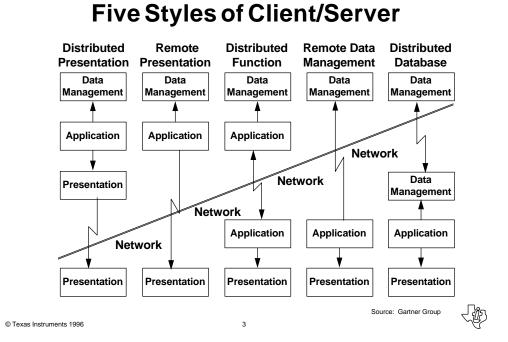
Running Composer Applications in a Networked Environment

Session 370


Douglas Tomb Texas Instruments

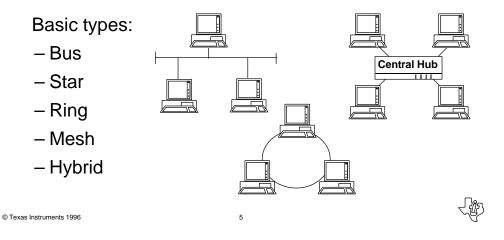
1

© Texas Instruments 1996

Running Composer Applications in a Networked Environment

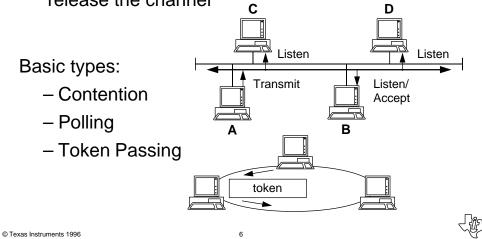
- Client/Server styles
- Networking technologies
- Composer client/server communication components

Introduction to Networking Technologies


- Topologies
- Hardware
- Protocols
 - Standards
 - Implementations

4

• Middleware


Network Topologies–Physical

A computer network is a collection of hardware and software which supports inter-system and inter-process communication between distributed software components.

Channel Access Methods

 Channel access methods describe the rules that govern the devices as they access, transmit, and release the channel

Network Hardware

- Cabling:
 - Coaxial cable
 - Unshielded/shielded twisted pair
 - Fiber, FDDI
- Interface cards:
 - Ethernet
 - Token Ring

© Texas Instruments 1996

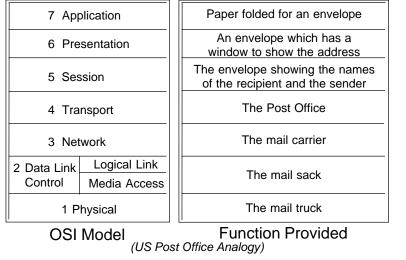
Network Hardware

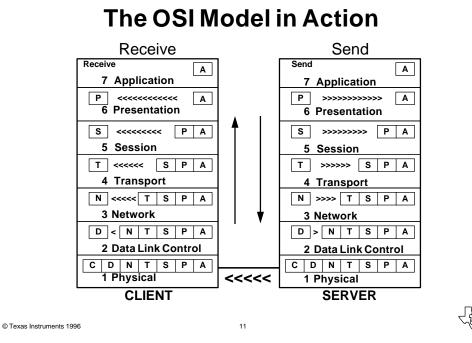
7

- Servers and peripherals
- Hubs and concentrators
- Internetworking:
 - Bridge
 - »Connects two unlike networks together
 - Router
 - »Connects two like networks together
 - Gateway
 - »Connects diverse networks together and allows for multiple protocols to be shipped between the networks

8

© Texas Instruments 1996


Ŀ


Protocols

- What are they?
 - A communication protocol is a set of rules and procedures that enable systems to exchange information.
- Why are they important?
 - Protocols allow software and hardware vendors to design products that will interoperate with other vendors' products at any desired level.
- Standards organizations
- Open Systems Interconnect (OSI) Model
 - Layered architecture
 - Each layer has well-defined functions
 - Functions interrelate to functions in adjoining layers

© Texas Instruments 1996

The Open Systems Interconnect (OSI) Model

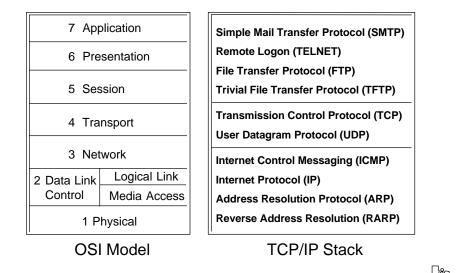
Protocol Implementations

- NetBIOS
- TCP/IP
- SNA
 - APPN
 - LU6.2

NetBIOS

- NetBIOS Network Basic Input/Output System
 - Designed by IBM and adopted by Microsoft to support network communications in a smallto medium-sized LAN environment
- Defacto standard for small LANs
- NOT routable, must be bridged
- OSI model Session Layer protocol
- Establishes unique logical names for nodes
- Provides connection-oriented and connectionless services
- Not usually implemented in UNIX environments

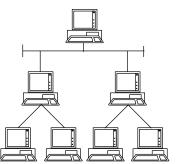
13


© Texas Instruments 1996

TCP/IP and the Internet Protocol Suite

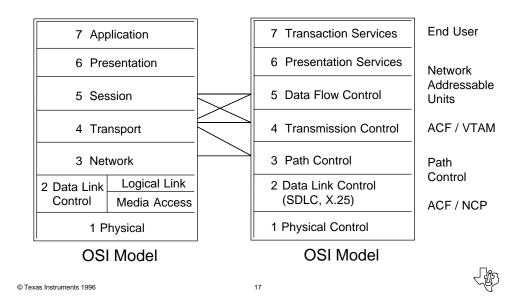
- Internet Protocol Suite
 - Developed by Stanford and BB&N
- Adopted by DARPA 1978
- Vendor hardware-independent
- IP Addressing using an address unique across the Internet
- Sockets & ports
- Transmission Control Protocol (TCP)
 - Provides full-duplex, acknowledged, connection- oriented, flow-controlled service
- Internet Protocol (IP)
 - Connection-less, non-guaranteed

