

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 1

CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014

Managing XML Data in a
CA IDMS™ Application

Paul McRoberts
MPO

2 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Abstract

 We are modernizing our key CA IDMS order entry application
by adding XML-based transactions. This session covers the
architecture and processing used for XML input, XML output
and SQL-based tables and procedures for data persistence
and standardization of common routines.

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 2

3 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Biography

Mr. McRoberts began with CA IDMS release 4.5 in 1979.
CA IDMS has been central to his entire career. He has worked
for consulting companies and CA supporting CA IDMS as a
programmer, teacher, application DBA and system DBA. He is
now a US Government employee.

He teaches ballroom dancing, plays the guitar, and likes long
walks on the beach.

4 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Agenda

 Processing XML Input coming in through CA IDMS Server /
JDBC
– COBOL XML Parser statement

– IBM COBOL program using the XML Parse verb running as a
CA IDMS SQL Procedure

– Provide sample syntax

 Generating XML Output and sending CA IDMS Server / JDBC
– Convert a print report to XML

– Generate XML for transaction processing and data replication

– Provide sample syntax

 Word Document available to supplement this Power Point

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 3

Processing XML Input

6 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input
IBM COBOL program using the XML Parse verb

 Running as a non validating parser

 Nothing magic about writing the code
– Every XML tag has to be managed and the data saved

 XML structures are similar to a hierarchical database
– Structures that can occur 0, 1, or many times

 XML Tags are not necessarily unique - context is key

 DISPLAY commands for tracing the code.
– DISPLAY command output gets written to the CA IDMS LOG

 Handles over 10 different XML transactions

 This is not an XML tutorial

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 4

7 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input

 Sample table structures

 The identifies tables that are managed by an SQL
Procedure

Sample table structure built by the parser

Header

Order Remarks Optional_Parts

XML_Archive Process_status

8 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Sample XML

<ProductionOrder xmlns="http://sampleIUA.xml.schema">
 <OrderType>Custom</OrderType>
 <OrderNumber>2014-10-01-00001</OrderNumber>
 <ModelName>Tundra</ModelName>
 <ModelId>4781</ModelId>
 <MoreStuff>...</MoreStuff>
 <ProductionRemarks>
 <Remark>Do NOT begin schedule production until
 all the selected options are available.</Remark>
</ProductionRemarks>
<SpecialPartsList>
<SpecialPart>
 <Type>Exterior</Type>
 <PartNum>1412</PartNum>
 <Name>Power rear window</Name>
 <Remark>Standard with the SR5 and Limited package</Remark>
</SpecialPart>

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 5

9 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Sample XML

Tag “Remark” is in two different structures.
It likely gets placed into different database records or tables.

…
<SpecialPart>
 <Type>Interior</Type>

 <PartNum>2251</PartNum>

 <Name>2 way adjustable passenger seat</Name>

 <Remark>Standard equipment</Remark>

</SpecialPart>
 <MoreStuff>...</MoreStuff>

</SpecialPartsList>

</ProductionOrder>

10 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 The IBM manuals, COBOL Reference and COBOL
Programmer’s Guide, provide good examples and sample
programs

 Another team developed and defined the XML transactions
that are discussed here and in the output example 2

 The following examples provide some insight into a way to
use the XML PARSE verb

Introduction

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 6

11 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

XML PARSE XML-INPUT

 PROCESSING PROCEDURE

 006-EVALUATE-STRUCTURE THRU 006-EXIT

ON EXCEPTION

 PERFORM 010-EXCEPTION THRU 010-EXIT

NOT ON EXCEPTION

 MOVE 'XML PARSED SUCCESSFULLY '

 TO PARSER-MESSAGE

 IF TRACE-PARSER THEN

 DISPLAY 'XML PARSED SUCCESSFULLY ' XML-CODE

 END-IF

END-XML.

