
1

The CA-IDMS Database and Applications User Association

http://www.iuassn.com

September 2009, Number 71

INSIDE THIS ISSUE
 Letter from Editor . . .1

Message from the Internat ional Chair . . .3

DEMI/DB – A user experience
at Lockheed Mart in . . .4

Humana adds “z/ I IP” to i ts CA-IDMS Process ing . . .5

The COBOL XML Generator . . .7

From OZIUA - the Austra l ian IDMS User Group .. .9

Automatic Reset & Alert for
Program Out-of-Service . . .10

CA ‘zaps’ i ts maintenance del ivery format . . .11

CA-World 2010 - Las Vegas - May 16-20 .. .11

JTS Help Desk . . .12

Upcoming Events in Europe .. .13

Fragments and Relocated Records . . .14

 	 .

Letter from the Editor

(continued on page 3)

THE publication of the IDMS User Association

Can you believe it? September
2009. Children in North America
are returning to school or just
starting their first year of a
life long learning process. As
October nears our Southern
Hemisphere children are readying
themselves for school break and
final exams. Then for all of us it’s
Christmas, New Year 2010 and
time to pull together the March 2010 IUA Connections!
Whew!

On the topic of time - how about this little gem of an
exchange on IDMS-L?

From: IDMS 3rd-party providers forum on behalf of
Chris Hoelscher
Sent: Thu 4/16/2009 12:01 PM
To: IDMSVENDOR-L@LISTSERV.IUASSN.COM
Subject: Happy Birthday?

From what I recall - 2009 is the 40th birthday of IDMS
and the 35th birthday of IUA!! Happy Birthday!

From: IDMS Public Discussion Forum [IDMS-L@
LISTSERV.IUASSN.COM] on behalf of Bob Wiklund
[wiklund@TIBURONTECH.COM]
Sent: Friday, 17 April 2009 5:52
To: IDMS-L@LISTSERV.IUASSN.COM
Subject: Re: Happy Birthday?

Chris,

Per Peter Karasz’ origins of IDMS, they started writing
the DBMS in 1969 and finished in 1971. The IUA was
incorporated March 6th, 1981. The original board
of directors were: Van Banks of Harris Corp., George
Bentley of AAI Corp., William Corward of Pullman
Kellog, James Emerson of Peat, Marwick & Mitchell,
Jerry McColough of Owens-Corning Fiberglass, John

2

SSppeecciiaalliissttss iinn CCAA IIDDMMSS TToooollss,, RReepplliiccaattiioonn aanndd RRDDBBMMSS

DDEEMMII--DDBB::
Clone, Export, Modify and Import CA IDMS database data to create Test and QA versions or correct
Production data.

DDAARRSSTTRRAANN CCAA IIDDMMSS RReepplliiccaattiioonn SSuuiittee::
The leading most reliable and efficient CA IDMS Schema transformation and replication to any RDBMS
on any platform.

DDAARRSSTTRRAANN OOrraaccllee LLooggmmiinneerr::
Oracle Replication to Oracle or any other RDBMS on any platform including mainframe DB2 and CA
IDMS SQL. Sync your Oracle DR site to the last Oracle COMMIT without having to send or transmit the
entire database.

DDAARRSSTTRRAANN IIMMSS::
Convert IMS DBDs to RDBMS DDL and load the IMS data to a Target RDBMS on z/OS, UNIX, Linux,
Linux for zSeries or Windows.

JJoouurrnnaall RReeppoorrtteerr::
Report on all or selected portions of your CA IDMS Archive Journals.

PPMMDDCC::
Still the best CA IDMS Performance Monitor and Statistics Capture with an external component and
CVCC for monitoring multiple CVs on multiple systems/LPARs from one terminal.

AASSII22//AASSII22LLRR::
Access CA IDMS from SAS® using DML-like syntax and selection clauses or use standard LRF syntax.
Take advantage of the power of SAS® to report and analyze your CA IDMS data.

FFIIRRSSTT//FFIIRRSSTTLLRR::
Simple Extract and conversion of CA IDMS data into CSV for Client/Server products.

AAsssseemmbblleerr LLaanngguuaaggee SSuuppppoorrtt::
Mainframe Assembler Language Consulting and Support Services.

Free Trials available for all software.

IInntteerrnnaattiioonnaall SSooffttwwaarree PPrroodduuccttss

Tel: (800) 295-7608 Ext: 224 Fax: (800) 295-7609

www.ispinfo.com

3

Message from
International
Chair
By Terry Schwartz

Letter from the Editor cont’d from page 1

Peck of Clemson University, Frank Sweet of Chapter
Computer Co., Larry Towner of RCA

Does anyone have any additional history of the IUA they
would be willing to Share?

Bob Wiklund
IUA Board
Tiburon Technologies
623 594-6022

In 1969 I was at the Toronto Pop Festival - missed
Woodstock a couple of weeks later, but then I was taking
an upper air weather observing course at the time so
it was difficult to get away. In 1981 I was making the
big move from Canada to Australia, and yes (to quote
a famous Australian singer-song writer), “I still call
Australia home!”. Where were you back then? How many
of our readers or colleagues were even born then?

Enough about time and how it seems to fly by - on to
this issue. Dare I say yet again, “Boy - do we have another
bumper issue for you?”. We have articles that should
interest DBA’s and application developers alike. Chris
Hoelscher provides insight into zIP processors and the
Mainframe Software Management (MSM) way in which
software upgrades take place under Mainframe 2.0 - in
this case starting with Release 17.0.

Kay Rozeboom provides the next in a series of excellent
articles on XML - which I must point out is a technology
that helps us to achieve the long sought holy grail of

“data and vendor independence”. And CA has an excellent
article on the mysteries of some of the internals of data
management inside IDMS databases.

I hope you enjoy this edition of IUA Connections - and
that some of you will feel inspired to tell us some of your
war stories accumulated at some stage during the last 40
years or so.

As for thanking those who have contributed to this and
past issues - I think I will quote myself by thanking

“our contributors from CA and our regular and ad-hoc
contributors from within the IDMS User Community
without whom producing this publication would not be
possible. From myself, and on behalf of all the readers
who gain from your stories and your insights into a wide
range of topics - THANK YOU!”.

