
White Paper

AllFusion® Plex
Multi-Platform
Development
John D. Rhodes
Principal Architect, ADC Austin

William A. Hunt
Product Manager, CA

October 2006

AllFusion® Plex
Seamless multi-platform application development and
deployment has always been one of the “Holy Grail” goals
of computer technology. For the software vendor, the goal
may be to develop an application that can be sold on most
commercially available computer platforms. For a large
organization with many enterprise platforms in use, the
goal may be to deploy n-tier applications across
heterogeneous hardware and operating systems.

Wouldn't it be great if you could model your application
in an enterprise development tool, and then have the tool
generate application code that is optimized to your target
platforms? If this were possible, you could deploy C# /
SQL Server code for Windows-based servers, and J2EE
Java/RPG/DB2 code to iSeries based servers. Actually,
this is something that is not all that futuristic - CA
AllFusion Plex is an Architected Rapid Application
Development (ARAD) tool that can deliver on this promise
today. It does not do magic - there is always some
application code that must be customized for each
deployment platform. However, it can get you 95% of the
way there automatically, and even the last 5% can be
handled within the AllFusion Plex managed modeling
environment.

ADC Austin is a CA partner and software integrator
focused on iSeries and .NET software development. Many
of the systems developed by ADC have large Microsoft
and iSeries requirements. ADC has repeatedly found that
CA AllFusion Plex product offers the ideal solution for
many multi-platform focused companies.

The remainder of this white paper is focused on multi-
platform development support in AllFusion Plex, from
model configuration control through source code
generation. For a general background please consult
the white paper “Combining Information Engineering
and Object Orientation with AllFusion Plex.”

One Model, Many Dimensions
AllFusion Plex enables you to model your application in
three dimensions, via a set of complementary control
mechanisms

• Versions are used to control changes in the functionality
of an application over time.

• National languages are used to control the translation of
an application into different languages (French, Spanish,
English, and so on).

• Variants are used to control the implementation of an
application in different hardware and software
environments.

The first two dimensions of the model, Versions and
National Languages, are powerful features in their own
right - and are beyond the scope of this white paper. The
third dimension, Variant, gives the developer a powerful
tool to model an application once and then deploy
everywhere. Model objects such as panels, functions, and
tables can be optimized and customized to fit the target
platform. Components deployed on one server can talk to
components deployed other server, even across hardware
and OS boundaries.

Controlling the Configuration
The AllFusion Plex model simultaneously contains all
configured dimensions, including platform. Variant is
set by the configuration control utility. In this example,
the application model consists of many linked library
models. The configuration can be set independently for
each library model. For example, the client application
model may be set to generate a Microsoft client
application, but the back end storage model can be set
to i5 J2EE or RPG IV. This configuration would result in
a client server application.

2

Figure 1. AllFusion Plex models are three-dimensional in
concept, with Variant providing developers with the means
to easily design platform-specific features.

As you can see in Figure 2, there are many possible
deployment configurations. Also, AllFusion Plex
developers are free to create custom variants that
can cover special circumstances.

Device Designs
Device designs are a major challenge for platform
independent development. Most dramatically, the screen
design for a 5250 application differs markedly from a
Windows-based GUI. Microsoft and Java platform screen
designs are generally much closer in appearance, but still
contain differences. For example, in the case of a date
selection screen feature, a Microsoft panel may contain
an ActiveX/COM calendar component, while a Java panel
may contain a JavaBean component. Although both
components result in similar appearance and functionality,
the methods and properties supported by each
component can be different.

AllFusion Plex solves this problem with screen modes, and
by making the panels dependent on Variant configuration.
The panel object is initially designed in a base
configuration where all common elements are created.
Customized platform implementations can then be
created in a seamless manner on top of the base
configuration. ActiveX and JavaBean components can
exist on the same panel but are only active in their
particular Variants.

3

Figure 3 shows a single panel object that has separate
5250 and Windows/Java panel designs. Although both
designs display the same fields, and have the same basic
functionality, the appearance is quite different. However,
the business logic is identical - freeing the developer
from maintaining two code bases.

Business Logic and Source Code
AllFusion Plex business logic is developed in the action
diagram modeler. The software developer models the high
level business logic of the program using action diagram
statements. The action diagram is an implementation
language neutral modeling environment - for example,
the statements required to open a table and process the
records are identical no matter which implementation
language you are targeting. The resulting function is later
used to generate platform code such as C# or Java.

However, occasionally a developer may need to access
platform specific features. For example, a Windows
program may need to manipulate file system objects, or
an iSeries program may need to access a data queue. One
powerful aspect of the AllFusion Plex model environment
is that it allows the developer to incorporate platform
specific code. Using meta code to access the specifics of
the variant being modeled, the developer can incorporate
meta conditional statements, with accompanying platform
specific source code objects. When the program is
generated from AllFusion Plex, the correct source code
for the target platform is selected and is compiled into
the application object.

Figure 2. Model Configuration screen for creation of
custom variants.

Figure 3. One application design deployed across multiple
environments.