Syntax to invoke the parser

12 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 For each iteration, these two SPECIAL REGISTERS are
populated and used in the “006” paragraph
– XML-EVENT specifies the structural component

– XML-TEXT specifies the data value

– There are others

 <ProductionOrder xmlns="http://sampleIUA.xml.schema">

– XML-EVENT is set to START-OF-ELEMENT

– XML-TEXT is set to ‘ProductionOrder’

– This is what we will track through the sample code

How does it work?

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 7

13 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Most processing deals with these first three
– START-OF-ELEMENT, CONTENT-CHARACTERS, END-OF-ELEMENT

– START-OF-DOCUMENT, END-OF-DOCUMENT, NAMESPACE-
DECLARATION

– VERSION-INFORMATION, ENCODING-DECLARATION, STANDALONE-
DECLARATION

– ATTRIBUTE-NAME, ATTRIBUTE-CHARACTERS, ATTRIBUTE-CHARACTER

– START-OF-CDATA-SECTION, END-OF-CDATA-SECTION, CONTENT-
CHARACTER

– PROCESSING-INSTRUCTION-TARGET, PROCESSING-INSTRUCTION-DATA,
COMMENT

 The EVALUATE statement should handle all these values

XML-EVENT reference list

14 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 006-EVALUATE-STRUCTURE.

 ADD 1 TO ITERATION-COUNT.

 EVALUATE XML-EVENT

* ==> ORDER XML EVENTS MOST FREQUENT FIRST

* These are the most common!

 WHEN 'START-OF-ELEMENT'

 ADD 1 TO START-OF-ELEMENT-COUNT

 PERFORM 100-START-OF-ELEMENT THRU 100-EXIT

 WHEN 'CONTENT-CHARACTERS'

 ADD 1 TO CONTENT-CHARACTERS-COUNT

 PERFORM 110-CONTENT-CHARACTERS THRU 110-EXIT

 WHEN 'END-OF-ELEMENT'

 ADD 1 TO END-OF-ELEMENT-COUNT

 PERFORM 120-END-OF-ELEMENT THRU 120-EXIT

 Other XML-EVENT types follow with their own paragraphs.
– You may not need or use some of the XML-EVENT and XML-TEXT

– NAMESPACE-DECLARATION is sent, handled, but not used

Evaluate the XML-EVENT value

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 8

15 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Each XML tag uses these Data Division entries
 12 ORDERTYPE PIC X(09) VALUE

 'OrderType'.
12 ORDERTYPE-SW PIC X VALUE 'N'.
 88 ORDERTYPE-OPEN VALUE 'Y'.
 88 ORDERTYPE-CLOSE VALUE 'N'.
12 PRODUCTIONORDER PIC X(15) VALUE
 'ProductionOrder'.
12 PRODUCTIONORDER-SW PIC X VALUE 'N'.
 88 PRODUCTIONORDER-OPEN VALUE 'Y'.
 88 PRODUCTIONORDER-CLOSE VALUE 'N'.

 The first entry documents the XML tag

 The “88’s” keep track of what tag is currently being referenced

– Multiple tags can be open at one time

 The data values move to the target database records

Track the XML structure and data

16 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 100-START-OF-ELEMENT.

 IF TRACE-PARSER THEN

 DISPLAY '--100 -Start of Element:Level =' OPEN-TAG-COUNT

 DISPLAY '- START TAG=<' XML-TEXT '>'

 END-IF.

 MOVE XML-TEXT TO LAST-TAG.

* First check to see if we have identified a transaction.

 IF PRODUCTIONORDER-OPEN THEN

 PERFORM 400-PRODUCTION-ORDER

 THRU 400-EXIT

 GO TO 100-EXIT.

 IF PRODUCTIONORDERUPDATE-OPEN THEN

 PERFORM 410-PRODUCTION-ORDER-UPDATE

 THRU 410-EXIT

 GO TO 100-EXIT.

 …

 Neither of the IF statements are true, continue …

Evaluate the XML-EVENT value – 1st tag

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 9

17 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 If nothing was “OPEN”, EVALUATE the tag

 Later in paragraph 100…

 IF TRACE-PARSER THEN

 DISPLAY '--100 - No tag open. Begin the EVALUATE!'