That’s all there is because there is no more – cheers - Gary

Gary Cherlet
Justice Technology Services
President Australian IDMS User Group (OZIUA)
IUA International Board Member responsible for
Connections

The opinions expressed in this editorial are the personal
opinions of the editor and they may not be shared by the IUA
Board or its members, other contributors to Connections, by
Justice Technology Services, or the Government of South
Australia.

On September 15th the
European IUA chair Jan Rabaut
and I met with members of
the CA IDMS management
team. At this meeting we were
in formed that Judy Kruntorad

is taking a new assignment and will be stepping down as
product owner of CA IDMS. Judy has been the product
owner of CA IDMS for 20 years and a great deal has
transpired in those 20 years.

If my history is correct, during the 20 years as product
owner Judy presided over:

IDMS Release 12.0 	 - full SQL / IDMS Server
IDMS Release 14.0 	 - Multitasking
IDMS Release 14.1 	 - Multiple Page Groups
IDMS Release 15	 - Data Sharing
IDMS Release 16 	 - TCP/IP
IDMS Release 17 	 – zIPP Support

Since I have been involved in the IUA (1997) Judy has
demonstrated unwavering support for CA IDMS user
groups. In Judy I feel we have had a true partner who
realized that we both have the IDMS users best interest at
heart.

Art Cartier is taking over as the new product owner for
IDMS. Art has been a product owner for CA testing tools
and has been with CA for 18 years.

Art has a pre CA background with IMS but he said it was
really old. (He has already been ribbed)

Judy will be taking on a new position as Northeastern
region quality manager for a host of other products. We
certainly look forward to working with Art and wish both
Art and Judy the best in their new jobs.

www.iuassn.org
your portal to iua
services and idms

contacts

4

(continued on page 5)

DEMI/DB – A user experience
at Lockheed Martin
by James G Grobaker
Introduction
As a programmer/analyst at Lockheed Martin
Corporation (LMC), Enterprise Business Services, for
about 20 years (8 as an employee, and the prior 12 as
a contractor), I have often needed to write stand-alone

“one-shot” programs to extract, modify or import data
into our production systems. Our CA-IDMS production
systems include:

	 Consolidated Purchasing System (CPS) – •	
homegrown, originally based on PIOS

	 PIOS-MRP – heavily modified version of M&D •	
PIOS

	 Customer Organization and Tracking System •	
(CORT) – homegrown

	 Material Estimating and Tracking System (METS) •	
– homegrown

I primarily work on CPS, METS, and a system called
Buyer’s Work Station (BWS), which is an Oracle add-
on system to CPS. As I mentioned, I have had to write

“one-shot” programs many times in the past, but that was
before LMC purchased the Data Extract Modification and
Import (DEMI/DB) Utilities from International Software
Products (ISP). DEMI/DB has largely replaced those
tedious tasks, and I would like to detail some of those
experiences below – but first, I will explain briefly what
DEMI/DB is.

DEMI/DB
Many of you of you may be familiar with ISP’s
DARSTRAN product for replication. DEMI/DB is a
separate set of utilities that can be used by companies
needing a tool to supplement DARSTRAN. In particular,
DEMI/DB can be used to extract, modify, and correct
issues with production databases in order to ensure
correct data is available to DARSTRAN for the target
replicas. It can also be used as a set of stand-alone utilities,
which is how we use it at LMC.

How we use DEMI/DB at LMC
DEMI/DB’s ease of use makes it flexible enough for us to
perform ad-hoc extracts for both specific record types and
multiple record types associated with a specific database
structure. The extracted data is used as input to other
programs to manipulate and/or modify specific fields and
to generate reports. The extracts are also used for mass
field modification by DEMI/DB and then reloaded into
the database.

The following are just a few simple examples of how
DEMI/DB is used on a regular basis at LMC.

1.	 Account Restructure – At least once a year, one or
more divisions of our company restructure a set of
account codes. LMC uses the DEMI/DB Extract
utility to extract the data for the affected accounts into
flat files. In some instances, the data is modified as it
is extracted. If the change is complex, we either use

the DEMI/DB Update utility to modify the records or
we employ a user written program to read the extract
files produced by DEMI/DB and modify the data to
produce a new file into the DEMI/DB Import utility.

2.	 Archive Purge – We also use DEMI/DB to archive
and purge records from our database. We have our
own utility programs that identify specific records for
the Archive and Purge processes and that generate
files in DEMI/DB format. By using DEMI/DB to
process these files rather than application-specific
code, we are able to enhance the performance of our
archive and purge processes and eliminate the ongoing
maintenance of in-house written programs.

3.	 Building Test Databases – When we require “cleansed”
copies of production data for development or ad-
hoc testing, DEMI/DB provides these facilities. Just
as we extract data for archiving and purging data,
we can build full or partial copies of all or selected
structures and records of any database. The ability
to replace sensitive data with somewhat meaningless
values on the way to creating a copy of the database
still provides the structure and relevant data content
for application problem analysis or testing of new
application code before it goes live.

4.	 Verifying Integrity – Occasionally, even the best
managed databases have issues. We use the DEMI/DB
extracts to compare against LMC written programs to
verify that the LMC program has properly modified
data and if necessary we use the update facilities of
DEMI/DB to adjust the database. We also use DEMI/
DB to extract all records of a certain type to compare
against an SQL extract from a replicated Oracle DB.

5.	 Daily Extracts – On a daily basis, we have multiple
uses for DEMI/DB which eliminates the need to write
programs that would require regular maintenance and
updates. A few examples of the functions we perform
follow.

a.	 Determine any out-of-balance PO’s within the
Consolidated Purchasing System (CPS). Out of
balance PO’s are defined as those Purchase orders
who have one or more line items where the dollar
total does not add up to their underlying Material
Requisitions (MR). With a few simple control
statements, we run the DEMI/DB Extract utility to
identify these PO’s and provide the data for further
analysis.

b.	 Search for automatic amendments created by
over tolerance receipts – The reporting extract in
CPS needs to “know” about any over tolerance
amendments created by receiving programs. The
DEMI/DB Extract utility is used to locate and
extract the data and pass the file to other programs
for reporting and analysis.

c.	 Load email addresses – In order to keep local
e-mail addresses updated in CA IDMS, we run an
extract against the global white pages, pass the data

5

DEMI/DB - A User Experience... cont’d from page 4

to a user written program that generates a file in
DEMI/DB Import utility format and then run the
DEMI/DB Import utility to update database.

d.	 “Force” modify buyer email records – the Buyer’s
Workstation (BWS), an add-on to CPS, needs to be
kept in “sync” with CPS. An important part is the
buyer’s email. This job uses the DEMI/DB Export
and Import utilities to extract and do a “dummy”
modify of the affected buyer records using the
DEMI/DB Import utility. The updates cause our
replication system to pick up the changes in CPS
and send them to BWS.

