Qtool
Anatomy of a queue file
The hub queue file is a collection of messages that have not yet been operated on. To make storing to and reading from the queue file as quick as possible the messages, in PDS format, are stored directly to the file without any form of processing. This means that it is impossible to move a queue file from one system to another of a different type, where type would include differences in 32- or 64bit architecture and whether the system stores data in a BigEndian or LittleEndian fashion. As a rule of thumb the qtool utility should be run on the same system as the hub that created the queue file runs on!
A queue file contains a header before each message which consists of two fields. The first is the type of message the following PDS is, which also doubles as a read flag in that this gets set to 0 when the file has been read. The second is the size of the following PDS so that the hub can jump to the next location in the file to read the header there. If either of these fields becomes corrupt the hub is unable to operate on the file properly. 
Since the file is binary in nature it is difficult to make modifications to it manually with an editor. The qtool utility has been created to make this possible. Qtool is a utility for operating on queue files created by the hub. If the queue file is damaged the utility will make a best effort to recognize where the damage is and work around it. The utility is command-line driven and does not support any kind of graphical user interface. 
NOTE: It is strongly recommended that the queue file is backed up before running qtool against it, as many modes will change the contents of the file! 
NOTE: Never run qtool against a file which the hub is currently working on! Stop the hub and copy or move the queue file to a different directory before operating on that copy.
Queue bulk size considerations
If a queue sends bulk messages to a probe it will receive a reply when the probe has successfully operated on that bulk. For efficiency the hub will not change the headers for all messages in that bulk, but set the read flag in the first message and modify the offset so it covers the whole bulk of messages. The probe can request any bulk size it wishes, but the queues bulk size parameter in the hub is the maximum bulk size the hub will allow. When attempting to work around damage to the queue file qtool will need to be supplied with information about the approximated minimum and maximum size of a message in that queue and the bulk size. That way the utility can see what offsets are within the limits (min size <= offset in header <= max size * bulk size) when scanning the file.
NOTE: The utility works through the headers in the file when scanning the file until it comes to a header that does not match the criteria above. From that point it will scan the file looking for a valid header. Since the header of the first message in a bulk that has been marked as read contains the offset for the entire bulk that was sent it is possible that the utility will resend messages. This happens because the next header will not have the read flag set even though it has already been read.
Qtool usage
The usage information can be found by calling the utility with the –h parameter:
Parameters: data in <> is a required parameter
 -V prints version information
 -h print this help information
 -d<level> debug level default=0
 -D<logfile> log file, default=stdout
 -s print stats
 -r read first message in queue (equivalent to -R1)
 -R<n> read first <n> messages in queue
 -a read all messages in queue
 -f<F> use file <F> as queue file
 -t<F> store unread messages in queue to file <F>
 -p repost messages in queue
 -P repost messages in queue and mark them as read
 -l write contents of message(s) to the log
 -L write contents of message(s) to the log and mark them as read
 -x mark messages as read
 -m<bytes> minimum size of a valid PDS, default=200
 -M<bytes> maximum size of a valid PDS, default=1000
 -b<size> bulk size of queue default=1
 -e search queue for error location and start scanning from there
NOTES:
-f and -t can NOT have the same filename specified! In-place
truncation is not supported.
-L is equivalent to -l -x
-P is equivalent to -p -x
-a only works as long as there are no errors in the queue file

This tool should be run on the system that generated the queue
file or a similar system since raw data is written to the file.
Thus it is not possible to properly mix 32- and 64bit systems or
big-endian and little-endian systems.

If the queue file header is corrupted for some reason this utility
must try to find a header boundry by searching the file. The header
contains a flag and the size of the next PDS. This size must be
between (bulk size * max size) and min size. It is important to set
the bulk size properly so that the utility can recognize the size as
valid and not corrupted data.