 DISPLAY '--100 - LOOKING FOR:<' XML-TEXT '> end of text.'

END-IF.

EVALUATE XML-TEXT

 WHEN PRODUCTIONORDER

 MOVE 'READY' TO XML-TRANS-STATUS

 ADD 1 TO OPEN-TAG-COUNT

 SET PRODUCTIONORDER-OPEN TO TRUE

 WHEN PRODUCTIONORDERUPDATE

 …

Use the EVALUATE statement to identify the 1st tag value (XML-TEXT)

18 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Update the following list when a new XML transaction is completed.

 WHEN OTHER
 MOVE -1 to XML-CODE

 SET XML-PARSE-ERROR TO TRUE

 MOVE 'Invalid Opening Tag '

 TO TRACKING-MESSAGE

 DISPLAY '100-Invalid opening tag: ' XML-TEXT

 DISPLAY 'These are the valid values: '

 DISPLAY '-- ' PRODUCTIONORDER

 DISPLAY '-- ' PRODUCTIONORDERUPDATE

 DISPLAY 'IUACXML0 is ending. '

 END-EVALUATE.

100-EXIT.

 EXIT.

Use the EVALUATE statement - handle unknown tags

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 10

19 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 First tag completed, Now process OrderType.

 EVALUATE XML-EVENT

 WHEN 'START-OF-ELEMENT'

 ADD 1 TO START-OF-ELEMENT-COUNT

 PERFORM 100-START-OF-ELEMENT THRU 100-EXIT

 100-START-OF-ELEMENT.

…

 IF PRODUCTIONORDER-OPEN THEN

 PERFORM 400-PRODUCTION-ORDER

 THRU 400-EXIT

 GO TO 100-EXIT.

 …

100-EXIT.

 EXIT.

Process the next tag that has data - <OrderType>Custom</OrderType>

20 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 This paragraph processes all tags that are directly subordinate to the

ProductionOrder tag.

 400-PRODUCTION-ORDER.

 IF TRACE-PARSER THEN

 DISPLAY '-- 400-PRODUCTION-ORDER '

 END-IF.

 EVALUATE XML-TEXT

 WHEN ORDERTYPE

 ADD 1 TO OPEN-TAG-COUNT

 SET ORDERTYPE-OPEN TO TRUE

 GO TO 400-EXIT

 WHEN ORDERNUMBER

 ADD 1 TO OPEN-TAG-COUNT

 SET ORDERNUMBER -OPEN TO TRUE

 GO TO 400-EXIT
 … Many other tags.

Programmatically track the XML structure

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 11

21 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Always look for the unexpected. This is especially helpful when testing

 WHEN OTHER

 IF TRACE-PARSER THEN

 DISPLAY '-- 400-PRODUCTION-ORDER ‘

 DISPLAY 'UNEXPECTED XML TAG:<' XML-TEXT '>.'

 DISPLAY 'Verify no new tags.'

 END-IF

 END-EVALUATE.

 400-EXIT.

 EXIT.

Programmatically track the XML structure

22 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Back to paragraph 006-EVALUATE-STRUCTURE

 EVALUATE XML-EVENT
…
 WHEN 'CONTENT-CHARACTERS'
 ADD 1 TO CONTENT-CHARACTERS-COUNT
 PERFORM 110-CONTENT-CHARACTERS THRU 110-EXIT
…

 110-CONTENT-CHARACTERS.

…

 IF PRODUCTIONORDER-OPEN THEN

 PERFORM 401M-PRODUCTION-ORDER-MOVE THRU 401M-EXIT

 GO TO 110-EXIT.

…

 110-EXIT.

 EXIT.

The next item is XML-EVENT, ‘CONTENT-CHARACTERS’ for ‘OrderType’

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 12

23 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 401M-PRODUCTION-ORDER-MOVE.

 IF TRACE-PARSER THEN

 DISPLAY '-- 401M-PRODUCTION-ORDER-MOVE. '

 END-IF.