6.	 Ad-hoc query request – Often, our management
requests counts of certain record types. It is very easy
to write a compact query in DEMI/DB to extract and/
or count those records. For example, management
wanted a list of all active vendors with valid corporate
supplier codes in CPS. All we had to do was prepare
these simple parameter statements to select only active
vendors in CPS:

01,VENDOR-1207,UPD,SWEEP,SMSARE19,D=DD1207

//DD1207 DD *
 MOVE 4 TO RETURN-CODE.
 IF LOG-DEL-SW-1207 NOT = ‘Y’ AND ‘D’
 IF CORP-SUPP-CODE-1207 NOT = LOW-
VALUES AND SPACES
 MOVE 0 TO RETURN-CODE
 DISPLAY CORP-SUPP-CODE-1207 ‘ ‘
VENDOR-NAME-1207
 ‘ ‘ VENDOR-CODE-1207.

7.	 Ad-hoc update request – Occasionally, anomalies are
discovered in the CPS CA IDMS database. Rather
than having to write a one-shot program, we can
extract the data, and either fix the data in place using
DEMI/DB to modify the output file or manually
update the data before sending the data to the DEMI/
DB import utility to update the data. In order to
comply with Sarbanes-Oxley, we use the DEMI/DB
Extract utility to dump an image of the data before it
is modified. We then use the DEMI/DB utilities to
modify the data. As a final step, we use the DEMI/
DB Extract utility to get an after image of the data.
For example, this code was used to fix “bad” expedite
pay codes in CPS:

01,PO-ITEM-1210,UPD,SWEEP,SMSARE35,D=DD1210

//DD1210 DD *
 MOVE 4 TO RETURN-CODE.
 IF EXPED-PAY-1210 = X’0000’
 MOVE ‘3 ‘ TO EXPED-PAY-1210
 MOVE 0 TO RETURN-CODE.

Wrap-Up
As you have seen, DEMI/DB is a great time saver and I
highly recommend that you take a look at its capabilities.
More information can be obtained from ISP at www.
ispinfo.com.

Humana adds “z/IIP” to its
CA-IDMS Processing
Chris Hoelscher
Senior IDMS and DB2 System Administrator
Humana Inc.
We’ve all heard about z/IIP processors, but what exactly
are they? This presentation will hopefully demystify z/IIP
processors so IDMS shops that have access to them can
use them and save $ or £ or ¤ or ¥ or ₣ or ₤ or €.

What is a z/IIP processor? A z/IIP (short for system/z
Integrated Information Processor) is available to Z9 &
Z10 class processors. A z/IIP processor may be physically
identical to a CP (general purpose processor), but is
configured through the OS software to appear differently.
Currently, each site is limited to one z/IIP processor per
CP processor

Why run on a z/IIP processor? IBM will not impose
software charges on z/IIP capacity, and requires only a
one-time charge for purchase (at substantially less cost
than a corresponding CP processor). In other words,
execution cycles processed on a z/IIP are free of (IBM’s
and others’) software mips-based charges.

What runs on a z/IIP processor? Enclave SRB tasks,
of course. And what, might you ask, is an enclave SRB
task? SRB tasks are very lightweight and efficient threads
of execution that are available only to supervisor state/
privileged mode software, and enclaves are groups
of related SRB units “bundled” together. For a more
detailed explanation and history of SRB tasks, I highly
recommend Peter Morrison’s White Paper on the
subject at http://www.ca.com/Files/WhitePapers/ziip_
exploitation_wp3.pdf . For CA-IDMS, enclave SRB tasks
include all system mode work except physical I/O, SVC
processing, and user-written exits. IDMS then instructs
WorkloadManager to send a certain portion of this eligible
workload (currently 30%) to a z/IIP processor.

How can CA-IDMS utilize z/IIP processors? First,
migrate to Release 17 or higher (This has not been
retrofitted to earlier releases). Next, code ZIIP=Y in your
startup PARM= field (this can not be currently specified
in #DCPARM).

(continued on page 6)

6

Humana adds “z/IIP”... cont’d from page 5

Contributed

Software

Library
Save time

and use the
experience of

others to resolve
problems.

Next, APF-Authorize loadlib(s) from which nucleus
modules, line drivers, and service drivers are loaded.
Earliest documentation suggested that the loadlib
from which RHDCUXIT is loaded needed to be APF-
authorized; this has since been shown not to be the
case. Keep in mind that only the specific loadlib(s) be
authorized; the entire DDNAME concatenation need
NOT be authorized. If you specify ZIIP=Y but do not
APF-authorize the required loadlib(s), IDMS will inform
you of this via message DC016106, and bring up the
CV without z/IIP exploitation. On the other hand, if you
implicitly or explicitly allow ZIIP=N, but CA-IDMS
detects z/IIP processors available, it will inform you that
you *are* eligible for z/IIP exploitation via message
DC016105.

How can I monitor CA-IDMS utilization of z/IIP
processors? First, verify with task DCPROFIL that
the CV did in fast start in z/IIP exploitation mode: on
the first page of information displayed, to the right of
OPERATING SYSTEM: you should see ZIIP=Y. Second,
the following DCMT tasks are useful in monitoring z/IIP
utilization:

DCMT D SUBTASK EFFECTIVENESS
DCMT D SUBTASK xxx

The column “Total CPU Time/SRB” shows the amount
of z/IIP-eligible workload. Compare that value to:

The sum of the “zIIP time” values from all subtasks - this
should be 30% of the value from the subtask effectiveness
screen – if it is substantially less, then you a) do not
have enough z/IIP processors to handle the work IDMS

could process there, or b) you have the max number of z/
IIP processors allowed, but they are busy enough of the
time to preclude all z/IIP-scheduled work from executing
there. Either way, the value “zIIP on CP time” reflects the
missed opportunities. Unfortunately, the sum of these two
values determine the 30% threshold; if an SRB enclave is
directed to a z/IIP processor, but does not execute there, it
counts towards the 30%.

