
CA 2E Modernization
To Java/Ajax
Using CA Plex

Overview & Demonstration

Presenter
Presentation Notes
Thank you for choosing the CA 2E modernization session. In this presentation, we will take a look at the CA 2E modernization to modern web apps, using CA Plex, Java, and Ajax

A Multitude of Ways to Modernize

But few
RIGHT WAYS

Presenter
Presentation Notes
There are a lot of ways to quote modernize from green screen to the web based environment. For example, screen scraping and native code translation programs are options. However, there are not many true modernization methodologies that modernize both the presentation layer and also bring your development environment into the modern day. For many people this represents the holy grail of modernization, that many seek but few actually find.

ADC’s M3
Model-based Migration Methodology

Presenter
Presentation Notes
Lets take a look at what model based migration from CA 2E to CA Plex looks like. It means taking your green screen applications into a new technology, that gives you the ability to execute your tried and true business logic with new presentations. One option is to take your application and generate as client-server. Modernized applications can also be generated as true Ajax web apps, right out of the box.

The Right Way
Know before you buy

• Effective modernization requires:
• High levels of automation, approach 100%

• maintainability by existing staff

• web applications and SOA out of the box

• Few get it right

• ADC does
• M3 methodology

Presenter
Presentation Notes
If your organization is looking into fully modernization options, then there are a few questions that you should be asking your modernization vendor. The first question is the degree of automation. There are many that claim their approach is highly automated, but when the rubber meets the road the level of automation may only reach somewhere between 60-95%. If your modernization vendor cannot give you a fixed bid and schedule for the CA 2E model migration, then perhaps they are not employing truly automated techniques, which could leave you open to cost and schedule overruns.The second is maintainability by your staff. In many cases the new technology cannot be effectively maintained, due to learning curve or due to poor translation techniques. Ask to see examples of code, and try some refactoring yourself. The bottom line may be that the CA Plex model based environment is most productive option, due to its close similarities to CA 2E.Third, see if you can take your application immediately to the web and communicate with other enterprise app via SOA service buses. The M3 approach is instantly web 2.0 and SOA-enabled.The fact is that there are few options that can meet all of these criteria. We

The M3 Way
Automated modernization with refactoring

• More than a tool – an entire methodology
• fast & maintainable

• +multiplatform, +web, +SOA

• Avoid costly risks:
• web facing / screen scraping (dual environments)

• manual migration (uneven quality, cost)

• syntax translators (maintainability, “JOBOL”, runtimes)

• packages (acquisition & customization expense)

Presenter
Presentation Notes
The M3 approach is more than just a code migration tool, it is a complete start to finish methodology to modernization – from analysis to regression test. It includes re-platforming, web, and SOA as core components.The M3 approach help you avoid costly mistakes that others have made:Web facing and screen scraping, for example, are excellent point solutions for putting your applications on the web. However, many have found the results limiting, and the costs to maintain business logic at multiple levels excessive.Manual migrations often suffer from uneven quality, and the time and cost required is often unpalatable for the business.Syntax translations of CA 2E generated code can suffer from maintainability issues or contain runtime charges you must pay year after year.The total ownership costs of packages can often be far above the original acquisition cost – requiring year over year maintenance, and heavy programming burdens to integrate and customize.

Original 5250

Analysis
(discovery services)

New Environment
(SOA & Web)

• CA 2E (Synon)
models & generated
applications

• Native:
• RPG
• COBOL
• CL/i5/OS artifacts

M3 Process
XML based design migration

Migration
(ADCMS XML 2E)

• Native code
modernization

• Worksoft Certify
regression testing

Presenter
Presentation Notes
Lets take a look at what is involved in an end to end migration.In a typical CA 2E modernization exercise, the bulk of the code is of course embedded in the CA 2E model. However, in many cases there is also significant code that lies outside the model – for example user source or user programs that may be hand coded in RPG or COBOL. There is also likely CL programs, that may control platform dependent constructs like data queues, printers, etc.It is important that a migration consider all of this in a holistic manner, so the first step to any modernization should be an analysis step. In this step we look at your model using automate tools, and identify any activities that must be done with custom components. For example, a submit job step would be accomplished differently on a Windows platform. If you have a large amount of hand written code, the other tools can employed to address this.After analysis, the code migration step begins. For the CA 2E code, this is an automated step that involves converting the CA 2E model to XML and running a rules-based process to migrate into Plex, using the Plex model API’s. For native code, this means either an automated migration or if there are small amounts of code, doing this manually.Regression testing is integral to the process. We recommend using automated tooling like Worksoft certify, to ensure that functional equivalence has been reached.Once you have reached functional equivalence, you are then in a new modern environment that you can use to exploit new technologies like SOA and the web. Your developers will have graphical IDE’s at their disposal, such as CA Plex, Eclipse, Rational, and Visual Studio. Functions can be deployed to new environments like Websphere, using modern languages like Java. Modern databases like DB2 UDB, SQL Server, and Oracle can also be utilized.

