in storm protection feature that will prevent large continuous event
storms from a robot or probe to cause problems for the NAS. The algorithm is constructed in a
way that the NAS maintains a “quarantine list” for possible offenders. The size of this list is
configurable (storm_capacity) and elements will be added or removed or moved to the top
depending on the message frequency. The event “signature” is constructed by e.g. source,
domain, robot [,probe-id [,supp_key] elements of the inbound alarm message. If the number of
alarms matching the “signature” exceeds a threshold (storm_threshold) within a specified time-
window (storm_timewindow) then succeeding alarms will be quarantined by republishing the
message to configured subject (storm_subject). The default subject is NAS_QUARANTINE.
The quarantined alarm will not be registered with the NAS. An and a log-entry is generated
when the first messages is placed in quarantine. The alarm message text and severity level can
be overridden (storm_message, storm_severity level)

The storm_protection value causes the key “signature” elements to be:
0. disabled
1. source, domain, robot, probe-id and supp_key
2. source, domain, robot, probe-id
3. source, domain, robot

The storm_message string supports variable expansion from the message header, e.g.
Placing alarm(s) from $domain:$origin:$robot:$prid:suppkey=$supp_key, total:%d

25 October, 2011 6/26

Technical Brief

Nimsoft Corp

Configuration and Data Files

The following configuration options are not available through the Ul:

Section/Variable Values Default Description
setup/public_get_alarms yes|no no require NimBUS permissions
to get_alarms
setup/script_dir <path> scripts root-level directory for scripts
setup/pub_alarm_delete yes|no no Publish alarm_delete events
setup/pub_alarm_invisible yes|no no Publish invisible alarm events
setup/data_engine <probe> data_engine
setup/distsrv <probe> distsrv Address for distsrv.
setup/transactionlog_no_vacuum yes|no no Skip translog housekeeping.
setup/transactionlog_housekeeping | <tspec> 00:30" RFC2445 - timespecification.
setup/subject <string> alarm For pre-processing purposes.
setup/dbs_block_size <integer> | 1000 The number of items that will
be unqueued from the internal
database request queue per
cycle.
setup/subscr_block_size <integer> | 3000 The number of alarms to read
from the NAS queue in a
single read.
setup/subscr_yield_at <integer> | 5000 Number of elements in
internal event queue before
subscribe should yield.
setup/subscr_yield_regain <integer> | 1000 Number of elements in
internal event queue before
subscriber should regain
control.
setup/reset_suppcount_on_severity | yes|no no Resets the suppression
counter to zero when the
severity changes.
setup/use_full_sid_path yes|no no Expands subsystem-id to full
subsystem path.
setup/custom_headers/custom_1 string Custom 1 Set header caption (1-5)
replication/num_failures <integer> | 20 Failures before sending alarm.
replication/queue_reconnect <integer> | 60 Reconnect freq. in seconds
replication/service_interval <integer 60 Freq. for checking changes to
scripts and configuration.
replication/service _monitor <integer> | 900 Repl. queue size monitor.

YThe transactionlog_housekeeping specifies when the database housekeeping (vacuum) is
done. This string is base on the RFC2445 recurring schedule format, and is the same that is

used by the NAS scheduler.

The default specification is every night at 00:30 (specified with the syntax):
rfc2445|RRULE:FREQ=DAILY;INTERVAL=1;BYHOUR=0;BYMINUTE=30

Please refer to the Appendix section for the data models used by the NAS.

25 October, 2011

7/26

Technical Brief Nimsoft Corp

Command Interface Description

This sections describes the NAS command interfaces. All commands will return a status value
like NIME_OK (0), NIME_ERROR (1) or NIME_INVAL (7). Specialties are documented under
each command. The ‘list’ type commands yields a PDS data-structure.

assign_alarms

Parameter Type Req | Description

by string * | specifies who assigned the alarm(s)

to string * | specifies to whom the alarm is assigned to
nimid string * alarm message-id

nimids array a string table of message-ids

close_alarms

Parameter Type Req | Description

by string * specifies who closed the alarm(s)
nimid string * alarm message-id

nimids array a string table of message-ids

date forecast

Parameter Type Req | Description

specification string * RFC-2445 compliant string

startdate string ISO starting date of forecast. yyyy-mm-dd hh:mm:ss
nitems number number of dates in forecast.

format string strftime format specifiers.

This command returns a string array with dates, and the number of dates in the forecast. The
current time is used as the default startdate.

db_query

Parameter Type Req | Description

sql string * SQL-92 conformant statement

db string * database

get_alarms

Parameter Type Req | Description

show_all number flag showing all alarms visible and invisible
origin string filter alarms using origin field
hosthame string filter alarms using hostname field
source string filter alarms using source field
severity string filter alarms using severity field
subsystem string filter alarms using subsystem field
assigned_to string filter alarms using assigned_to field.

The show_all parameter takes the following values:
0: show only visible alarms.
1: show all alarms with visibility flag in alarm record.