What were Humana’s experiences with implementing
and monitoring CA-IDMS utilization of z/IIP
processors? Humana was very interested in the prospect
of utilizing z/IIP processors within CA-IDMS; so much
so that in November 2008 we abandoned our nearly-
completed migration from release 15 to release 16
and began the migration effort to the newly-available
IDMS release 17. We had our first release 17 CV up in
December 2008, promoted non-production to release 17
in early March 2009, and production in mid-April. The
specific z/IIP implementation steps were quite easy (our
system folks APF-authorized the loadlibs, and I made the
CV startup changes in under 5 minutes).

As far as monitoring z/IIP utilization, we saw immediate
positive results. We support 21 production CVs, two
of them serving as read-only Database Owning Region
(DORs)(also referred to as back-ends) for both IDMS
and CICS Application Owning Regions (AORs)(also
referred to as front-ends). One of these read-only CVs
in particular processes over 500 million tasks/week, with
peak processing of 2500 tasks/second (a whopping 87
CPU hours/week). Of this work, over 99% <!> (86.5
hours) is z/IIP eligible; of the 30% (27 hours) sent to
the z/IIP processors, less than 5% (114 minutes) of those
enclaves were kicked back to the CP. Our capacity folks
inform is that the reduction in software overages costs will
save Humana over $120,000 per year.

Where can I find more information about CA-IDMS
and z/IIP processors? Please refer to the CA IDMS r17
Release Summary, and the CA IDMS System Operations
Guide. Also, plan to attend CA-WORLD 2010; there are
sure to be in-depth presentations on this topic.

7

The COBOL XML Generator
by Kay Rozeboom
In the previous issue of “IUA Connections”, I explained
how to extract data from an XML document, using the
COBOL XML parser. In this issue, I will demonstrate
how to convert data to XML format, using the COBOL
XML generator. We will discuss two examples:

 - Example 1 converts a fixed number of fields to XML.
 - Example 2 converts a variable number of fields to XML.

Example 1:
Figure 1 shows a simple XML string in its actual format.

The data is highlighted in yellow. The non-highlighted
characters comprise the XML tags. Quick review: an
XML element is composed of three fields: the start tag,
the data itself, and the end tag. For example, element

“BillingNumber” is composed of:

 Start tag = <BillingNumber>
 Data = 142A
 End tag = </BillingNumber>

The XML in Figure 1 contains “nested elements”, also
referred to as “sub-elements”. Elements “BillingNumber”
and “Description” are sub-elements of element

“OutputFields”.

It is possible to convert your data to XML format by
coding all of the tags and data fields in working-storage,
or by using a series of “string” commands. But IBM
has provided a better solution: the XML GENERATE
command.

The XML GENERATE command starts with a data
structure in working-storage. It converts the field
names to start and end tags, and places the field contents
between the tags, removing any extraneous white space.
Higher data level numbers are converted to sub-elements
of lower level numbers. For example, a 10-level field will
become a sub-element of a 05-level field.

Figure 2 shows the same XML as Figure 1, but in the
more common display format. This time, the start-of-
element tags are highlighted. The color-coding of the
elements in Figures 3 and 4 will correspond to that in
Figure 2.

Figure 3 shows the working-storage data structure that
was converted to the XML in Figure 2. Note how the

field names have been used for the start and end tags.
Note also how the 10-level fields have been converted to
sub-elements of the 05-level field.

There are some rules and restrictions to this XML
conversion, which are documented in the COBOL
manuals. For instance, fields named “FILLER” are
ignored.

Figure 4 shows how to code the XML GENERATE
command. The first step is to move your data to the
working-storage data structure in Figure 3. Then
execute the XML GENERATE command. The “ON
EXCEPTION” code is executed if an error occurs while

(continued on page 8)

8

The COBOL XML Generator continued from page 7

(continued on page 9)

generating the XML. The “NOT ON EXCEPTION”
code is executed when the command completes
successfully. Upon successful completion, WS-XML-OUT
will contain the generated XML string, and WS-XML-
OUT-LENGTH will contain the length of that string.

A common mistake is defining WS-XML-OUT large
enough to hold only the converted data. You must make
it large enough to hold the generated element tags as well.

Figure 5 is a generic XML error-handling routine. This
routine is called when an “EXCEPTION” event is
encountered by the generate command in figure 4. The

“IF” part of the code demonstrates how to bypass selected
errors. The “ELSE” part shows how to display the
location of the error in the generated XML string.

Example 2:

Figure 6 shows another XML string in its actual format.
As in Figure 1, the data is highlighted in yellow, and
the non-highlighted characters comprise the XML tags.
(Notice how the tags take up more space than the data
itself. This is not unusual in XML.)

Figure 7 shows the same XML as Figure 6, but in the
more common display format. This time, the start-of-
element tags are highlighted. In contrast to Example
1, Example 2 has a variable number of fields. Element
“PaymentInfo” and its sub-elements can occur 0 to 100
times. (It occurs 2 times in the example.) The color-

coding of the elements in Figure 7 corresponds to that in
the remaining figures.

Figure 8 shows the working-storage data structure
that was converted to the XML in Figure 7. Field

“PaymentInfo” is defined as an “occurs depending on”
field. The COBOL XML generator will use the value of
the “depending on” counter (WS-PAYMENT-SUB) to
determine how many “PaymentInfo” elements to generate.

Figure 9 shows the code that fills in the “PaymentInfo”
fields and increments the “depending on” counter. This
code is executed 0 to 100 times, depending on how many
payment records are found for the selected case number.

9

Figure 10 shows the code that fills in the fields that occur
only once, then executes the “XML Generate” command.
This is basically the same logic shown in Figure 4 for
Example 1.

If “PaymentInfo” had been defined as simply “occurs 100
times”, then 100 “PaymentInfo” elements would have
been generated. The first two would have contained data,
and the remaining 98 would have been empty elements,
consisting of only the element and sub-element tags. That
would have added over 10,000 unneeded bytes to the
XML string.