http://images.google.com/imgres?imgurl=za.sun.com/aboutsun/developers/images/java2.gif&imgrefurl=http://za.sun.com/aboutsun/developers/&h=349&w=200&prev=/images?q=java&svnum=20&hl=en&lr=&ie=UTF-8&oe=UTF-8&newwindow=1&safe=off�
http://www-306.ibm.com/software/websphere�
http://tomcat.apache.org/�
http://siis.cse.psu.edu/jpmail/pics/Eclipse_logo_white.jpg�

Demonstration

Presenter
Presentation Notes
First let’s take a look at what modernization looks like from an application user’s perspective.Here is a helpdesk application that is in production use at a German partner. First we will look at a Display File function. This display file function looks and behaves as a typical CA 2E 5250 function. You can position using the header fields, using both key position and contains searches. I can also drill down to different options using the subfile selections. Once in the edit record I make changes to its which are validated by the model database relations and the programmed business rules. I can select field values using a selection screen, as defined in the 2E model. I can then save my changes and return to the previous screen. In short, this is a typical example of a 2E business applicationNow let’s take a look at this system as automatically modernized using M3. You can see from the login page that the presentation layer looks quite different and runs in a browser. Browser presentation is where all enterprise applications are headed, as you can plug your app into portals and external workflow systems. With M3 presentation, you can deploy your app to popular browsers like Internet Explorer, Firefox, and Safari. This means you can extend your system’s reach to users around the globe.Now that I have logged in, I can select the display file function in a new tree style menu. This is very easy to create in CA Plex. My 2E functions can run in a portal or mash up style presentation combining several functions on the same web page. As you can see, we have not lost any functionality, as the new application is functionally equivalent to the original CA 2E code. And everything you are seeing today is result of automatic migration, with the exception of html presentations techniques like the header and footer on this page. We believe M3 is the only 100% automated solution for taking your CA 2E model logic into Java and a Web presentation. Other approaches require significant manual effort to adjust the migrated code to the point that it actually runs your business logic. Our advice is to take a close look at the results before choosing a modernization approach.Let me show how the display file runs in a browser. You see that you have the same filtering capabilities, and I can either select the subfile select option, or click a button that has been automatically generated for that option. Let’s now look at the edit record screen. You can verify that the screen is basically the same as it was, but it looks nicer and there are GUI features like drop downs to replace value lookup screens. I will replace the value, and quickly update this record. Okay, so that is what I wanted to show you about this final end product, the modernized application.So now let's now look at how we created this application from start to finish, how the migrated code from 2E was modernized in an automated fashion. Let’s look at the application component by component and at technical level visit how each piece is handled. Let’s first look at the database relations, the heart of the 2E model. These database relations come across exactly as they exist in the 2E model. In the 2E model you will note various owned by, referred to, and have relations linking files and fields. These relations can get quite complex, with sharing of keys and field virtualization.Now let’s get our first look at the CA Plex side of things. I've open up a view into the migrated model. This view is called the object browser. In the object browser, I can see the objects that have been migrated. Let’s started by looking at the database objects. Each entity gets migrated as object in plex. I can select these objects, and get a view in what is called the model editor. The model editor shows a view in a very similar manner to what you see in CA 2E. It shows all database relations both to other files or entities, and to fields. If I look at some of these fields, you will see they come across with the exact data type definition as you had in 2E. One important difference in CA Plex is that I have new deployment targets beyond RPG and COBOL. If I look at my configuration, you can see that the CA Plex model contains the capacity to generate different deployment targets. So I can take this migrated code and generates server logic for Oracle, SQL Server, or other enterprise database platforms. Ok next let’s take a look at function migration; in particular let’s drill down into the display file function that we saw in the demo earlier. We will take a look at how this particular function gets migrated to CA Plex environment, and gets regenerated as a Java object hosted in a web container.I am going back to CA 2E. Let’s first go to our list of functions and let's take a look at the display file. I am selecting by function name. I have a few things to show you. First is the screen design as defined in 2E it’s a typical 5250 presentation layout. I want to show you a couple things here. Here are your field definitions, which have important information in screen design that has to be migrated. We handle this of course. Let’s look at the name filter now – we can see that there is a select operator defined to drive how the filtering happens in the CA Plex function. We must of course ensure that this filter logic gets migrated so the screen operates in the same way. Now let's bounce out and look at the action diagram. Here is the action diagram code. Some of the user exit points are filled in. Let’s look at one of these in particular, the process subfile record. I have a case statement and structure where other screen functions are called, and in the first case the subfile is reloaded. We need to make sure this gets migrated to CA Plex. I want to show you one last important feature, the CA 2E function options. These function options are flags that used by 2E to control how the function is generated. For example, commitment control, confirmation prompting, and essential features of that nature are controlled by function options and must be migrated.Okay, lets bounce back over to CA Plex and take a good look at that function be migrated. In the function properties we can see it is the same function name ADBFDFR, and that you have function options coming over. Next let’s look at the panel design in CA Plex. The panel design was migrated to CA Plex and looks very similar to how it did under 5250 but with some improvement. We have generated some buttons automatically as GUI elements make the app behave as expected in a web environment.Next I am going to look at the action diagram. The action diagram on also comes across automatically to Plex. The Plex action diagram is quite a bit more sophisticated that 2E, as Plex has a pattern inheritance so we can get a lot more fine grained with how the functions work in Plex. In fact in Plex action diagram see that you have a lot more code, and that you have a lot of grey code which means it is inherited from abstract patterns in the inheritance path. Let’s take a look at local modifications, and let’s take a look at the particular exit point that we saw in 2E that processes subfile selection. You can see here that the code has migrated over exactly as it existed in 2E. It will function the same way. In this case it calls another display function and reloading the grid, and in this case it will call another screen without reloading the grid. So that's how long Plex action diagram get translated, basically it is the same process for all function types. We do handle all 2E action diagram based functions types except Print File and Print Objects. I have shown you how things get migrated over the Plex. I want show you show one last one last bit of information - how you make a change to the application once migrated. This way you will get a feel for the typical developer workflow I will now show how you can make a change to your migrated Plex function and quickly and easily, generate that function in Java, and publish to a web server. Here is our edit record function. Wouldn’t it be nice to place a button by this field to set a default value and display a message? This is an example of a change in that gives you a feel for how simple it is to change the migrated code. Okay so let’s go back in the Plex, and open up the panel design. Let's go ahead and right click and add a pushbutton here that is called default. And let’s say that when the user presses the default button the field will default. We are done with the panel. Let’s go to the action diagram. In action diagram we will add some code to default the field and throw up a message box that the field was defaulted, to give the user some feedback. Now go down to the events handler, and let’s add another event. Let’s drag the event from the action diagram palette. When this event happens, let’s set the field to a default value. And let’s display that message box saying we did something here. I’m going to the object browser and picking a message out that says this. Now we need to go the generate and build window. In the generate and build window you can generate all parts of the system, from the database schema, to the Java Web server functions and RPG server functions, and the presentation layer of course. If I select this I can see all my objects to generate in this area. I'm going to right click on the java function and generate code and then build the code. This process happens in the Eclipse or Rational environment, along with publishing of the web application to the application server.While that happening I want to show you briefly the Java environment. Within the eclipse environment we build the java code, and publish the Web server components - in this case to a tomcat server. You don’t need to know much about this except that it happens automatically behind the scenes. You don’t need to do anything manually to promote and publish your Java code.Let’s go back to CA Plex. We are just about finished with generation. Let’s switch back over to Eclipse. Eclipse is building the workspace function we modified, and is generating a webpage file with our change. The war file then gets published to our tomcat development server, and the server is automatically restarted.The change has published to the Tomcat java app server. To see the change, let’s go back to the browser to see the effect of what we did. I will open the browser and restart the application and then login. The select the display file. Note that we can dynamically sort the grid in this environment. Let’s now look at the edit record page. Our change has been deployed, and if you press the button see what happens – the field defaults and an Ajax message appears. That concludes the last part of the demo, showing how the application can be changed in the modernized CA Plex environment.