Qtool parameters
-V Print the version of the qtool utility and exit.
-h Print the online help information listed above and exit.
-d <level > Sets the standard Nimsoft debug level, 0 to 5 where higher numbers indicate more debug information is printed. Default is 0.
-D <file> Sets the log file. Default is to print information to stdout.
-s Print statistics about the queue file after scanning. The information contains the number of unread messages in the queue (count), the offset in the file where the first unread message is (first), the size of the file as the sum of messages both read and unread (size) and the size of the file on the filesystem (stat). If size != stat then that is an indication that the file is damaged in some way.
-r Read the first message in the queue. Shortcut for –R1. 
-R <n> Read the first ‘n’ messages in the queue. What happens to those messages is decided by the presence of the –p, -P, -l, -L and –x flags (see below).
-a Read all unread messages in the queue file. This is a special case of –R since you do not know how many messages are in the queue file ahead of time. As with the –R flag what happens to the messages is based on other flags.
-f <file> Sets the queue file you wish to read from and operate on. Note: do not specify a file the hub is actively using.
-t <file> Sets the file you want to store unread messages to. Note: this cannot be the same file as specified in the –f parameter.
-p Repost message(s) read from the queue file. The number of messages is specified with either the –r, -R or the –a flag (see above).
-P Repost messages read from the queue file and mark them as read. Shortcut for –p –x.
-l Write contents of message(s) to the log file.
-L Write contents of message(s) to the log file and mark them as read. Shortcut for –l –x.
-x Mark messages as read after operating on them. Note: this changes the contents of the file, so a backup should be taken before using this flag. See also –P and –L flags.
-m <bytes> Minimum size the utility should expect a valid message in the queue should be. Default is 200 bytes. This value is used to verify the offset in headers in the file are within acceptable parameters.
-M <bytes> Maximum size the utility should expect a valid message in the queue should be. Default is 1000 bytes. This value (along with the bulk size, see below) is used to verify the offset in headers in the file are within acceptable parameters.
-b <size> Bulk size of the queue. Default value is 1. For queue files which have a bulk size set in the hub configuration this value should be set.
-e Search queue file for the location of an invalid header, and start scanning for the first valid header from there. Operations on the file will continue from the location found during the scan.

Truncating a large queue file
The hub, for reasons of efficiency, does not empty the queue file until it has operated on all messages in the queue. This can cause a situation where a large amount of data is “stuck” in the file until the hub manages to get through all messages that remain unread. This can cause problems on systems that have limited space available on the hard drive where queue files are stored. To work around this the qtool utility will let you truncate the file by storing all unread messages in a new file. To truncate a queue file follow these steps:
1) Stop the hub. You cannot operate on a queue file which is in use.
2) Make a copy of the queue file, to a location that has more space if that is required. You will need enough space for a new file with all the unread messages in the queue file.
3) Run: qtool –f <queue_file> -t <new_file>
4) Copy the <new_file> over the existing queue file in the hub’s ‘q’ directory.
5) Start the hub.

Reposting messages from a queue file
If a queue file is large it takes quite some time to start the hub, since it has to go through the file and gather information about it for its internal information. To avoid this slow startup it is possible to take the queue file offline by moving it to a different location. The qtool utility can then be used to repost the unread messages to the hub. It might make sense to only do parts of the file at a time, to give the hub enough time to work on the messages and avoid a new large queue file. The following example reposts 1000 messages and marks them as read so the next iteration will take the next batch of messages:
1) Run: qtool –f <queue_file> -R 1000 –P
2) Re-run the command above until the queue has been emptied at a rate that is sustainable for the hub.

Note: If the queue file has a lot of read messages it may make sense to truncate it prior to starting the job of reposting messages. See Truncating a large queue file above.
Reposting messages from a queue file which is corrupt
If the queue file has become corrupted there is a good chance that the qtool utility can work around the damage. It is a good idea to operate on a copy of the queue file and perform a “dry-run” first to see that the utility can work around the problem without writing to the file. If there are many messages in the queue file it makes sense to store the log to a file, instead of the default stdout. The steps would be:
1) Make a copy of the file. Not strictly required, but always a good idea.
2) Run: qtool –f <file> -D dryrun.log –s –l –a –e
3) Check the log file for information about any errors discovered and verify that messages are being logged properly.
4) Run: qtool –f <file> -D live.log –s –a –e –P 
[bookmark: _GoBack]