All filter items are italic and may be used together. The following syntax is assumed:

25 October, 2011 8/26

Technical Brief Nimsoft Corp

[not] [like] value [,value [...]]] | null

e.g assigned_to = not null
assigned_to = administrator
assigned_to = null
hosthame = like %xp%

Compatibility note:

The mask parameter (used by e.g the Alarm Notifier) is supported as a non-public variable,
hence not being visible.

get_ao_status

Parameter Type Req Description

mode string a combination of triggers, profiles, schedules and filters.
name string filter the selection on name.

detail number detail = 1 will only list active selections.
get_info

Parameter Type Req Description

detail number shows current connections if set to 1.
show_all number flag showing all alarms visible and invisible
origin string filter alarms using origin field

hosthame string filter alarms using hostname field

source string filter alarms using source field

severity string filter alarms using severity field

subsystem string filter alarms using subsystem field
assigned_to string filter alarms using assigned_to field.

Please see get_alarms for the parameter settings.

get_sid
Parameter Type Req Description
sid string specific subsystem identifier e.g. 1.1.1

Returns all subsystem names configured or the one specified by sid.

host_summary

Parameter Type Req Description

mode string one of: today, lasthour, last24hours, last3days,
lastmonth and date=1SO-startdate,|ISO-enddate.
E.g. date=2007-08-24,2007-08-27

Returns a list of hosts that has alarms in the period specified by the mode.

nameservice_create

Parameter Type Req Description
ip string * ip-address to be used as lookup key.
name string * name to be used in hame-resolution

25 October, 2011 9/26

Technical Brief

Nimsoft Corp

lock

| number

| specifies if this should be locked (1=locked)

Adds a nameservice record.

nameservice_delete

Parameter

Type

Req

Description

Ip

string

ip-address to be removed.

nameservice_list
Returns a PDS table (named table) with records containing ip,name,ts and time.

nameservice_lookup

Parameter Type Req Description
ip string ip-address to resolve.
name string hostname to resolve.

Returns the result of the nameservice lookup, note that either ip or name must be set.

nameservice_setlock

Parameter Type Req Description

ip string * ip-address to lock/unlock.

lock number locks (1) or unlocks (0) the name-ip mapping.
ips array Array of ip-addresses to lock/unlock

This command expects ip or ips to be set.

nameservice_update

Parameter Type Req Description

ip string ip-address to modify.

name string * name to be used in the name-resolution.
lock number locked (1) or unlocked(0)

This command expects ip or ips to be set.

note_attach

Parameter Type Req Description

note_id number * id of existing note to attach to alarm (nimid), or zero (0)
if a create+attach is performed.

nimid string * alarm message-id that we want to attach note to

description string note description (if create)

body string note body (if create)

category string note category (if create)

nimids array a table of alarm message-ids

This command primarily attaches an existing note to one or more alarms. However, it can also
perform a “create and attach” in a single operation. Specify this operation by setting note_id =0

(zero).

note_create

Parameter

| Type

| Reg

| Description

25 October, 2011

Technical Brief

Nimsoft Corp

note_id number * id of existing note (if edit) or zero (0) if a new note is
created.

description string * note description

body string note body

category string note category

autoremove number auto-remove when last alarm reference is cleared.

note_delete

Parameter Type Req Description

note id number * note id to delete

note_detach

Parameter Type Req Description

note id number * id of note to remove from the alarm.

nimid string * alarm message-id that we want to remove note from.

nimids array a table of alarm message-ids

note_list

Parameter Type Req Description

nimid string alarm message-id that we list notes for.

reorganize

Parameter Type Req Description

by string * specifies who requested the database reorganize.

The reorganize command will take the NAS into maintenance mode, stopping all service

modules and performs a VACUUM of the database.db and the transactionlog.db. All services are

started upon completion.

repl_queue_post

Parameter

Type

Req

Description

name

string

*

specifies which NAS posts replication data.

This is a private interface used by the NAS replication service.

repl_queue_info

Parameter Type Req Description

name string specifies which queue to get information about.
script_delete

Parameter Type Req Description

name string * specifies the script to delete (including directory path)
script_rename

Parameter Type Req Description

directory string * specifies the path where the scripts recides.

from string * old name

to string * new name

25 October, 2011

11/26

Technical Brief

Nimsoft Corp

script_list

Returns a PDS containing a string table with all scripts (including path), as well as the actual
script root directory.

script_run

Parameter Type Req Description

name string * specifies the script run

profile string if script is to be executed in a AO-profile context
script_validate

Parameter Type Req Description

name string * specifies the script run

profile string if script is to be validated in a ao-profile context
code string * lua code to be validated

evaluate number get returnvalue from script.

set_alarm

Parameter Type Req Description

token string * specifies the element to change

value string * Specifies a value for the token

nimid string * alarm message-id

nimids array a string table of message-ids

Key can currently be visible (yes or no) orcustom_1-5 (value). Either nimid or nimids is required.

set_loglevel

Parameter Type Req Description

level number * specifies the nas loglevel.
set_visible

Parameter Type Req Description

visible number * sets the alarms visible (1) or invisible(0)
nimid string * alarm message-id

nimids array a string table of message-ids

Either nimid or nimids is required.

transaction_list

Parameter Type Req Description

mode string * one of: today, lasthour, last24hours, last3days,
lastmonth and date=1SO-startdate,|SO-enddate.
E.g. date=2007-08-24,2007-08-27

where string valid SQL-92 conformant WHERE clause.

nimid string alarm message-id

Returns a list of alarms that occurred in the period specified by mode. If nimid is specified then
the events for that particular alarm-id are listed.

25 October, 2011 12/26

Technical Brief

Nimsoft Corp

trigger_list

Parameter Type Req Description

name string name of trigger to list

detail string detail level, no-detail is zero(0), show events is 1.

