
Hi. My name is Pat Tuchman. I would like to describe a general purpose audit
trail system that we’ve implemented at the University of Illinois. This system
audits changes to DB2 data, regardless of how the changes were initiated. I am
the primary analyst and programmer for this system.

TRACK VI: DESIGN
Session 640

An Audit Trail for
Your DB2 System

Patricia A. Tuchman
University of Illinois - AISS

The University of Illinois is a state funded University. It once again has three
main campuses. At the UIUC campus, we have approximately 35,000 students
and about the same number of faculty and support staff. The Chicago campus
has both the medical school (UIMC) and the old Circle (UICC). Springfield was
added to the University last summer and is much smaller.

Where is U of I?

Chicago
Champaign-Urbana
Springfield
NOT the University of
Chicago

AISS is a general University department - we don’t belong to a specific campus.
We are responsible for administrative computing including the traditional
business applications of payroll and human resources as well as university
specific applications such as student records. AISS is not a teaching department.

AISS has been using IEF/Composer since 1987.

Who is AISS?

Administrative Information Systems and
Services
Administrative computing for the
University of Illinois
Staff both in Chicago and in Champaign-
Urbana
NOT a teaching department

In my talk, I’d like to first give an overview of our audit trail system, then show
a specific example of data being audited, and follow that with some detailed
technical information. I hope that all of this is on your CD-ROM, along with
reports showing the details of the data model we used.

Topics

Overview
– Data flow
– Database design

Specific Example
Specifics
– Problems encountered
– User reactions
– System statistics
– Good things to know

Over the past several years, we re-engineered one of our existing student
systems. We had a 10+year old IMS system that needed work. The UIUC
campus also wanted to provide students with the ability to register for classes
directly, without going through the cycle of filling out forms and waiting to see
what classes were already filled. The soon-to-be obsolete system had a
rudimentary audit capability whose function needed to be carried over into the
new system. In the old system, selected online programs would write before and
after images to an audit database. This provided only limited audit capability and
was very inflexible. None of the batch programs did any auditing. On the
positive side, very few people were allowed to update the data, so the audits
were sufficient.

When we switched to the new student system, not only could many more people
update records (including the 35,000 students themselves!), but we also had the
QMF table editor and SPUFI which don’t lend themselves to self-auditing. We
knew we needed a different approach.

We are currently using the audit system for student records; we have several
other applications that may use this in the future.

Why did we do this project?

The University MUST be able to account
for all changes made to a student’s record
by authorized staff
The University SHOULD be able to explain
how a student’s record got that way
The University MUST be able to detect
unauthorized changes to a student’s record

The resulting system is not used for resolving problems that just happened.
There is a time delay before the data shows up in the database. Also, we are not
producing a paper trail of all the changes that happened any where in the DB2
region.

What we’re NOT using this for

Problems occurring right then

Paper trail of all changes done

Some basic vocabulary...

The Boot Strap Data Set holds the index to the DB2 log information. The data
here can direct you to the exact DB2 log for either a date/time range or an RBA
range.

Unit of Recovery/commit: For an online transaction, this is usually the interval
between enter and/or function keys being hit. For a batch transaction, this is the
interval between DBCOMMIT commands. In our audit system, we group
together all changes done in a unit of recovery.

Vocabulary

Audit Trail - a record of (all) changes made
to key data
Log Analyzer - utility from Platinum
Technology
BSDS - DB2’s Boot Strap Data Set
Unit of Recovery - changes done between
commits

Here are our design requirements. We decided that we needed to audit from the
DB2 logs directly. When we started the re-engineering process, there were no
products available to help with this. By the time we started working on this part
of the system, Platinum Technology (PT) had their Log Analyzer (LA) product
in late beta; we decided to go with this.

Design Requirements

Minimal changes to existing applications
We really made none
Easy to report from
Easy to control what data is being audited
Capture changes made anywhere
Not just by IEF generated applications

DB2 writes all changes to its log, regardless of how the changes were made. We
then run PT’s LA over the log, culling out changes to tables that we are
interested in. LA produces two files; the control file describes the layout of the
tables that have been found in the log; the data file has the changed data. (I have
samples of these coming up.) These are input to our build/populate program
which parses the control file and uses this information to decipher the data file.
The interesting changes are written to the audit database.

There is a second batch job which purges data from the audit database when we
no longer need it.

We keep the LA control and data information for 2 years. This makes the
auditors happy.

Data Flow

Audit
Build

LA
DB2
Log

LA
cntl

LA
data

audit
db’s

DB2

CICS
batch
SPUFI
QMF
 IMS

We don’t record all changes made within the DB2 region. The changed data is
filtered in these 5 ways.

Data capture on - if this isn’t set for a table, then the log doesn’t have the entire
row that changed. We need the entire row to get the identifiers and foreign keys
so we know what changed. After all, it’s no good knowing that a grade changed
from “D” to “A” if we can’t derive for what student and for what course.

LA table list - the LA job has a list of tables that it will extract changes for. If
we’re not interested in auditing a table, we don’t include it on this list.