Additional resources:
 - Both the “COBOL Reference” and the “COBOL
Programming Guide” contain detailed information about
COBOL XML processing.
 - XML error codes are listed, with explanations, in
Appendix D of the COBOL Programming Guide.

Biographical note:

Kay Rozeboom is a DBA/Systems Programmer with the State
of Iowa. She has 20 years of IDMS experience. Her special
interest is in integrating mainframe data and applications
with other platforms.

The COBOL XML Generator continued from page 7 From OZIUA - the Australian
IDMS User Group
September Meeting
Last Meeting Wednesday, September 5th,
2009 We had a viewing of a pre-recorded
web cast which enlightened us about IDMS
Release 17.0 and some of its features that we can look
forward to, as well as how Release 17.0 fits in to the CA
Mainframe 2.0 environment. Many thanks to CA for its
support of the User Group program, and to the attendees
who helped to make the session well worth attending.

We tried a new format of holding a single session, at the
end of the day, followed by drinks. We didn't get our
usual number of attendees so I will need to see whether
it was just the way that I advertised the session (it was a
bit misleading not emphasizing the Release 17 features
enough), or the new format.

A positive that came out of the meeting: you can ask
CA to cut you a video of a webcast instead of playing a
webcast over the web (I find that at our site there is often
a lag between voice and image that can be upsetting). If
you cut this to a USB drive or a DVD you can play the
Web Cast directly on the machine that's connected to a
projector - removing time lag introduced by vagaries of
LAN bandwidth and usage when you are trying to view
the video. I will try to organize another event before the
end of the year.

OZIUA Home Page Relocated
I have made a unilateral, executive decision to change
http://oziua.shorturl.com to point to the CA User
Groups, Australian IDMS User Group log in page. I have
a number of reasons for doing this:

Too hard to maintain content in two places - one is •	
hard enough

Once we get enough people "signed up" it will mean •	
that our mailings can be better managed and more
highly directed to people who are actually interested

Help to get our "numbers up" to help to demonstrate •	
to CA that their customers are getting value from the
money being invested in the User Group program

etc, etc, etc !•	

I hope to move some of the content to the CA User
Group site, and the rest of it to the IUA web site at http://
www.iuassn.org but we'll see what I am able to achieve,
with the help of others, and in the fullness of time.

That’s all there is because there is no more – cheers - Gary

Gary Cherlet
Justice Technology Services
President Australian IDMS User Group (OZIUA)

10

Automatic Reset & Alert For
Program Out-of-Service
by David Matthews
Overview
Programs going out of service should be a very rare event
in Production, we think. But for various reasons, it is
instead, not uncommon. I had resisted doing anything
proactive, because it seemed so unlikely, but a weekend
incident persuaded me otherwise.

In our system, the program put out-of-service is often a
common module used by multiple other programs. The
root cause of the abends taking the program out-of-
service is usually a user-error (a bad profile, bad-input,
or a fat-finger). The combination of these circumstances
means that we want to put the program back in service
ASAP, and alert the DBAs to investigate the problem.

This automation does both things.

Technical Approach
The approach taken is simple enough (for a DBA . . . 8^)
. . .):

Update the WTOEXIT to recognize DC027008 -see •	
figure 1
Insert the message into the JCL Submitted by the •	
WTOEXIT - figure 2
Parse the message for the program-out-of-service •	
name, insert that name into another JCL and submit
it - figure 3
Reset the program and Alert the DBAs - figure 4•	

Use UCFBATCH DCMT commands to re-enable •	
the program and to raise the Program Check
Threshhold (temporarily) to keep it from going
right back out of service
Send an email (and phonemail) to the DBAs as an •	
alert

Summary
I never wanted to do this before, thinking it would be
both a Rube Goldberg mechanism and overkill for a rare
problem, but actual events overtook me. What would be
nice, is if CA were to include a subset of their Automation
product as part of IDMS, as they do for CULPRIT, to
help with situations like this.

Editor's Note: this article was submitted by David Matthews
from DHL

e-mail:[David.Matthews@dhl.com]

11

www.iuassn.org
your portal to iua
services and idms

contacts

CA ‘zaps’ its maintenance
delivery format
by Chris Hoelscher
Senior IDMS and DB2 System Administrator
Humana Inc.
What exactly has changed? Starting with IDMS release
17 Service Pack 1, all published maintenance will be
delivered as load module replacements (PTFs) rather than
load module zaps (APARs). This was done for several
reasons: to satisfy customer requests; to allow IDMS
maintenance to be CA-MSM eligible; and to ease fix
installation syntax so that fixes no longer specify a service
pack. And, to be sure, this method is how many other CA
and IBM software fixes are delivered.

How is CA implementing this change? For sites
beginning their Release 17 adventure at ServicePack1,
the changes will be for the most part transparent (all
published fixes after base installation will be PTFs (load
module replacements). For sites already running 17.0
pre-SP1, it becomes a bit more tricky. CA has created
‘replacement’ PTFs (load module replacements) for
EVERY pre-SP1 APAR (load module zap), which you
may chose to apply to supersede the APARs. Why apply
these ‘replacement’ PTFs? All subsequent 17.0 fixes will
reference the PTFs, not the APARs, as PREREQs, so
having the PTFs installed will make life easier down the
road (highway 17?)

How do I find these ‘replacement’ PTFs? Follow these
steps (for MVS sites). This is how I got hold of them:

sign on to support.ca.com•	
select download center•	
select published solutions•	
select IDMS/DB - MVS•	
select 17.0 as release•	
select all components•	
select OS as operating system•	
enter high fix of RO09355 (this is 1 number less than •	
the lowest replacement PTF)
select 100 results per page•	
select ‘select all’•	
repeat selection process using operating system of z/•	
OS – this will pick up all PIBs for IDMS release 17
select RO09984 manually – for whatever reason it •	
is not seen by support.ca.com as part of IDMS/DB –
MVS
select ‘view solution cart’•	
build your downloadable and download (when •	
viewing solution cart, i typically do NOT select 	
	“create package”)
unzip your scart0.zip file and upload individual files •	
to mainframe

Philosophically, What does this mean to us? Before this
change, fixes were not dependent (or even aware of) other
fixes applied to the same module UNLESS they hit the
exact same piece of code (to be sure, you would get the
other fixes eventually, but under the old system you only
needed to be immediately aware of (and test?) the change
in code behavior in which you were interested). With this
change, however, when installing a fix to solve a specific
problem, you will be installing automatically (and need
to test for?) any previous (uninstalled) fixes that affect the
same module. Is this a bad thing? Probably not, but it IS
something to be aware of.