25 October, 2011

13/26

Technical Brief Nimsoft Corp

Troubleshooting

Large databases

Problem description
Database files are large even though no/few alarms are present in NAS.

Solution

The transaction-log database files should normally be compressed through its configured
housekeeping routines. You may, however, run the advanced command ‘Reorganize database’
from the status action menu. This will take the NAS services offline, and compress/reorganize
the databases (both database.db and the transactionlog.db). The recommended file size is <=1
GB.

Database seems locked

Problem description
The logfile will reveal traceinformation regarding NAS subprocesses being unable to insert data
into the database tables. A db-journal file older than one day is present.

Solution
The <database>.db-journal file contains the uncomitted transactions. This can be removed to
restore the state of the database.

Need to browse the embedded databases

Problem description
Can we access the databases from other applications for reporting, housekeeping etc.?

Solution
Yes, there are many database management applications for the SQLite3 database. You'll find
one at www.sqlite.org or by requesting one from Nimsoft support.

Old transactions are not being copied

Problem description
The transaction database is not populated with the transactions found in the old logs/ directory.

Solution

The setup/transaction_filter controlled what to store in the transaction-logfiles prior toversion 3.
When the nas attempts to convert the files it expects a ‘open’ transaction prior to storing any
information related to a message. In other words if the user configured the old nas to only store
suppression and assign, then the transaction_filter=12 and no transactions will be converted.
The default setting of the transaction_filter was 15. (open,close,suppress,assign)

Reset User-Interface views

Problem description
User wants to reset all NAS Ul settings

Solution
All settings are stored in registry under the following key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\conf_nas\

25 October, 2011 14/26

Technical Brief Nimsoft Corp

Appendix A — The NAS — LUA extensions

Alarm |

alarm.get ([Nimid])
Returns a table of alarm data for the given nimid. If used without the nimid it will return the alarm data, and is
only used in conjunction with AO profiles.

alarm.list ([Field, Value [, Value...]])
Returns an array of table elements containing alarm data. Will, if used with the field and value(s)
parameters, filter the result set according to the user criteria. Use the column name for your field and one or
more match strings. The % is used as the wildcard character. E.g alarm.list (“hostname”,”"%xp%”") returns
alarms for all hostnames with 'xp’ in them. These records are extracted from the NAS_ALARMS table.

alarm.transactions (Nimld)
Returns an array of table elements containing alarm transaction information for the given nimid. These
records are extracted from the NAS_TRANSACTION_LOG table, in the transationlog database.

alarm.statistics ([ShowAll [, Field, Value]])
Returns a table containing the following items:
level_information - number of informational alarms.

level_warning - warnings -“-
level_minor - minor -“-
level_major - major -“-
level_critical - critial -“-
alarm_count - total number of alarms.

ShowAll = true will list all visible and invisible alarms. You may use the Field and Value paramters to
selectively choose statistics. You may choose one of origin, hostname, source, subsystem, sid.

alarm.history (Selector [, Option])
Returns an array of table elements containing alarm summary records for the selected time period.
The valid selectors are the ones found in the history browser, namely: today, lasthour, lastweek,
lastmonth,last24hours,last7days,last3days, date. The Option parameter when used with one of the
selectors mentioned, can be one of time, closed or created. The Option parameter when used with the
selector “where” is a valid SQL WHERE statement (without the WHERE).
The date selector is on the form date,yyyy-mm-dd [HH [:MM [:SS]]] ,yyyy-mm-dd [HH [:MM [:SS]]]
E.g ("date, 2007-10- 18, 2007- 10- 22 08: 00")

alarm.query (SQL-Query [, Token])
Runs the SQL-Query in the NAS database unless Token is specfied. Token may currently be
“transactionlog”. Returns the result of the SQL-Query. Please take causion in using this function. No checks
are performed, and the caller may wreck the database or database-model by running queries.

alarm.set (AlarmTable)
Updates the existing alarm denoted by the nimid element of the AlarmTable with a set of supported fields in
the alarm. The fields are message, level or severity,previevel, sid, user_tagl, user_tag2, custom_1 to
custom_5, visible and escalated. The visible and escalated take O (false) and 1 (true) as values. The
message, severity, sid, user_tagl,user_tag? take strings as values. Please note that this function should
not be used directly with data returned by alarm.get (). Use this function with caution, especially when
used in on_arrival AO profiles to avoid deadlock situations (e.g. modifying a message that rematches the
filter).

E.g Making an existing alarm invisible and setting the severity level.

b = ("KGL2271949-57003")
a = {} .
a.nimd = b.nimd
a. |l evel = NI M__I NFORVATI ON
a.prevlevel = b.level
a.visible =0

(a)

25 October, 2011 15/26

Technical Brief Nimsoft Corp

Database |

database.open ([FileName | ConnectionString , [BreakOnError]])
Opens a database handle to the specified file or database. Subsequent database operations will now be
reference through this handle, until it is closed using the database.close or through an implisit close when
opening another database using database.open. Set BreakOnError to false if you want to catch the error
instead of letting the script halt. The default database is called user.db , See examples below:

Opens a separate SQLite database file:
("ny_private.db")
Opens the NiS:
(" provider=nis;database=ni s; dri ver=none")
Opens MS Access database:
("Driver={Mcrosoft Access Driver
(*.mdb) }; Dbg=c:\\ nyl uadb. ndb; Ui d=xxx; Pwd=yyy")

database.query (SQL-Query)
Performs the provided SQL in the current open database. If no previous database.open has been performed
then the user.db is used. The SQL statement must be supported by the underlying database. This function
returns tRecordSet [, iReturnCode [,sError]]. If no record-set is returned by the query then an empty table
and the returncode NIME_NOENT is returned.

database.close ()
Closes the current database.

database.setvariable (Name, Value)
Creates (or modifies) the persistent variable Name in the current database. The variable name should be a
unique name to avoid collisions.

database.getvariable (Name)
Retrieves the persistent variable Name. The function returns nil when the variable is non-existent.