Audit definition - we define within the audit system what tables we’re interested
in.

Audit definition - we further define what columns of what tables we’re
interested in. For example, we rarely audit create_date or update_time. We also
only record columns that have been changed.

Audit exclusion - we can ignore changes to a table based on the plan that did the
change.

Data is Filtered Out

DB2 table definition must be DATA
CAPTURE ON
LA job must have table name in list
Audit definition must include table
Audit definition must include column
Audit definition must not exclude plan

The audit system has four databases in it. The first three on the list are
operational; the fourth is pending. We also do reads of the “live” (non-audit) data
to resolve identifying information (remember the grade change!) I’ll describe the
first three audit databases in more detail.

Databases Used

Audit
Audit definition
Audit control
Audit report
“Live”

But first, let me give you a little background in the data model design philosophy
we use. In all but a few of our entity types, we have a generic “identifier” that is
the unique identifier for the entity type. We do not include relationships in
unique identifiers.

So, in this very small portion of the student data model, we have 4 entity types.
SP has the basic information about a student. This is related to the enterprise-
wide PERSON entity type, which isn’t shown.
ST is the term based information for a student.
SC is the actual course that a student is or was enrolled in.

SGP is where grade point information is stored. We don’t actually store a
student’s grade point average; we save the number of earned hours and the
number of grade points and do the calculation when the GPA is needed. The
campus has defined a number of different GPA’s, so this seemed a better
approach.

These entity types will be used in the rest of my examples.
Note to the reader: I never type table names; I use acronyms instead.

SIMPLIFIED Student Data
Model

Student Grade
PointStudent Person

Student Course

Student Term

Just to show you what can be found in the tables.

In every table, there is a column named “IDENTIFIER”. This is a text(16) field
that contains a timestamp that has been shuffled.

This makes reading a specific row very easy and keeps the length of the key
short and the length of the foreign key short. Users can change any column they
want, without us needing to worry about not changing part of a unique key.
However, it means that there is no intrinsic identifying information to be found
in a row. Again, just because you have read a row in student_course, you don’t
know who took it and when. You must do additional reads for this information,
if you need it.

Student Data Columns
Student Person Student Grade Point

Identifier Identifier
DN_Personal_ID Graded Credit
DN_Name Graded Points
Sex Credit Type
FK_personidentifie Detail Type

FK_student_perside
Student Term

Identifier
Year/term
Term hours graded
FK_student_perside

Student Course
Identifie r
Rubric
Number
Title
Grade
FK_student_termide

Now, back to the audit system databases.

The main audit database is conceptually very simple. This is where the changes
are recorded. We tried to keep it simple so that reporting would be easy and
could be done by anyone using any tool - and not limited to IEF/Composer.

There is a LOT of data here. I’ll show some statistics later.

Audit Database

Where the changed data goes
HUGE!!
Tried to keep design simple for reporting
purposes
All before and after images are varying
character data

ACS - there will be one of these for each unit of recovery - it has basic
information about the associated changes - who did them, with what plan, and
when. For an online update, this is usually not very much information. For a
batch update, this can be associated with a LOT of changed data, depending on
the commit interval for the program.
ACE - describes what table was changed; this records table name, table creator,
entity identifier, and type of change. The entity identifier is the generic identifier
that describes the exact row within the table that changed.

ACD - is for each audited, changed column of the table; this shows the before
and after images which have been converted to varchar. Defaults based on data
type are used for the before image for inserts and the after image for deletes.
ACLK - each row of a table that has a changed column or columns needs to be
identified for the user - to have logical keys; this data describes completely what
changed, which is different from what the changes were. Since our physical
“key” (identifier) doesn’t have any inherent meaning, we need to associate the
changes with other data that will describe what changed, e.g. the student’s ID
number, name, term, course name. A person verifying a change would be
helpless if they were presented with one of our identifier’s to match against the
paper trail that validated the changed data. We refer to this set of information as
“the logical keys” or “the identifying information”.

Audit Data Model

Audit Change
Set

Audit Change
Entity

Audit Change
Detail

Audit Change
Logical Key

The definition database defines what columns of what tables we’re actually
interested in. This is maintained by the programmers, since the DB2 names are
used and must match exactly what is in the DB2 catalog. Everything in this
database is date sensitive, so we can have different data being audited depending
on the time of year. It turns out we’re not using the date feature very much. We
don’t audit based on type of change (insert, update, delete).

We define here the identifying information - this is used to build the logical keys
in the audit database.

We also allow for the definition of a substitute for a column. We thought
originally that instead of recording that a coded field changed, we might want to
record the decoded values. We’re not using this either.

Definition Database

Maintained by programming staff
Date sensitive
Defines what columns (attributes) of which
tables (entity types) will be audited
Defines how to fully identify a change
(logical key)
Substitution not being used

AET - DB2 table creator and name.
AA - DB2 column name, Y/N audit indicator; these first two tables define what
changed fields will be in the audit database.
ASE - DB2 table creator and name for where to find the substitute value(s).
ASA - DB2 column name(s) for the substitute

AII - start and stop date for identifying information; this allows for the
identifying information to change over time. We actually haven’t needed to do
so.
AIE - DB2 table creator and name for where to find a part of the identifying
information.