Any caution? – YES. Since published PTFs do not (and
should not) reflect non-published changes (such as test
fixes or old-style optional APARs that still (and will
continue to) contain ZAPs) and will as such overlay
them, it is important to first run an APPLY CHECK to
see what other already-installed fixes would be overlaid
by installing this fix - if those existing fixes include test
or optional fixes, they should be RESTORED first, and
re-RECEIVED/APPLIED after the published PTF is
installed, UNLESS the PTF states that it supersedes the
test or optional APAR, in which case no action is needed.

CA-World 2010 - Las Vegas -
May 16-20
In case you haven’t heard, the date and location for CA
World 2010 has changed again. The conference has been
moved back to Las Vegas, now at the Mandalay Bay
Resort & Casino.

There are new dates too, May 16-20, 2010.

The IUA/EIUA and CA anticipate another exciting
conference and we are looking for ideas and speakers.

If you have any ideas who you would like to see, or have
an idea on topics you would like to see, or if you think
you can give a session, please submit a call for speakers
form.

Sessions given by IDMS customers are usually the best
received and highest rated. We are looking for customers
willing to share their expertise and success stories.

CA staff will be willing to assist you with your session.

To submit a session or propose a topic submit a Call for
Speaker form at https://www.ca.com/us/Register/form.
aspx?CID=139640 (Select *MF Databases* from the
Capability Solutions Area list).

If your submission to be a speaker is selected, as a thank
you, your CA World 2010 conference registration will be
waived. Please submit your proposed sessions by October
30, 2009.

Watch caworld.com for updated information on the
conference in the weeks and months to come.

We look forward to seeing you at CA World.

Steve Rundle IUA/EIUA CA-World Liaison

12

(continued on page 13)

JTS Help desk
We had this e-mail come in to the Help Desk the other day from a programmer who went to the manual and solved their
problem all on their own - but it seemed to be one of those “handy hints” that was worth passing along. That is about
(a) going to the manual, and (b) the particular paragraph which I’m sure many people have either missed, or missed the
implications.

From: 	 Application Developer
Sent:	 Wednesday, 5 August 2009 9:34 AM
To:	 XXXXXXXXXXXXXXX
Subject:	FW: What caused the problem

Hi Help Desk,

Would you like to know the answer to the problem that caused me so much pain and frustration this week and other
people’s IDMS screens to hang?

I’ll tell you anyway because I didn’t know this and perhaps you don’t either.

The offending statement in a DC COBOL program was

 OBTAIN MAPE-PERIOD WITHIN MAPE-REASON-X
 USING WK-MAPE-REASON-X

The USING set sort key field in WORKING-STORAGE was:

 01 WK-MAPE-REASON-X.
 03 WK-MONITOR-REASON-CODE PIC X(8).
 03 WK-ASSIGNEE-OFFR-PIN PIC 9(9) COMP.
 03 WK-SUBJECT-ID PIC 9(9) COMP.

I found the following note in the DML Reference - COBOL manual:

Note: Due to the architecture of the client interface for Advantage CA-IDMS, 256 bytes will be moved regardless of the
actual length of the working storage sort key. This additional storage should be accounted for in order to avoid potential
program exceptions that can occur. While these exceptions are rare, they are more probable if the sort-key is defined in
a FILE or LINKAGE SECTION definition. To avoid this problem, it is recommended that the sort-key be defined in
the program’s WORKING STORAGE SECTION, padded to a full 256 bytes; and moved in and out of the FILE or
LINKAGE SECTION fields.

I changed the working-storage field to be:

 01 WK-MAPE-REASON-X.
 03 WK-MONITOR-REASON-CODE PIC X(8).
 03 WK-ASSIGNEE-OFFR-PIN PIC 9(9) COMP.
 03 WK-SUBJECT-ID PIC 9(9) COMP.
 03 FILLER PIC X(240).

And the problem went away.

I’m sure that there are plenty of COBOL programs out there that may have this problem and they have been lucky enough
to not cause loops, or sporadic, seemingly unexplainable errors.

On the same topic

See the following IDMS-L post from Chris Hoelscher - shows the value of watching IDMS-L doesn’t it (note subtle plug
for IUA from the editor!).

From: IDMS Public Discussion Forum [IDMS-L@LISTSERV.IUASSN.COM] on behalf of Chris Hoelscher [choelscher@
HUMANA.COM]
Sent: Wednesday, 11 March 2009 5:06
To: IDMS-L@LISTSERV.IUASSN.COM
Subject: a small DML change for release 17

8.7 FIND/OBTAIN WITHIN SET USING SORT KEY DML Statement A COBOL program containing the FIND/
OBTAIN WITHIN SET USING SORT KEY DML statement might compile with a syntax error although it compiled
successfully on a prior release. CA IDMS now ensures compliance with the following rules when processing a FIND/
OBTAIN WITHIN SET USING SORT KEY DML statement:

13

(*) You cannot specify multiple field names as the sort key in the USING clause.

(*) You must terminate the DML statement with a period or semicolon after specifying the sort key in the USING clause,
unless the statement is followed by an ON clause.

The IDMSDMLC precompiler is enhanced to detect extra parameters and issue a syntax error at precompile time.

Note: For more information about the FIND/OBTAIN WITHIN SET USING SORT KEY DML statement, see the CA
IDMS DML Reference Guide for COBOL.

In other words ...