Action]

action.assign (AssignTo, Nimld | Nimld-List [, AssignedBy])
Assigns a user to one or more alarms, using the nimid (or a comma separated list of nimids).

action.close (Nimld | Nimld-List)
Closes the open alarm referenced by the single nimid or the list of alarm ids.

action.command (CommandLine)
Executes the provided command-line string, and places the output (if any) into a table of lines. The
exit-code can is returned as the second output parameter. E.g output,rc = action.command (“Is —al”)

action.note (NoteName, NoteDescription, Nimld [, Overwrite])
Create and attach a note to the alarm message referenced by the nimid.

action.ping (HostName [, Timeout])
Returns the status (true or false) and the time-used (in milliseconds) when issuing a ping (ICMP ECHO) to
the provided hostname or ip-address.

action.emai | (ReceiverAddress, Subject [, Body]])
Generates an email-message targeted for the NimBUS Email Gateway.

action.SMS (PhoneNumber, MessageText)
Generates an SMSI-message targeted for the NimBUS SMS Gateway.

25 October, 2011 16/26

Technical Brief Nimsoft Corp

action.profile ([Name, RunState [,Persistent]])
Activates or deactivates the named Auto-Operator profile. A persistent change will affect the configuration
file. The variables RunState and Persistent are of type Boolean (true or false). Note that action.profile()
returns a table of all AO-profiles with status information (see example below)

out = ()
if out ~= nil then
printf ("Nunber of profiles: %", out.numprofiles)
for i,f in pairs(out.profiles) do
printf ("nane: %, active: %, type: 9%",f.nanme,f.active,f.type)
end
end

action.filter ([Name, RunState [,Persistent]])
Activates or deactivates the named Auto-Operator pre-processing filter. A persistent change will affect the
configuration file. The variables RunState and Persistent are of type Boolean (true or false). Note that
action.filter() returns a table of all filters with status information (see example)

out = ()

if out ~= nil then
printf ("Nunber of filters: %",out.numfilters)
for i,f in pairs(out.filters) do
printf ("nane: %, active: %, type: 9%",f.nanme,f.active,f.type)
end
end

action.log (Activity [, Status [,TimeUsed [,Module [, Identifier]]]])
Adds activity information to the activity logger. Describe it as precise as possible, and use the status
information to flag different states, or results of operations.

action.visibility (Visible, Nimld | NimID-List)
Set alarm visibility to true or false on one or more alarms.

action.escalate (SeverityLevel, Nimld | NimID-List)
Raises the severity level to according to the SeverityLevel parameter. Only alarms with a current severity
level lower than SeverityLevel will be modified.

Nimbus |

nimbus.alarm (SeverityLevel, MessageText [, SuppressionKey [, Subsystemld [, Source]]])
Generates a NimBUS alarm message with the severity level (1-5) and a message-text. Use the suppression-
key to create a stateful alarm. Returns a return code and the message-id string.
E.g. rc,nimid = nimbus.alarm (NIML_WARNING, “help me..")

nimbus.post (Subject, PDSHandle)
Posts a NimBUS Message onto the NimBUS using the Subject.
Returns a message-id string if successful or nil.

nimbus.request (NimBUSAddress, Command, Arguments [, Wait [, ReturnAsPDS]])
Returns the result of the command targeted for the provided nimbus component. The command-arguments
are expected to be a PDS (returned by pds.create). The result is placed into a table unless the
ReturnAsPDS parameter is set to true.
Please note that this is an associative table (not indexed), meaning that a PDS sections will be referenced by
its section-name.

controller = nimbus.request (“controller”,"get_info")
printf (“controller robot: %s”, controller.robotname)

nimbus.qos_definition (QosName, QosGroup, Description, Unit, UnitAbbreviation, HasMax [, IsAsynch])
Creates a QoS definition named QosName. Unless the flag IsAsynch is true, an interval based QoS is
created. Please note that subsequent definitions on the same name will not recreate or alter an existing QoS
definition. The HasMax flag set requires that all gos data (issued by nimbus.qos) referring to this QoSName
is issued with a MaxValue.

25 October, 2011 17/26

Technical Brief Nimsoft Corp

nimbus.qos (QosName, Source, Target, Value, Interval | QOS_ASYNCH [,MaxValue])
Will send an interval based QoS message when Interval is greater than zero, and a asynchronous QoS
message when called with QOS_ASYNCH. Please note that no QoS data will be recorded unless a valid
QoS definition has been sent prior to this request. Remember to set the MaxValue if definition was created
using HasMax=true.

nimbus.session_open (NimBUSAddress)
Opens a session to the targeted NimBUS component. Returns a handle to the session.

nimbus.session_request (SessionHandle, Command [, Arguments [, Wait [, ReturnAsPDS]]])
See nimbus.request.

nimbus.session_close (SessionHandle)
Closes and removes the data structure associated with the handle.