AIA - DB2 column name for a part of the identifying information; also known as
the logical key. This table and the preceding table define the logical key pieces
that will be built for a particular table.
AE - what plan or plan mask to exclude changes for.

Definition Data Model
Audit
Exclusion

Audit Entity
Type

Audit
Attribute

Audit
Identifying
Information

Audit Substitute
Attribute

Audit Substitute
Entity

Audit Identifying
Attribute

Audit Identifying
Entity

This shows a partial list of the tables that are defined within the audit definition
database. A table must be on this list for any changes to a row from the table to
be audited.

Audit Entity Type Example
AU05 List Audit Entity Types 02-13-96 11:26:04

Start at Table Creator AEZCASE Table Name TIMETABLE_II_OPEN
Select Table Creator Table Name Start Date Stop Date
 AEZCASE STUDENT_COURSE
 AEZCASE STUDENT_COURSE_XM
 AEZCASE STUDENT_CRSE_X_LOC
 AEZCASE STUDENT_CURRICULUM
 AEZCASE STUDENT_DEGREE
 AEZCASE STUDENT_DEGREE_CUR
 AEZCASE STUDENT_DEGREE_HON
 AEZCASE STUDENT_DISTINCTIO
 AEZCASE STUDENT_ENCUMBRANC
 AEZCASE STUDENT_EXTERNAL_D
 AEZCASE STUDENT_FERPA
 AEZCASE STUDENT_GAS
 AEZCASE STUDENT_GDOL
 AEZCASE STUDENT_GRAD_DATA
 AEZCASE STUDENT_GRAD_EXAM
 AEZCASE STUDENT_GRADE_POIN
 AEZCASE STUDENT_HS_SUBJECT

For one of the defined tables, here is an example showing the defined columns.
You can see that we are not auditing changes to the foreign key; this will only
change on inserts and deletes since this is not a transferrable relationship. I’ve
included it on the list so that I remember that we’ve made a deliberate decision to
NOT audit the field.

We are also doing a substitution for one of the coded fields.

Again, if a field is not in the definition with an audit flag = Y, changes to that
field will not be audited.

Audit Attribute Example

AU04 List Attributes for Audit Entity Type 02-13-96 11:29:35

 Table Creator AEZCASE Table Name STUDENT_GRADE_POIN
 Start Date 00000000 Stop Date 00000000
Select Column Name Start Date Stop Date Audit? Substitute?
 CREDIT_TYPE 00000000 00000000 Y N
 DETAIL_TYPE 00000000 00000000 Y Y
 EARNED_CREDIT 00000000 00000000 Y N
 FK_STUDENT_PERSIDE 00000000 00000000 N N
 GRADED_CREDIT 00000000 00000000 Y N
 GRADED_POINTS 00000000 00000000 Y N
 IDENTIFIER 00000000 00000000 Y N
 NOMINAL_CREDIT 00000000 00000000 Y N

This is a fairly simple substitution.... for the encoded field, go to the code tables
and look up the decoding.

Audit Substitution Example

AU19 List Substitutes for Audit Attribute 02-13-96 11:41:53

Table Creator AEZCASE Table Name STUDENT_GRADE_POIN 00000000 00000000
Column Name DETAIL_TYPE 00000000 00000000 Audit? Y Substitute? Y
Select Table Creator Table Name Column Name
 AEZCASE TABLE_VALUE LONG_VALUE
 AEZCASE TABLE_NAME DESCRIPTION

This shows the actual definition of the logical key (identifying information) for
one of the tables. In order to fully identify a row in student_course, you need to
know the student’s ID number, the student’s name, the year/term (e.g. FA96),
the term type (e.g. traditional, extramural, or correspondence), the course rubric
(e.g. MATH), the course number (e.g. 120), the course number prefix, and the
section. Some of this information comes from student_course itself. Since we
only record the CHANGED columns in the audit_change_detail table, we need
to have this data in the key. After all, the course rubric rarely changes; the course
grade often does.

We actually don’t need both the student ID and name, but having both as part of
the logical key makes reporting easier.

Audit Logical Key Example

AU12 List Entities/Attributes for Identifying Information 02-01-96 12:18:26

Table Creator AEZCASE Table Name STUDENT_COURSE
Identifying Information Start Date 00000000 Stop Date 00000000
Order Table Creator Table Name Attribute Name
 1 AEZCASE STUDENT_PERSON DN_PERSONAL_ID
 2 AEZCASE STUDENT_PERSON DN_CURRENT_FULL_NA
 3 AEZCASE STUDENT_COURSE YEAR_TERM
 4 AEZCASE TERM TYPE
 5 AEZCASE STUDENT_COURSE RUBRIC
 6 AEZCASE STUDENT_COURSE NUMBER_PREFIX
 7 AEZCASE STUDENT_COURSE NUMBER
 8 AEZCASE STUDENT_COURSE SECTION_ID