IF
...........
OBTAIN record-name WITHIN set-name
 USING sort element IF DB-REC-NOT-FOUND
 DISPLAY ‘whatever’
ELSE
.......................

will not pre-compile

IF
.......................
OBTAIN record-name WITHIN set-name
 USING sort element; IF DB-REC-NOT-FOUND
 DISPLAY ‘whatever’
ELSE
....................

will pre-compile

Chris Hoelscher
Senior IDMS & DB2 Database Administrator Humana Inc
502-476-2538
choelscher@humana.com

Editor’s Note: For those who watch IDMS-L you would have seen a recent exchange between Chris and Carla Pereira from CA -
basically the good news is that there is a fix available - here is a part of the exchange:

From Chris: IS ro12490/1 to be the published fix corresponding to your test fix?

From Carla: Hi Chris - yes RO12491 will be the PTF number which corresponds to TB99850 (which is for z/OS).
RO12490 is the z/VSE version of the fix. These PTFs are going through our internal publication process which involves
extensive testing by our QA group before being released publicly. This process usually takes about two weeks provided
there are no issues found with the PTFs. I expect these PTFs will be available later next week. The PIB you mentioned
(RI12747) documents the new error message introduced by the PTFs. Since it doesn’t include a fix that needs tested it was
released immediately.

That’s all folks - cheers - Gary

Gary Cherlet
Justice Technology Services
Department of Justice, SA Government

Upcoming events in Europe
EIUA IDMS board meeting in Slough (UK) •	
on November 8th

EIUA CA management meeting at the Manor •	
House,Ditton Park (UK) on November 9th

UKIUA IDMS user group event at the Manor •	
House,Ditton Park(UK) on November 10th

BIUA IDMS user group meeting in Brussels •	
on December 11th

For agenda and registration please contact your local
user group chairman Jan.rabaut@sogeti.be for BIUA
and EIUA or steve.rundle@bt.com for UKIUA

JTS Help Desk cont’d from page 12

14
(continued on page 15)

FRAGMENTS AND RELOCATED
RECORDS
One of the most rigidly enforced rules within an IDMS
database is that the dbkey of a record is assigned when a
record is stored within the database and cannot change
as long as that record resides on the database. A dbkey is
composed of the number of the page on which a record
is stored and a line index number that points the DBMS
to information necessary to locate the record occurrence
on the database page. This means that when the size
of a record occurrence already existing on the database
increases IDMS cannot simply move that record to
another page if insufficient space exists on the current
page since that movement would require a new dbkey to
be assigned.

This article describes variable length fragments and
relocated records which are structures used by IDMS to
acquire the necessary space for these expanding record
occurrences without changing a record’s original dbkey.
Performance implications of these constructs, ways to
minimize their creation, and how IDMS attempts to
eliminate their presence are also covered.

Fragments
The type of record whose size is most likely to increase
after it is stored on a database is one defined as variable
length. Records are considered to be variable length
when their element definitions include an OCCURS
DEPENDING ON clause or the record occurrences
are to be compressed. A variable length record (VLR)
occurrence will increase in size when as a result of a
MODIFY verb an additional reoccurring group is added
to the record or changes to the record’s data result in the
compression algorithm providing a less effective level of
compression.

When a record is defined as being variable length a
Record Descriptor Word (RDW) is added to the data
portion of the record and an additional pointer position
is inserted at the end of the record’s prefix. The RDW is
used to contain the length of the entire data portion of
the record occurrence and the additional pointer position
is used to support an internal set known as the fragment
chain.

VLR Fragment Chain

Figure 1

When an existing VLR is to be expanded, and in some
cases initially stored, and there is insufficient space to

hold the entire record on the occurrence’s target page the
portion of the record that will not fit will be overflowed
to another page within the area. The portion of the
record that is on the original page is referred to as the
record’s ‘root’ while the overflowed piece of the record
is referred to as a fragment and is assigned a record id
of 4 (SR4). The root continues to be identified using
the record’s true record id and acts as the owner of
that record’s fragment chain with the SR4’s being the
fragment chain’s members.

When IDMS must access the fragmented VLR it will
first read the page containing the root of the record as
this is the portion of the record referenced by the record’s
dbkey. IDMS then recognizes that the entire record is
not completely contained within the root portion of the
record and will commence walking the fragment chain to
reconstruct the record within storage. This reconstruction
is transparent to the application but the need to read
another page to get the record’s fragment has a negative
impact on the performance of the DBMS. It is possible
that the fragment chain may link to multiple fragments,
each on a different page. Each page containing a
fragment for a VLR record occurrence can be considered
to add 1 physical I/O to the amount of work performed
by the DBMS to reconstruct the VLR.

Whenever a VLR is defined to a database it is very
unlikely that fragmentation of some record occurrences
can be completely avoided if the associated applications
have the ability to increase the size of these records.
However IDMS does provide some mechanisms that will
allow a DBA to minimize the number of fragments that
may appear within a database. The first thing to do is to
insure the proper specification of the MINIMUM ROOT
and MINIMUM FRAGMENT clauses on the VLR’s
RECORD statement within the schema.

MINIMUM ROOT IS RECORD LENGTH should be
coded on the schema RECORD statement for all variable
length records. This parameter tells the DBMS to insure
that the page selected as the target page for a record
occurrence has enough space to contain the entire record.
Specifying any value other than RECORD LENGTH can
result in SR4 fragments being created during the store of
the VLR occurrence. In the same manner MINIMUM
FRAGMENT IS RECORD LENGTH should always
be coded. By coding this you are telling IDMS that
whenever it must fragment a VLR during a MODIFY
command it must find enough space on an overflow
page for the entire fragment. Specification of any other
value can result in multiple fragments being created if the
database area is tight on space.

Finally, any area that contains a VLR should be defined
to have a PAGE RESERVE on its AREA statement
within the SEGMENT definition. By specifying a PAGE
RESERVE the DBA is directing IDMS to stop adding
new records to any page when the amount of free space
remaining on that page reaches the specified value. That
remaining space can then be used for the expansion of
any VLR occurrence on that page which will prevent
fragments from being created on a MODIFY command
until that reserved space is exhausted.

ROOT SR4

Page 1001 Page 1002

15

Fragments and Relocated Records... cont’d from page 14

Acknowledging the fact that VLR fragmentation can have
a negative impact on a database’s performance, IDMS
does make an attempt to condense fragment chains
when processing an area in an UPDATE mode. When
a fragmented VLR is accessed and the area is in an
UPDATE mode IDMS will check the free space on the
root’s page to see if any space has been made available.
If space does exist IDMS will condense as much of the
fragment chain as possible back to the original target page
and will also condense any other fragments together if
space allows on the pages on which fragments exist. Of
course the best way to eliminate all fragments within
an area is to perform an UNLOAD/RELOAD, DB-
REORG, or REORG against that area with a subschema
generated from a schema that had MINIMUM ROOT IS
RECORD LENGTH specified for the record type.