Note |

note.create (Name, Description [,AutoRemove [,Category]])
Creates a note with the provided name and description fields set, and returns the note identification number
(Noteld).

note.append (Name | Noteld, Description [, Overwrite])
Appends the descriptive text to an existing note defined by the name or the id. A new note will be created
when no matches are found. Returns status.

note.delete (Name | Noteld)
Deletes a note with the provided name or id. Returns status.

note.find (Name)
Returns the Noteld of the named note, and the note description as the second return parameter, or nil when
nothing matches the provided Name.

note.attach (Name | Noteld, Nimld [, NimlId...])
Attaches the note to one or more alarms specified as Nimlds.

| Trigger |
trigger.alarms (TriggerName)
Returns an array of table elements containing alarm data matching the criteria for the named trigger.
trigger.count (TriggerName)
Returns the number of alarm events currently matching the trigger criteria.
trigger.exist (TriggerName)
Returns true if the trigger is defined.
trigger.list ([TriggerName])
Returns a table of triggers, or the table entry for the matching trigger name.
trigger.state (TriggerName)
Returns the state (raised or not raised) of the named trigger.
trigger.timestamp (TriggerName)
Returns the UTC timestamp when the trigger last changed state.
| File]

file.copy (Source, Destination)

25 October, 2011 18/26

Technical Brief Nimsoft Corp

Creates a file using the complete Path and writes Buffer into the file if provided.

file.create (Path [, Buffer])
Creates a file using the complete Path and writes Buffer into the file if provided.

file.delete (Path)
Deletes the file named Path.

file.read (Path [,Mode [,StartPos]])
Returns a buffer with the filecontents, and the number of bytes read as a second return parameter. The
optional mode parameter allows for controlling the open-mode. (see fopen man-pages, default: “rb”).Startpos
indicates the position where to read from (default: 0)

file.write (Path, Buffer)
Appends Buffer the file Path, and returns true if success

file.stat (Path)
Returns a table containing the following statistics: mtime, ctime, atime, mode and size.

file.rename (OldName , NewName)
Renames the file OldName to NewName.

file.checksum (Path)
Returns a Base64 encoded checksum string for the specified file.

file.list (Path [, Pattern [, DirectoriesOnly]])

Returns a string table with the filenames (or directories if the DirectoriesOnly is set to true). The pattern can
be used to specify the search pattern (default is *).
E.g

| = ("\\tmp","*.10g")

for k,v in pairs(l) do

printf("%: %", k,v)
end

file.mkdir (Path)
Creates the given directory. Please note that this does not support a recursive create.

Timestamp |

timestamp.now ()
Returns the number of seconds elapsed since Jan. 1 1970, 00:00:00.

timestamp.diff (StartTimeStamp [, Format [, EndTimeStamp]])
Returns the difference (seconds, minutes,hours or days) between the EndTimeStamp (or now if not
provided) and the StartTimeStamp using the Format specifier (seconds, minutes, hours,day)

timestamp.newer (TimeStamp, TimeSpecification)
Returns true if the TimeStamp is newer than specified by the TimeSpecification. The TimeSpecification
format is built using a combination of numbers and the tokens: seconds, minutes, hours, days. E.g.
10h30min, 5hrs, 30m, 3 days

timestamp.older (TimeStamp, TimeSpecification)
Returns true if the TimeStamp is older than specified by the TimeSpecification. The TimeSpecification
format is built using a combination of numbers and the tokens: seconds, minutes, hours, days. E.g.
10h30min, 5hrs, 30m, 3 days

timestamp.data ([TimeStamp])
Uses ‘now’ if no parameter is provided. Returns a table with the following self-explanatory members:
year,month,day,hour,minute,second,yearofday,weekday and isdst (1 if daylight savings time).

timestamp.fromISO (ISOdatestring)
Returns a timestamp and a timestamp data table (see timestamp.data).

25 October, 2011 19/26

Technical Brief Nimsoft Corp

timestamp.format (TimeStamp [, Format])
Returns a formatted timestring using the Format specifier (default: %b %d, %H:%M:%S).

specifier Replaced by Example

%a Abbreviated weekday name * Thu

YA Full weekday name * Thur sday

%o Abbreviated month name * Aug

%8 Full month name * August

% Date and time representation * ;’gglAug 23 14:55:02

% Day of the month (01- 31) 23

% Hour in 24h format (00- 23) 14

% Hour in 12h format (01- 12) 02

% Day of the year (001- 366) 235

%m Month as a decimal number (01- 12) 08

Y Minute (00- 59) 55

% AM or PM designation PM

%S Second (00- 61) 02

o) Week number with the first Sunday as the first day of week one 33
(00-53)

% Weekday as a decimal number with Sunday as 0 (0- 6) 4

o Week number with the first Monday as the first day of week one 34
(00-53)

RL Date representation * 08/ 23/ 01

9w Time representation * 14: 55: 02

%y Year, last two digits (00- 99) 01

%Y Year 2001

w Timezone name or abbreviation CDT

L) A %sign %

* The specifiers whose description is marked with an asterisk (*) are locale-dependent.