Summary
More than modernization

• Refactoring = business advantage
• new business logic
• SOA / open access

• New development process
• no screen scraping
• no syntax translation

• New application capabilities
• user-friendly features (tabs, wizards, portals, etc.)

Presenter
Presentation Notes
Ok, I hope that the demo was enlightening on how our process works. I would like to summarize on three key pointsUsing the M3 migration capability, you end up with a truly maintainable and re-factorable end product, that is web based and can be extended to SOA frameworks.You can make use new tooling such as CA Plex, Eclipse, and Rational - that make the development process more effective, and enable you to integrate into other enterprise applications.You can start to use new application capabilities, such as tab presentations and web portals – to make your CA 2E application more user friendly and attractive to your users.

M3 Site
Click image to view

Presenter
Presentation Notes
Ok, this concludes the presentation. If you like what you saw today, there is more information available on our web sites. Adcaustin.com contains production information. For detailed technical information, please visit m3modernization.com.

http://m3modernization.com/�

	CA 2E Modernization�To Java/Ajax�Using CA Plex
	A Multitude of Ways to Modernize
	ADC’s M3�Model-based Migration Methodology
	The Right Way�Know before you buy
	The M3 Way�Automated modernization with refactoring
	M3 Process�XML based design migration
	Demonstration
	Summary�More than modernization
	M3 Site�Click image to view