Here’s an example of excluding data changes based on the plan. GP is the Grade
Point data. It has the numbers we need to compute a grade point average. Since
lots of things go into a grade point average, lots of changes all over the system
can cause “invisible” changes to the GPA. The users have said they don’t care
about these indirect updates. We exclude GP changes done by AREGADD2 (a
batch update) and R* (all online student & staff plans). However, we can change
a student’s GP numbers directly on 4 screens. We want any changes done on
those 4 screens to be audited. So, we’ve explicitly included those 4 plans.
Implicit includes override excludes. During the end of semester mass grade
update, EVERYONE’s grade point information will be updated; noone wants to
look at that volume of information. Another reason for the excludes is that a lot
of the batch updates have validated input data that is saved. If there is a
suspected problem, checking the input might be faster.

This has cut down on a vast amount of data that noone would ever want to see
anyway.
Note: the excluded data is still being extracted by LA and is on the LA data
tapes. If we wanted, we could go look at the tapes for a particular change. We
can also run the tape in at a later time, having changed the exclusion to now
allow this audit.

Audit Exclusion Screen

AU17 List Audit Exclusions 02-01-96 12:10:2

Table Creator AEZCASE Table Name STUDENT_GRADE_POIN
Select Plan Name Start Date Stop Date Include Or Exclude

AREGADD2 00000000 00000000 E
R* 00000000 00000000 E
REGAT04T 00000000 00000000 I
REGAT04U 00000000 00000000 I
REGAT04V 00000000 00000000 I
REGAT04W 00000000 00000000 I

The control database is where the LA control file is parsed into just before the
LA data is read and deciphered. We don’t save this beyond the life of the job.

Control Database

Used while adding data to audit database
Information from LA control data
Not saved beyond build job

ACR - Contains information that is constant for all records within the run. This
includes the start position and length of: plan name, update date, update time,
etc.

ACT - Has information for each requested DB2 table that was found in the log;
contains DB2 creator and table name.

ACC - For each column within a table, records the start position, length, update
flag position, column domain, and decimal position.

We rebuild this information for every LA extract run. Since table definitions
change over time, this seems the safest. Also, if a requested table has no updates
for a execution of the LA, LA doesn’t include that table’s control information in
the control file.

Control Data Model

Audit Control
Run

Audit Control
Column

Audit Control
Table

We have our two datasets that LA created for us. The first batch procedure step
of the build job reads the control data, parses it, and creates a DB2 version of
that information in the Audit Control database.

The second batch job step reads the LA data dataset. For each record here, the
table name is extracted, the audit control information is found for that table, and
then the rest of the record is broken into individual fields based on the
information in audit_control_column. For each field that has been flagged as
updated, the audit definition database is read to see if this is an update to record.
If so, the data is converted to character, the before and after images are created,
the logical key is built, and all of this is added to the audit database.

Putting the Pieces Together

Audit
Build 1

Audit
Build 2

Audit
Definition
db

LA
data

Audit
Control
db

LA
cntl

Audit
Change
db

For one of our audited tables, here’s part of the information in the control file.
Columns beginning “PLA” are LA control fields. The fields are shown in file
position order.

For instance, for this run of the LA, the field named nominal credit will be found
in positions 115 - 119 of the output record. It is a decimal field. If the field
contains a null, this will be signalled by a ‘?’ in column 114. If this field
changed, this will be signalled by a ‘U’ in column 113.

Log Analyzer Control Raw Data
INTO TABLE AEZCASE.STUDENT_GRADE_POIN
WHEN (1:26) = 'AEZCASE.STUDENT_GRADE_POIN’
(PLA_STMT_TYPE POSITION(27: 28) CHAR(2)
,PLA_URID POSITION(29: 34) CHAR(6)
,PLA_UPDT_DATE POSITION(35: 44) DATE EXTERNAL(10)
,PLA_UPDT_TIME POSITION(45: 52) TIME EXTERNAL(8)
,PLA_PLAN POSITION(53: 60) CHAR(8)
,PLA_AUTHID POSITION(61: 68) CHAR(8)
,PLA_CORRID POSITION(69: 76) CHAR(8)
,PLA_CONNID POSITION(77: 84) CHAR(8)
,PLA_CONN_TYPE POSITION(85: 85) CHAR(1)
,PLA_STATUS POSITION(86: 86) CHAR(1)
,PLA_LOGRBA POSITION(87: 92) CHAR(6)
,PLA_UPDT_001 POSITION(93: 93) CHAR(1)
,IDENTIFIER POSITION(94: 109) CHAR(16)
,PLA_UPDT_002 POSITION(110: 110) CHAR(1)
,CREDIT_TYPE POSITION(112: 112) CHAR(1)

NULLIF(111) = ‘?’
,PLA_UPDT_003 POSITION(113: 113) CHAR(1)
,NOMINAL_CREDIT POSITION(115: 119) DECIMAL

NULLIF(114) = ‘?’

Here’s the same information after it’s been parsed and inserted into the audit
control database. The columns are sorted into ascending order by name.