PDS |

The PDS (Portable Data Stream) format is used heavily within the NimBUS to exchange data between various
processes on all platforms supported by NimBUS. This format allows users to build nested datastructures that may be
passed between different languages and different hardware platforms.

pds.create ()
Returns a reference handle to a PDS structure. Use pds.size (pdsHandle) for size information.

pds.copy (pdsHandle)
Returns a reference handle to a copied PDS structure.

pds.delete (pdsHandle)
Deletes the PDS structure and data.

pds.convert (pdsHandle)
Returns a LUA table. This function converts the PDS structure to a LUA table containing the same key/value
pairs and sub-tables (if any).

pds.putint (pdsHandle, Key, Value)
Stores an integer value in the provided PDS structure using the Key as the reference to the Value.
Note that an existing element with the same Key will be replaced.

pds.putString (pdsHandle, Key, Value)
Stores a string in the provided PDS structure using the Key as the reference to the Value. Note that an
existing element with the same Key will be replaced.

25 October, 2011 20/26

Technical Brief Nimsoft Corp

pds.putDouble (pdsHandle, Key, Value)
Stores a double value in the provided PDS structure using the Key as the reference to the Value. Note that
an existing element with the same Key will be replaced.

pds.putPDS (pdsHandle, Key, Value)
Stores a PDS in the provided PDS structure using the Key as the reference to the Value.
Note that an existing element with the same Key will be replaced.

pds.putTable (pdsHandle, Key, Value)
Stores a value of type string, number or PDS to the named table Key.

pds.getint (pdsHandle, Key)
Returns the number associated by Key from the provided PDS structure (or nil if non-existent).

pds.getString (pdsHandle, Key)
Returns the string value associated by Key from the provided PDS structure (or nil if non-existent).

pds.getDouble (pdsHandle, Key)
Returns the number associated by Key from the provided PDS structure (or nil if non-existent).

pds.getPDS (pdsHandle, Key)
Returns the PDS handle associated by Key from the provided PDS structure (or nil if non-existent).

pds.getTablelnt (pdsHandle, Key, Tableindex)
Returns the number associated by Key from the named table Key and index Tablelndex. Zero (0) is the first
table index.

pds.getTableString (pdsHandle, Key, Tablelndex)
Returns the string value associated by Key from the named table Key and index Tablelndex. Zero (0) is the
first table index.

pds.getTablePDS (pdsHandle, Key, Tableindex)
Returns the PDS handle associated by Key from the named table Key and index Tablelndex. Zero (0) is the
first table index.

pds.getNext (pdsHandle)
Returns the next Key, Type, DataSize, Data from the provided PDS structure (or nil if non-existent).

pds.size ()
Returns the number of bytes.

pds.fileOpen (sPath)
Returns a reference handle to an open pdsFile. Close the file using pds.fileClose .

pds.fileClose (pdsFileHandle)
Closes the pdsFile.

pds.fileRead (pdsFileHande [,bMarkAsRead])
Returns 3 optional output parameters: return code, a reference handle to a PDS and the number of bytes
read. The bMarkAsRead flag advances and saves the file read pointer. Note that the PDS file can contain
blocks of PDS's, these can be read in a loop.
Eg rc,dta, nbytes = (f,true)

pds.filewWrite (pdsFileHande , pdsHandle)
Writes the provided pdsHandle data to the file.

25 October, 2011 21/26

Technical Brief Nimsoft Corp

Language extension

sprintf (Format [,Parl [,Par2 [...]]])
Returns a string buffer with the formatted string.

printf (Format [,Parl [,Par2 [...]]])
Logs the formatted string to the output window (if in the editor) or the NAS logfile.

print (Parl[,Par2[...]]])
Logs the string to the output window (if in the editor) or the NAS logfile. Used primarily for simple unformatted
printing and debug output.

left (String, Length)
Returns Length characters from the String, starting from the left.

right (String, Length)
Returns Length characters from the String, starting from the right.

mid (String, Start [, Length])
Returns Length characters from the String, starting from Start. If no Length is specified, the rest of the string
will be returned.

substr (String, Substring)
Returns true if the Substring is found, as well as the starting Position of the subsctring.

split (String [, Separators])
Returns a table of substrings separated by one or more of the Separator characters. The default separator is
whitespace.

trim (String [, Mode])
Removes leading and/or trailing whitespaces from String.
The Mode may be 0: leading and trailing, 1: leading, 2: trailing. The default value is 0.

regexp (String, Expression)
Returns true if the regular (or pattern matching) expression matches String.

setvariable (Name, Value)
Stores the non-persistent variable Name. The value is retrievable until a cold-start of the NAS clears the
Non-persistent data store. Use the equivalent database.setvariable for a persistent store.

getvariable (Name)
Returns the non-persistent named variable Name or nil if non-existent.

exit (ExitCode)
Terminates the script execution with an ExitCode. Non-zero ExitCodes will be recorded in the NAS activity-
log.

tonumber (Value)
Converts Value into a number.

tostring (Value)
Converts Value into a string.

type (Value)
Returns the variable type as as string.

state (TriggerName)
This is a shortcut for the trigger.state function.

sleep (MilliSeconds)
Suspends execution for a given time.