4

Figure 4 depicts an example of multi-platform specific
code. In this case, the action diagram contains source
code to control both a Windows COM component and a
JavaBean component. The “+If language” statement is the
key. If this function is deployed to a Java environment, only
the code within the +If +Java section will be generated
and compiled. In this manner, AllFusion Plex provides an
overall framework for managing all application objects
regardless of platform. You don't have to worry about
managing bits of source code that is spread amongst
various code libraries on various different operation
systems - all the information necessary to build a multi-
platform application is contained within the model.

Implementation Names
Functions and database object implementation names are
also variant dependent. Consider a software vendor who
wants to produce a software package that will run on both
i5 “classic” DB2 and SQL Server. Table names under the
classic style of DB2 tables can only be 10 characters long.
It would be possible to store the database implementation
name triples in the base variant so that they are used by
both configurations. This is probably the simplest
approach. However the table and column names would
be limiting for someone used to the long names supported
in SQL Server.

In this case the software vendor may want to take
advantage of the long name allocation feature within the
SQL-related generators of AllFusion Plex. These long
implementation names are incompatible with OS/400.
Therefore, you have a requirement to override the base
implementation names in the SQL variant.

The solution is simple - switch to a SQL variant and, in the
Model Editor, add or change the required implementation
name triples. These changes override the corresponding
triples that exist in the base variant. This results in two
sets of implementation names, each appropriate to the
target platform.

N-Tier Development
AllFusion Plex enables applications to be partitioned
dynamically. This means that a call from a client function
(Windows, Java, or HTML) or from a server function can
be configured to call functions on different servers. These
calls can be made on any given server machine of any type
supported by the AllFusion Plex runtime. The partitioning
is highly flexible because you can configure the location of
the call at design, deployment, or execution time. It is not
necessary to generate, build, and deploy different versions
of the client application.

Useful applications include:

• "Multi-tier" client/server and e-business applications.
A Windows server middle tier can provide access to i5
RPG, Java (any hardware platform), or another Windows
server. A Java server middle tier can provide access to
the i5 and other Java systems including mainframe and
UNIX/Linux.

• Performance and backup support. For example, if a
server is not currently available your application can
switch seamlessly to another server.

Figure 4. Multi-platform specific code within an AllFusion
Plex action diagram.

Figure 5. AllFusion Plex implementation names for
different variants as defined in the Model Editor.

• Data transfer. Data can be transferred easily between
platforms by reading the data, switching servers, and
then writing the data to the new server.

• Large-scale distributed applications. An end user
working in a branch office can update data on a local
or remote server, as required.

AllFusion Plex has n-tier capability to allow large, complex,
multi-platform applications to be deployed with a single
skill set. It is not necessary to have separate development
teams partitioned by platform.

Generating and Building the
Application
Once the application has been fully modeled, it is time to
generate and build the various parts and components, and
then deploy on the target platforms. The AllFusion Plex
Generate and Build tool is a sophisticated facility for
generating all source in the correct computer languages,
and then directing the source for compilation to
appropriate system.

The Generate and Build tool includes the following
features:

• Setting up target systems, and defining options like
database names and target directories for remote
source.

• Configuring pre-built code libraries
• Filtering objects by language and platform
• Setting up deployment packages
• Monitoring status of compiled objects from compilation

through testing
• Running, viewing, and debugging source code

Figure 6 shows the Generate and Build tool, with some of
the features mentioned above. It is possible to control
most aspects of the build process from this facility.

Real Life Promise
The preceding sections describe the facilities in AllFusion
Plex that make up multi-platform application
development. Multi-platform development is often a
difficult and painful process, and many people are initially
skeptical that any development tool can deliver on the
promise.

In the case of AllFusion Plex, there are many examples
of software vendors and other organizations that have
successfully deployed multi-platform applications. As
an application integrator specializing in model based
development, ADC Austin has worked with many of
these groups. One recent example is Indiana University
Foundation (IUF). With assistance from ADC Austin,
IUF developed an Endowment Trust Accounting (ETA)
package using AllFusion Plex. ETA is an enterprise-class
application that is used to manage the over 1 billion dollar
Indiana University endowment. The initial deployment of
ETA was Java client tied to i5 Java server. However, IUF
later decided to make their package available to other
universities, who may not use Java or have an i5. Using
AllFusion Plex, they were able to rapidly deploy their
application in other configurations including Microsoft
client to i5 server, and Microsoft client to Microsoft server.

For those in the business of deploying applications to
multiple platforms, AllFusion Plex is definitely worth
strong consideration.

5

Figure 6. Generate and Build screen.

Figure 7. An overall snapshot of different environments
that AllFusion Plex targets: client, server and data sources.

Copyright © 2006 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. This document is for your informational
purposes only. To the extent permitted by applicable law, CA provides this document “AS IS” without warranty of any kind, including, without limitation, any implied warranties of merchantability
fitness for a particular purpose, or non-infringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document including, without limitation, lost profits,
business interruption, goodwill or lost data, even if CA is expressly advised of such damages. MP308661006

About the Author

John D. Rhodes is the principal architect at ADC Austin,a CA partner for providing midrange application development solutions. ADC has more
than 10 years of extensive experience working in the AllFusion Plex development environment.

William A. Hunt is the Product Manager for AllFusion Plex at CA and has served in this role since 2000.