Relocated Records
Relocated records are created by IDMS during the in-
place expansion of a fixed length record or the control
length of the root portion of a variable length record.
This structure is necessary when such an expansion causes
the record (or its control length) to no longer fit on its
current page. When this situation is encountered the
record occurrence is removed from its current page and
replaced with an SR2 record. A new target database
page is found for the data record using standard overflow
algorithms but the data record is stored on the new page
as a type 3 record (SR3) instead of using its original
record type designation. The SR2 occurrence contains
the relocated record’s original record type and the dbkey
of the new SR3 record.

When IDMS is directed to access a record at a specified
dbkey one of the first things it does is verify the record id
of the record on the database page to the type of record
requested. If the record ids do not match, IDMS will
check the record type on the database page to see if it is
a 2 before returning an error status to the application
program. If the record is an SR2, IDMS will check the
record type indicator within the SR2 to see if it represents
the type of record being requested. When the record
id in the SR2 matches the requested type the dbkey of
the associated SR3 in the SR2 is used to read the SR3
record occurrence. The data record in the SR3 is then
returned to the application using its original record type
designation.

The only time that SR2/SR3 records may be created for
non-SQL defined databases is as a result of the execution
of the RESTRUCTURE SEGMENT utility when the
record prefix or data length of a record is being increased.

Expansion of records (rows) in an SQL-defined database
occurs at various times but is always the result of the
execution of a DDL statement. If the prefix portion
of a record needs to be expanded due to the addition
of a referential constraint an inflight restructure is
performed against the database during the execution of
the SQL command which changes the SQL schema. If
the expansion of a record will not fit during the inflight
restructure the necessary relocations occur and the
required SR2/SR3 pairs created. If the definition of
a table is changed by the addition of new columns no

immediate restructure of the data is performed during
the modification of the table’s definition. However, as
these database records are accessed in an update mode the
DBMS will append the needed space to any occurrences
that existed on the database prior to the change in the
table’s definition. If this expansion will not fit on the
record occurrence’s current page relocation occurs and the
necessary SR2/SR3 records are created. This means that
SR2/SR3 pairs may be created during normal application
processing.

In the following example a record type 1024 was
expanded and could not fit in the space available on its
original page (1001). The record has been relocated to
available space on page 1002 and an SR2/SR3 structure
created to support the relocated record occurrence.

Relocated Record

Figure 2

Regardless of the type of IDMS database being used SR2/
SR3 records will be removed from the database when a
relocated record is accessed and its area is readied in an
update mode and there is sufficient space on its original
database page to hold the expanded record. In this case
the SR2 will be removed from the original page and the
record represented by the SR3 will be moved back to that
page and re-assigned its original record id. The SR3 is
then deleted from its overflow page.

Summary

Variable length fragments or relocated records provide
transparency to application programs when the DBMS
engine must locate sufficient space for a record by
allowing the target record to retain its original dbkey.
However this is accomplished through the cost of
additional CPU and I/O operations and excessive
numbers of these constructs can have a negative impact
on an application’s performance. DBAs should constantly
monitor their database for an increase in these types of
system records using the PRINT SPACE or IDMSDBAN
utilities and be prepared to reduce their number of
occurrences using the UNLOAD/RELOAD, DB-
REORG, or REORG utilities.

Dick Weiland is a Senior Systems Engineer for CA IDMS
Level II Support working out of the CA Lisle office. He began
working with CA IDMS in 1977 as a DBA and joined
Cullinet in 1981 in the Field Support organization. He moved
to Level II Support in 1988 and is responsible for the DBMS
engine and various utilities.

 SR3 DBKEY 1024 Record data

Page 1001 Page 1002

(SR2) (SR3)

16

International Chair
Terry Schwartz
Company:	Perot Systems
Address:	 PO Box 269005
Phone:	 972 577-3722
Email:	 terry.Schwartz@ps.net

Secretary/Treasurer
Email Coordinator
Bob Wiklund
Company:	Tiburon Technologies
Address:	 17101 W. Gable End Lane,
	 Surprise, AZ 85387
Phone:	 623 594-6022
Email:	 bob_wiklund@tiburontech.com

International Vice Chair
Contributed Software Librarian
Laura Rochon
Company:	Ajilon Professional Services
Address:	 22 Jolliet, St-Bruno,
	 Quebec J3V 4Z1 Canada
Phone:	 514-943-8290
Fax: 	 450 441-6880
Email:	 l.rochon@videotron.ca

European IUA Representative
Steve Rundle
Company:	British Telecom BT Group plc.
Address:	 PP2B33 Angel Centre,
	 403 St. John Street, London
	 EC1V 4PL UK
Phone:	 +44 (0)20 7777 6920
Fax:	 +44 (0)20 7777 6921
Email:	 steve.rundle@bt.com

Board Member
Linda J. Casey, PMP, CSM
Company:	 Managing Member
	 Run Right, LLC
Email: 	 lindajcasey@runrightllc.com

Board Member
Craig McGregor
Axciom
craig.mcgregor@acxiom.com

Board Member
Diane Montstream
Allen Systems Group
diane.montstream@asg.com

Board Member
Jan Rabaut
jan.rabaut@dexia.be

Editor
Gary Cherlet
Justice Technology Services
South Australian Department of Justice
cherlet.gary@saugov.sa.gov.au

Desktop Publishing
Rebecca Shaw 404 377-6982
shawrh@bellsouth.net

IUA Connections is a quarterly
publication of the CA-IDMS Database
and Applications User Association
(IUA). It is designed to promote its
members’ objectives. IUA Connections
is not responsible for the opinions
expressed by its writers and editors.

Information User Association
401 N. Michigan Ave.
Chicago, IL 60611-4267
Phone: 312/321-6827
Fax: 312/245-1081

Internet: iua@iuassn.org
Web: http://iuassn.org