25 October, 2011 22/26

Technical Brief Nimsoft Corp

Constants

NIML_CLEAR =0

NIML_INFORMATION =

NIML_WARNING =

NIML_MINOR =

NIML_MAJOR =

NIML_CRITICAL =5

NAS_ALARM_NEW =1

NAS_ALARM_UPDATE =

NAS_ALARM_CLOSE =

NAS_ALARM_ASSIGN =

NAS_ALARM_ACK =32

NIME_OK = Ok

NIME_AGAIN = Not ready, try again

NIME_ERROR = Error

NIME_COMERR = Communication/connectivity error

NIME_INVAL = Invalid argument

NIME_NOENT = No such entry

NIME_ISENT = Entry is already defined

NIME_ACCESS = No access

QOS_ASYNCH =-1

NAS_AO_INTERVAL = from the current NAS configuration.

NAS_NAME = the name of the current NAS.

NAS_ADDRESS = the NimBUS address of the current NAS.

SCRIPT_NAME = the name of the executing script.

SCRIPT_FILE = the filename of the executing script.

SCRIPT_ARGUMENT = the argument string passed from the executing AO profile.

PROFILE_NAME = the AO profile that executed the script (if any).

PROFILE_STATE = the state of the profile when using the on_trigger method.
25 October, 2011 23/26

Technical Brief Nimsoft Corp

Table structures

As returned from alarm.list(), alarm.get() :

.nimid - unigue NimBUS Id

.nimts - timestamp when the alarm was created (at source)
.source - source of the alarm (typically ip-address)
.hostname - resolved name (robotname or ip-address to name resolution)
level - severity level (0-5)

.severity - textual representation of the severity level.
.supptime - timestamp of last suppression.

.sid - subsystem identification.

.subsys - subsystem string resolved from sid.

.message- alarm message text.

.suppcount - number of times event has been suppressed.
.supp_key - suppression identification key.

.origin - origin of the alarm (stamped by nearest hub, or in some cases the robot.)
.domain - name of originating NimBUS domain.

.robot - name of the sending robot.

.hub - name of the nearest hub to the sending robot.

.nas - name of originating alarm server.

.prid - name of probe issuing the alarm.

.user_tagl - user tag 1 (as set by robot).

.user_tag2 - user tag 2 (as set by robot).

.visible - flag for visibility (1 = visible)

.aots - AO timestamp

.arrival - timestamp when alarm arrived at NAS.
.time_arrival - datetime of arrival.

.time_supp - datetime of supptime.

.time_origin - datetime of nimts.

.assigned_at - datetime at assignment.

.assigned_to - user alarm is assigned to.

.assigned_by - the user who assigned the alarm.

.tz_offset - timezone offset (seconds from GMT)

.supp_id - checksum of suppression information.

.change_id - checksum of message,severity and subsystem.
.dev_id - device_id of message originator.

.met_id - metric_id of originator.

.custom_1 - user definable custom field (custom_1 through custom_5)

As returned by alarm.transactions(),alarm.history()

.nimid - unigue NimBUS Id

.source - source of the alarm (typically ip-address)
.hostname - resolved name (robotname or ip-address to name resolution)
level - severity level (0-5)

.severity - textual representation of the severity level.
time - datetime of event.

.sid - subsystem identification.

.subsys - subsystem string resolved from sid.
.message- alarm message text.

.suppcount - number of times event has been suppressed.
.origin - origin of the alarm (stamped by nearest hub, or in some cases the robot.)
.domain - name of originating NimBUS domain.

.robot - name of the sending robot.

.hub - name of the nearest hub to the sending robot.
.nas - name of originating alarm server.

.prid - name of probe issuing the alarm.

.user_tagl - user tag 1 (as set by robot).

.user_tag2 - user tag 2 (as set by robot).

.visible - flag for visibility (1 = visible)

.assigned_to - user alarm is assigned to.

.assigned_by - the user who assigned the alarm.
.acknowledged_by - the user who acknowledged the alarm.
.tz_offset - timezone offset (seconds from GMT)

25 October, 2011 24/26

Technical Brief Nimsoft Corp

.typez) - transaction type (New,Suppressed major/minor,Acknowledged,Assigned,Closed)
.dev_idl) - device_id of message originator.

.met_idl) - metric_id of originator.

.custom_ll) - user definable custom field (custom_1 through custom_5)

1)
2)

Only returned by alarm.history()
Only returned by alarm.transactions()

As returned by alarm.statistics() :

level_clear - number of open alarms with severity level clear.
level_information - number of open alarms with severity level information.
level_warning - number of open alarms with severity level warning.
level_minor - number of open alarms with severity level minor.
level_major - number of open alarms with severity level major.
level_critical - number of open alarms with severity level critical.
.alarm_count - number of open alarms.

.oldest_alarm - timestamp of the oldest open alarm.

.newest_alarm - timestamp of the newest open alarm.

Custom Pre-Processing

The event table is placed into the LUA context prior to executing the “custom” pre-processing
rule. You may alter (launder) the event by setting the fields message, level, sid, source,
hostname, user_tagl, user_tag2, visible, custom_1 to custom_5, supp_key and origin. The
following fields are present for the script to use:

.source - source of the alarm (typically ip-address)

.hostname - resolved name (robotname or ip-address to name resolution)
level - severity level (0-5)

.sid - subsystem identification.

.message - alarm message text.

.origin - origin of the alarm (stamped by nearest hub, or in some cases the robot.)
.domain - name of originating NimBUS domain.

.robot - name of the sending robot.

.hub - name of the nearest hub to the sending robot.

.prid - name of probe issuing the alarm.

.user_tagl - user tag 1 (as set by robot).

.user_tag2 - user tag 2 (as set by robot).

.supp_key - suppression identification key.