The top part of the screen shows the fields that are in all the LA records: for
example, we see that the plan name begins in column 53 and is of length 8.

The bottom part of the screen shows the fields that are specific to the table being
displayed. We see here that nominal_credit is a decimal field, with a starting
position of 115, a length of 5 in the record, and that the resulting number should
be interpreted as having 5 decimal positions.

Given some clever substringing, we now have enough information to decipher
the LA data!

Log Analyzer Control Parsed
Data
AU01 Audit Control Run Display/Delete 01-22-96 16:29:33

Run Date 01-13-96 Run Time 11:29:55
 Stmt Type UR ID Date Time Plan Auth ID Corr ID Conn ID Status
Start Pos: 027 029 035 045 053 061 069 077 086
Length: 002 006 010 008 008 008 008 008 001

Table Creator AEZCASE Name STUDENT_GRADE_POIN
Column Type Start Pos Length Update Pos Decimal Pos
CREDIT_TYPE CHAR 112 001 110
DETAIL_TYPE CHAR 161 002 159
EARNED_CREDIT DECIMAL 122 005 120 005
FK_STUDENT_PERSIDE CHAR 143 016 141
GRADED_CREDIT DECIMAL 129 005 127 005
GRADED_POINTS DECIMAL 136 005 134 005
IDENTIFIER CHAR 094 016 093
NOMINAL_CREDIT DECIMAL 115 005 113 005
PLA_CONN_TYPE CHAR 085 001
PLA_LOGRBA CHAR 087 006

As an add-on to the system, we are currently (this is written in February)
designing a report database. This will give the users complete control over what
is on a report. It turns out that they want to see updates to a column done only on
certain screens by certain users for some of their auditing. We continue to put all
of the changes in the database and will only report on some of them.

We haven’t done anything beyond the data model work on this subsystem yet.

Proposed Report Database

Used to define reports
Can specify updates not only by table but
by plan
Generic output format
Can specify
– Data to include
– Sort order
– Page breaks

The preliminary design for the report database allows the user to define multiple
reports. Each report definition is valid for a range of dates. For each range, the
user will be able to specify the exact fields for each update screen to include on
the final report, the operator id’s to include or exclude, and a sort order. This
information will be used to read from the audit trail database and information
will be put into the report extract table. The actual report will be written from the
extract table.

This approach will allow us to optimize the reads of the data in the main
database without regard to the final appearance of data on the report.

Report Data Model

Audit Report
Definition

Audit
Report Range

Audit Report
Sort

Audit Report
Extract

Audit Report
Operator

Audit Report
Member

Since we need to build the logical keys, we will not have all of the necessary
information in the audit database itself or in the input LA data. We have written
a series of reads against the “live” (non-audit) database to retrieve that
information. For example, if we need a student_course logical key, we will read
for student_term and student_person. Since the audit system is in its own model,
the information is passed by way of external action blocks. We have two external
action blocks: one accepts a table name and identifier; it returns identifiers of
interesting related tables. The second accepts a table name, identifier, and
column name. It reads that row in that table and returns the value in that column.

This was the only code written in the non-audit model that had anything to do
with auditing. If the system being audited was not written with Composer, we
would be able to access the information through external action blocks also.

If we had fully concatenated logical keys (as we did in the IMS system), we
wouldn’t have needed to access the live data at all.

“Live”Database

Used to resolve logical keys
Only used for reading
Only code in audited IEF application
– accessed through external action blocks

This shows an example from our test screen for retrieving from the live database.
For a given table creator, name, and identifier, it returns the identifiers of all of
the associated tables that would help identify this row in this table.

Example - Retrieve Identifiers
From “Live” Database

Table name: STUDENT_COURSE Creator: AEZCASE Id: 9999999947454209

 Creator Table Name Identifier Length
 AEZCASE STUDENT_TERM 9999999996901471 016
 AEZCASE TERM 0195993190539890 016
 AEZCASE STUDENT_PERSON 9999999994415970 016
 AEZCASE PERSON 9999999990000000 016

This shows taking one of the identifiers found on the previous test screen and
requesting a specific data value to be returned.

Example - Retrieve Data Value
from “Live” Database

RG6M Audit Get Attribute Value 03-13-96 12:28:09

 Table name: STUDENT_TERM Attribute name: YEAR_TERM
 Creator: AEZCASE Entity Identifier: 9999999996901471

Attribute value:
 96SP

Now, I’d like to show an example that will (hopefully) tie all of this together. I’ll
change a student’s grade and follow the data flow from my fingertips into the
audit database.

Example - Change a Student’s
Grade

show update screen
show entity/attributes changed
show logical keys

Here’s the “student courses for a term” update screen, before the grade is
changed. This screen shows student_person, student_grade_point, and
student_term data at the top and the student_courses listed at the bottom. This
student is enrolled for three classes this term. Don’t worry - this isn’t real data!