© Texas Instruments 1996


TCP/IP vs. OSI

© Texas Instruments 1996

IBM Systems Network Architecture (SNA)

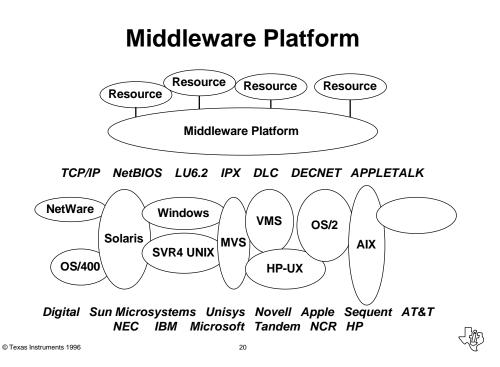

15

- IBM's proprietary networking architecture first introduced in 1974
- One of the most complex, complete, and widely used network architectures
- Hierarchical architecture, adapted over the years to new technology
- Primary basis for the OSI Model
- APPN supports client/server

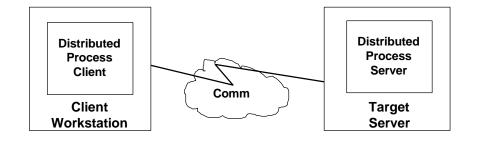
© Texas Instruments 1996

OSI vs. SNA

IBM APPN

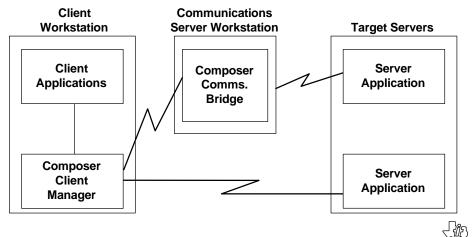

- Advanced Peer to Peer Networking (APPN)
 - Variation of SNA that evolved to address peer to peer, dynamic, multi-vendor networking environments
- Advanced Program to Program Communications (APPC) is the API for APPN
- LU6.2 is the primary protocol in APPN
- Each node handles network communications
- Key to IBM's strategy for Distributed Transaction Processing (DTP)
- Mainframe participation optional
- APPN fully supported by Composer

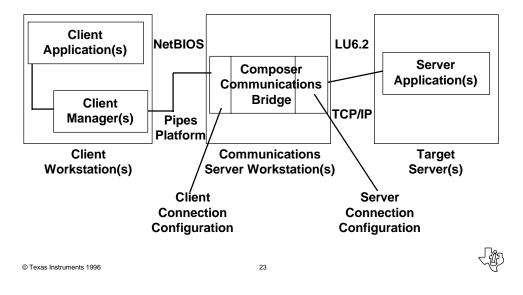
Middleware

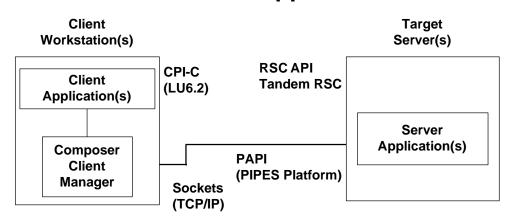

- Message-oriented software accessible via an API
- A framework for distributed computing:

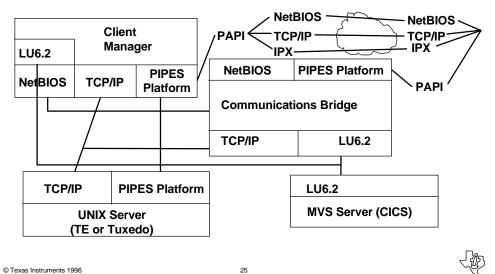
© Texas Instruments 1996

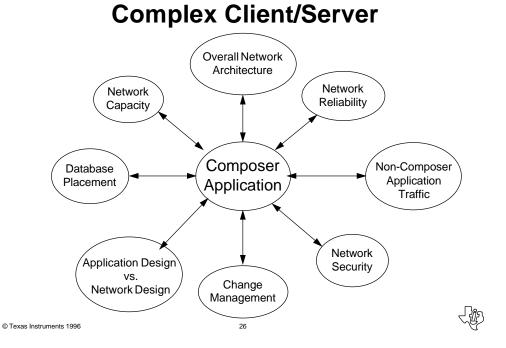
- Comprised of an application (logical) network created by multiple instances of the middleware Kernel
- Allows distributed application components to find each other quickly and to communicate reliably
- Symmetrical, peer to peer system, created and maintained by the multiple instances of the Kernel
- Complex communications considerations become transparent to the application developer and user


Composer Distributed Process Application Environment


© Texas Instruments 1996


21


Client and Server Connections for the Communications Bridge



Direct Connect In a Composer C/S Distributed Process Application Network

Distributed Processing Client Communications Options

Summary

- You have now been introduced to:
 - Client/server styles
 - Networking technologies
 - Composer client/server communication components
- Composer allows analysts to develop applications without detailed knowledge of networking technologies, BUT...
- Design of the network to support the application is THE critical added task to successful client/server development

27

© Texas Instruments 1996

Running Composer Applications in a Networked Environment

Session 370

Douglas Tomb Texas Instruments