.visible - flag for visibility (true = visible)

The script is expected to return the event (modified or not) or nil. The nil will indicate that the
event is to be skipped.

Note that the user_tagl and user_tag?2 fields will be stored in the database when the inbound
alarm translates into a new event. Please take care when/if modifying the supp_key, since it
alters how the sending probe identifies the checkpoint.

Note that all pre-processing handling will by nature slow down the processing of inbound alarms.

Note that only a subset of the lua methods are available to the pre-processing script. The
following classes and methods are not available: exit, sleep, nimbus, pds, trigger, action,

database, alarm and note. The trigger.state method through the state method is however
available.

25 October, 2011 25/26

Technical Brief

Nimsoft Corp

Appendix B — Database Schemas

(database.db and transactionlog.db)

NAS_ALARMS NAS_VERSION NAS_EVENTS HAS_TRANSACTION_LOG | |MAS_TRANSACTION_SUMMARY
PE nimid TEXT version INTEGER event_type IMNTECER [|PK nimicd TEXT PK nlimi(l TEXT
nitrts IMTEGER curt_chanoeid TEXT time: INTEGER it INTEGER:
dev id TEXT prev_changeid TEXT bype INTEGER crested INTEGER
met_id TEXT HAS NOTES niiicd TEXT nirmts: INTEGER Hibsen INTEGER:
time,_arigin IMTEGER = nitrt= INTEGER lewel INTEGER time: INTEGER:
time_artival wieckp| (PH noteld - MTESER dev_ie TEXT severtty TEXT sverts INTEGER
A INTEGER: note_key TEXT met_id TEXT message TEXT previevel INTEGER
previevel INTEGER: type - INTEGER artival INTESER subsys TEXT level _ INTEGER
level INTEGER destrptan ATEAT severity TEXT sid TEXT severity TEXT
severity TEXT category TEXT level INTEGER source TEXT message TEXT
message TEXT hody R previevel IMTEGER hostname TEXT subsys TEXT
subsys TEXT created NTEGER Message TEXT prid TEXT 2id TEXT
sid TEXT e subsye TEXT rahot TEXT saurce TEXT
I TEXT autoremave INTEGER =id TEXT ik TEXT ? hostname TEXT
hostrame TEXT SOLIFCE TEXT nas TEXT falglel TEXT
prict TEXT hostname TEXT domain TEXT | robot TEXT
rakiot TEXT fatidd TEXT arigin TEXT bk TEXT
huk TEXT riobot TEXT user_ tagl TEXT | nas TEXT
nas TEXT bk TEXT uzer_tag? TEXT | dc!rnlam IE;:
domain TEXT nas TEXT sUppcount INTEGER 1 arigin
origin TEXT FR pimid TEXT domain TEXT azsigned_by TEXT user_tag1 TEXT
user_tagl TEXT time INTEGER: origin TEXT assigned_to TEXT uzer_tag? TEXT
user tag2 TEXT uzer_tag] TEXT acknowledged_by TEXT sUpp_key TEXT
supp_key TEXT J user_tag2 TEXT tz_offset IMTEGER SuppooLt INTEGER
suppoount INTEGER | | SURp_key TEXT vizible INTEGER aSngned_bv TEXT
supptime INTEGER suppCount [NTEGER i18n_token TEXT assigned_to TEXT
time_supp INTEGER _l_ supptime INTEGER i18n_dsize INTEGER acknowvlsdged_by TEXT
supp_id TEXT ! 3 tz_oftset INTEGER i18n_cata TEXT notes INTEGER
change_id TEXT NAS_ALARM_ATTACHMENT | |a=sianed st INTEGER attachment INTEGER:
aots INTEGER: S assigned by TEXT tz_offset INTEGER:
assigned_st INTEGER Bk :"mm :IIEE}?{(: assigned_to TEXT e.SIT“aIated INTEGER:
azsioned_by TEXT 53;:: INTEGER assigned_accept INTEGER wsmlg INTEGER:
assigned_to TEXT S e acknowledged by TEXT dEV_.Id TEXT
sssigned_accept INTEGER deseritinn g notes INTEGER me;t_ld ; IEiI
acknowledged by TEXT time INTEGER sttachmert INTECER: Custom_2 L
niotes INTEGER it INTEGER e.sFalated INTEGER custom_.
attachment INTEGER vigihle INTEGER custom_3 TEXT
vizible INTEGER custom_ 1 TEXT custam_4 TEXT
eacalated INTEGER custom_2 TEXT pust-:m_S TEXT
auto_remove IMTEGER NAS_ACTMITY _LOG custom_3 TEAT !18n_t0k.en TEXT
tz_offset INTEGER == = custom_4 TEXT i1En_dsize INTEGER
e TEXT time INTEGER custom_5 TEXT i18n_data TEXT
custom_2 TEXT Lmi“'e ;EE i18n_token TEXT
custom_3 TEXT i;g'm o 118n_ssize INTEGER
custom_4 TEXT activity TEXT i1&n_ceta TEXT
custam. ek status INTEGER
i18n_taken TERT huzed INTEGER
i18n_dsize INTEGER:
i18n_data TEXT
evert_type INTEGER NAS_NAME_SERVICE)
PK ip TEXT
name TEXT
t= INTEGER
time INTEGER
lock - INTEGER:
Note that the NAS_EVENTS table is purely for intern al NAS usage and should
not be used by any external application/query.
25 October, 2011 26/26