Before Screen

 Maintain Course Enrollment 02-96 13:41:13

 ID: 999 99 9999 Term/Year: SP96 Type: TR Campus: 1
 Name: Tuchman Patricia Amy
 Hours Earned: Graded: Points: Nom: 13.00 Gpa:
 Units Earned: Graded: Points: Nom: Gpa:
 College: 32 Curriculum Code: 1423 Class Code: 4 Subspecialty: Val: 6
 Residence: R New Status: 0 JS: Chanc Honors:
Enr Status: R Registration Date: 011196 Reg Term Date:
RBM Fee Code:
 Cr/Nc
Act Call# Rubric Num Title Sect. I-Type G Credit Gd # Ind H V
 00236 E E E 105 ENVIRONMENTAL BIO A LECT Y 3.00 H
 00010 MATH 120 CALC & ANAL GEOM I F QUIZ Y 5.00 H
 07075 SCAN 102 ELEMENTARY SCAND D LECD Y 4.00 H

The student’s grade for Math 120 has been changed from spaces (not yet graded)
to an A. At the same time, some of the GP data has been updated automatically.

In case you’re wondering - UIUC is currently on a A=5.0 grade point scale.
We’ll be switching to a 4.0 scale Labor Day weekend.

After Screen

 Maintain Course Enrollment 02-96 13:43:02

 ID: 999 99 9999 Term/Year: SP96 Type: TR Campus: 1
 Name: Tuchman Patricia Amy
 Hours Earned: 5.00 Graded: 5.00 Points: 25.00 Nom: 13.00 Gpa: 5.000
 Units Earned: Graded: Points: Nom: Gpa:
 College: 32 Curriculum Code: 1423 Class Code: 4 Subspecialty: Val: 6
 Residence: R New Status: 0 JS: Chanc Honors:
Enr Status: R Registration Date: 011196 Reg Term Date:
RBM Fee Code:
 Cr/Nc
Act Call# Rubric Num Title Sect. I-Type G Credit Gd # Ind H V
 00236 E E E 105 ENVIRONMENTAL BIO A LECT Y 3.00 H
 00010 MATH 120 CALC & ANAL GEOM I F QUIZ Y 5.00 H A
 07075 SCAN 102 ELEMENTARY SCAND D LECD Y 4.00 H

I went into LA and requested all changes made to student related tables for the
timeframe in question.

The production version of this job is set up to do “resume” processing. It will
pick up where the previous job left off and will process 24 hours worth of data.
This is great since it means we don’t need to make JCL changes constantly.

LA JCL generated

 STRATEGY = (DB2D,AEZZPAT,AUDIT1)
 START = (DATE(1996-02-02),TIME(13:40:00.00))
 END = (DATE(1996-02-02),TIME(13:45:00.00))
 LOGSRC = (BSDS)
 OBJSRC = (CATALOG)
 DYNSORT = (DSNUM(2),SPACE(10,10),MAINSIZE(1000))
 GENUNIT = (SYSDA)
 RPTLINES = (60)
 DMLREPT = (LEVEL (DETAIL)
 ,ROLLBACK (EXCLUDE)
 ,CATALOG (EXCLUDE)
 ,ORDERBY (URID)
 ,INCLUDE (AND
 ,TABLE (AEZCASE.PERSON,
 AEZCASE.STUDENT_ GRADE_POIN,
 AEZCASE.STUDENT_COURSE,
 AEZCASE.STUDENT_TERM,

There are 7 records pulled from the DB2 log for the grade change. We updated
one student_grade_point, deleted a different student_grade_point, updated the
student_term, and updated the student_course. This overhead shows the start of
the records where the standard information is (table name, type of change, date,
time) and then a portion of the data part of the records. Every field that is
changed will have a “U” in front of it. Some of the fields shown are binary
numbers which don’t display very well; I’ve retyped them to be more interesting.

We can see in the data the plan name (REGAT008), the userid (AEZZPAT), and
other information. The positions of these fields can be found in the control
dataset.

So, for the user making a one character change on the screen, quite a lot of
background updating happened.

LA Data (partial)
STUDENT_GRADE_POINUA @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_GRADE_POINUB @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_GRADE_POIND @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_TERM UA @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_TERM UB @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_COURSE UA @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08
STUDENT_COURSE UB @ @m1996-02-0213.43.01REGAT008AEZZPAT PT00RG08

and the data continues...

 U 13300 U 10700 U 496 3414099141590767 A
 U 12800 U 10200 U 471 3414099141590767 A
 U 00000 U 00000 U 000 U 3414099141590767U D
P R 0 4 S C 1996-01-08 1996-01-11 0001-01-01 R
P R 0 4 S C 1996-01-08 1996-01-11 0001-01-01 R
P MATH 120 CALC & ANAL GEOM I HU A 0001-01-01 0001-01-01
P MATH 120 CALC & ANAL GEOM I HU 0001-01-01 0001-01-01

After running the audit build (populate) program, we get these statistics. The
records excluded were the student_cad_detail’s which have audit_exclusions
written for them.

We created:
1 ACS
1 ACE
1 ACD

and 7 logical key pieces!

Audit Build Statistics

Insert log records read: 0
Delete log records read: 1
Update pair log records read: 3
Invalid log records read: 0
Uncommitted log records ignored: 0
Log records not in control db: 0
Log records not in definition db: 0
Log records excluded: 2
URID's processed: 1
Control entities created: 1
Logical key pieces created: 7
Unknown data type found: 0
Change details created: 1
Commits initiated: 1

We have a few online screens to look at the information. These are not ones
we’ve given to the users, so they have minimal information on them. This screen
shows the ACS, ACE, and ACD information for this change. It doesn’t show all
of the logical keys; some are in the screen’s header.

Audit Online Display

 List Student Audit Details 02-02-96 15:54:58

 ID: 999 99 9999 Network Id: PTUCHMAN Term/Year: SP96 Term Type: TR
 Name: Tuchman Patricia Amy
 Plan Name: REGAT008 Change Date: 02-02-96 Time: 13:43:01 Agent: AEZZPAT
 Program Name:

 Table Name Column Name Before Value After Value
 STUDENT_COURSE GRADE A

Here’s the audit information formatted by a QMF report. In the REP LINE
(report line) column, a C indicates that the line has Change data; an L indicates
that the line contains Logical key information.

We use the denormalized versions of personal ID and name for the logical keys
whenever possible; this means one less table to read in the live database to build
the keys.

Audit Report

1996-02-02 13.43.01 DONE BY AEZZPAT
 COLUMN NAME/ BEFORE VALUE/ AFTER VALUE/ REP
TABLE NAME ACT KEY TABLE NAME KEY COLUMN NAME KEY VALUE LINE

STUDENT_COURSE U GRADE A C
 STUDENT_PERSON DN_PERSONAL_ID 999999999 L
 STUDENT_PERSON DN_CURRENT_FULL_NA Tuchman Patricia Amy L
 STUDENT_COURSE YEAR_TERM 96SP L
 TERM TYPE TR L
 STUDENT_COURSE RUBRIC MATH L
 STUDENT_COURSE NUMBER_PREFIX L
 STUDENT_COURSE NUMBER 120 L

Hopefully, this all makes sense. Now, I’ll go onto some of the reality we
encountered.

Specifics!

We were AMAZED at the amount of data that we were gathering. Since the old
IMS system had only audited limited online transactions, we knew that we had
no good way to estimate the amount of data we would be getting based on the
old approach. When you add in the reality that we have many more people
making changes, we had a problem...

Problems Encountered

Too much data!

Not enough disks

We’ve decided to exclude updates done by certain of the larger batch jobs. Every
report that the users have asked for so far has had us exclude this information.
We still are extracting the data from the DB2 logs and we could add it to the
database if there was a need. Most of the batch jobs that we’re excluding have
input data that was verified and saved, so the users have that as an alternative
source of information about changes to the student records. End of term grade
updates is one example of this.
 We’ve partitioned the 4 audit change tables (in the audit database); the
partition field is YYYYMM. Our plan is to add data into a partition; then, at the
end of the month, reorg it to set freespace to 0, report it to death, and unload the
partition. We will be able to reload a partition if there is a need.
 We’re currently (in February) running a specialized purge job to selectively
delete from a partition the data from the large batch jobs that we’re no longer
auditing in the newer partitions. Once a partition has been cleansed in this way,
we’ll do the unload.
 We actually lost a LOT of time (person and machine) because we added all
the data originally and then deleted it out. If we had been able to estimate the
volume of data more accurately before we started adding data, we would have
saved a lot of agony. Also, we had VERY explicit instructions from the users to
save everything; since we didn’t have any estimates, we couldn’t reasonably say
“no”.

Solutions Found

Eliminate updates from large batch jobs
Data partitioned by year/month
Unload partitions that aren’t being used
Reload partitions when needed for reports
Lost a lot of time implementing these

Needless to say, the users thought that there was too much data on the initial
reports. A row delete is shown with all of the after images as defaults; a row
insert is shown with all of the before images as defaults. This really bulks up a
report. It was very disconcerting to the user when a record was on the report as
an insert and both before and after values were the same, which happens
everytime a column is defaulted.

The users discovered that the volume of data they were seeing on their reports
was masking what they were really interested in. If you’re really looking for
unauthorized grade changes, you don’t want to see the legitimate end-of-term
grade processing for 35,000 students.

At one point, it was taking 1 FTE 1 week to work though 1 week’s worth of
audit reports.

User Reactions

Reports didn’t look like they used to
Too much information!
A delete shows all the fields as being
changed
An insert shows all the fields as being
changed

We’re currently auditing 131 DB2 tables. Since we’ve partitioned the audit db
by month, we can easily break-out monthly statistics. These statistics are for
months that were done AFTER we started excluding the big batch updates.

At one point, we were consuming 31 complete disk packs; we had not yet added
all of the data we had extracted. This is when we decided to start to both stop
adding selected batch updates and to delete the data from those updates that had
already been added.

By the way, we do have data compression turned on. The numbers for that are:
ACS - 99%
ACE - 78%
ACD - 80%

ACLK - 75%

System Statistics - DB2

Number of tables audited - 131
Number of rows added in month
– audit_change_set: 31,000
– audit_change_entity: 234,000
– audit_change_detail: 1,822,000
– audit_change_logical_key: 1,189,000

Peak disk usage
– 31 disk packs before starting to reduce
– getting more than 60% reduction

The batch jobs are the add data and the delete data jobs. We have two versions of
the delete - one for regular and one to get rid of the data we decided we never
should have put in the database in the first place.

There are 20 screens (display and update) for the tables in the audit definition db.
These are only used by the programmers and aren’t “user friendly”.

We have 3 different displays for the data in the audit db - again, these are only
used by the programmers. We have some QMF queries that we’ve used for
problem resolution also.

We have 9 external action blocks. In addition to the 2 that read the “live” data,
we have 2 to read the LA files, and the rest do various conversions (eg packed
data to text.)

The current reports the users are getting are written in DB2/Natural, by a
different part ofmy department. I don’t have information on them.

System Statistics - Programs

Number of batch jobs
– 2

Number of online screens for definition db
– 20

Number of display screens for audit db
– 3

Number of external action blocks
– 9

Here are some of the requirements for using the audit system:
Lots of tapes - since we’re saving the output from LA for 2 years, we’re using a
lot of tapes. Also, setting Data Capture On increased the size of the rows being
written to the DB2 log, which increased the number of tapes being used for the
log.

BSDS - LA can retrieve information from DB2 log tapes that are no longer in the
BSDS, but it’s a pain. You need to hard-code the log dataset name in the JCL
and you can’t do resume processing. On several occasions, we got behind in the
daily processing (when we were doing tuning) and found out the BSDS had
rolled tapes of interest out.

Requirements

DATA CAPTURE ON for selected tables
LOTS of tapes at data center
DB2 installed
Log Analyzer installed
BSDS as large as possible

We have some entries without logical keys built. Upon investigation, I found that
the create process was doing the associate as a separate update. Because of this,
the foreign key was null for the create. Each of these inserts is followed by an
update, but that doesn’t help. By changing the create PAD, we not only made the
audit data more usable, but we got rid of a uneccessary update.

Cascade deletes confused the users since they didn’t understand the data model
structure. If they deleted a student’s term, they really didn’t want to see all of the
associated student_courses.

Errata

Should associate during create, not
afterwards
Cascade delete shows as delete of “parent”
row followed by deletes of “children” rows

LA by itself is quite useful. We’ve used it to track down application problems
before the data was available in the audit database. It has an ISPF dialog that
steps you through defining your log extraction criteria, defining your output
format, and specifying what date/time period you’re interested in. You can run a
LA either online or batch; if batch, it generates JCL for you.

Once I had the generated JCL, I needed to modify it for production; it had some
dataset sizes that were inappropriate, some dataset names that didn’t meet
standards, etc.

For now, I’ve enabled the option to save information about the LA runs. I can
easily see what data has been extracted from the logs and when. This has helped
resolve some production turnover problems.

Log Analyzer Overview

ISPF dialog to define “strategy”
– Define tables to extract from DB2 log
– Define output format
– Specify “resume” processing
– Generate JCL

Need JCL changes for production
Save run information (optional)

Although we bought LA for the audit project, we’ve actually been using it for a
number of other reasons. For those of us with an IMS background and
accustomed to running BTS, this is a wonderful way to get a trace of all database
updates done during a trial execution of a program in development. (“You mean
it updated THAT table?”)

As I mentioned before, we’ve used it for tuning - we’ve caught optional
relationships that were never being updated or being updated to the wrong entity,
or an ASSOCIATE not being done within the CREATE.

We’ve also run LA in production to help resolve problems before the audit data
is available in the audit database or for data that isn’t being audited.

Log Analyzer Benefits

Use during development to easily see what
is happening
Use for tuning
Use for problem resolution

LA is a wonderful product, but it has a few quirks.

If you alter a table definition, LA doesn’t always remember how to decode the
table layout. Even if what you did is add a nullable column on the end of a row.
Recycling DB2 or image copying the table usually fixes this problem. PT says
they have a fix they’re about to ship. When LA encounters a changed row for a
table that it can’t format, it prints the hex version of the row(s). My program
can’t add this to the audit database.

The ISPF dialog is one of the most awkward I’ve ever used. For example, in
most ISPF dialog’s (including Composer’s), F3 means to go back to the previous
screen. Within LA, F3 sometimes means to go back to the previous screen;
sometimes it means to go forward to the next screen. Sometimes the enter key
means to go forward and the command “BACK” means to go back. Sometimes
you can’t go back but can only go forward.

Log Analyzer Quirks

Alter side effects
Very awkward dialog

In conclusion, I hope this overview of our working audit system has been of
interest. We are currently using it for our “mission critical system” and we are
looking into expanding it to other systems, including systems that were not
developed with IEF/Composer.

Thank you for your time and attention!

Are there any questions?

Summary

We now have a working audit system
We now know all sorts of tuning techniques
We can use this for any DB2 system we
have or will develop