 IF ORDERTYPE-OPEN

 MOVE XML-TEXT TO ORDERTYPE-ORDER.

 IF ORDERNUMBER-OPEN

 MOVE XML-TEXT TO ORDERNUMBER-ORDER.

…

 401M-EXIT.

 EXIT.

Put data into the target database table column

24 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 Back to paragraph 006-EVALUATE-STRUCTURE

 EVALUATE XML-EVENT

…

 WHEN 'END-OF-ELEMENT'

 ADD 1 TO END-OF-ELEMENT-COUNT

 PERFORM 120-END-OF-ELEMENT THRU 120-EXIT

…

The next XML-EVENT is ‘END-OF-ELEMENT’ for ‘</OrderType>’.

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 13

25 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 120-END-OF-ELEMENT.

 IF TRACE-PARSER THEN

 DISPLAY 'P-120 - Close Tag= </' XML-TEXT '>'

 END-IF.

 IF PRODUCTIONORDER-OPEN THEN

 PERFORM 402-PRODUCTION-ORDER-CLOSE THRU 402-EXIT

 GO TO 120-EXIT.

 IF PRODUCTIONORDERUPDATE-OPEN THEN

 PERFORM 412-PRODUCTIONORDERUPDATE-CLOSE THRU 412-EXIT

 GO TO 120-EXIT.

 120-EXIT.

 EXIT.

The next XML-EVENT is ‘END-OF-ELEMENT’ for ‘</OrderType>’.

26 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

COBOL XML Parser statement

 402-PRODUCTIONORDER-CLOSE.

 IF TRACE-PARSER THEN

 DISPLAY '-- 402-PRODUCTIONORDER-CLOSE. '

 END-IF.

 EVALUATE XML-TEXT

 WHEN ORDERTYPE

 SUBTRACT 1 FROM OPEN-TAG-COUNT

 SET ORDERTYPE-CLOSE TO TRUE

 WHEN ORDERNUMBER

 SUBTRACT 1 FROM OPEN-TAG-COUNT

 SET ORDERNUMBER-CLOSE TO TRUE

…

 WHEN OTHER

 IF TRACE-PARSER THEN

 DISPLAY '402, UNEXPECTED XML TAG:<' XML-TEXT '>.'

 END-IF

 END-EVALUATE.

 402-EXIT.

 EXIT.

The next XML-EVENT is ‘END-OF-ELEMENT’ for ‘</OrderType>’.

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 14

27 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input
Final programming thoughts - 1

 Closing a tag may also trigger an INSERT into a table
– Like a tag that encompasses a group of other tags

 The XML PARSE statement has to complete processing the
XML or XML-CODE can be set to -1 to stop parsing
– Exiting the XML PARSE processing any other way will cause a program

abend

 The program passes the XML to an SQL procedure to archive
it before parsing
– If anything goes wrong during the parsing process, the XML will

already be saved

28 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input
Final programming thoughts - 2

 XML represents a NULL as: “nil=true”
– The parser does handle this and allows the program to process the

“nil” identifier.
‘<CancelledDate xsi:nil=“true”/>’

 This parser implementation isn’t that complicated as it is long

 Every tag has to be processed, data and/or null, and that
requires code

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 15

29 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input
SQL Procedure definition

CREATE PROCEDURE IUA.XML_PARSER_00

 (XML_INPUT CHARACTER(29000) WITH DEFAULT,

 PARSER_MESSAGE CHARACTER(500) WITH DEFAULT,

 PARSER_RETURN_CODE INTEGER WITH DEFAULT,

 IUA_MESSAGE CHARACTER(160) WITH DEFAULT,

 IUA_RETURN_CODE INTEGER WITH DEFAULT,

 ENABLE_PARSER_TRACE CHARACTER(1) WITH DEFAULT,

 ENABLE_SQL_TRACE CHARACTER(1) WITH DEFAULT

)

 EXTERNAL NAME IUACXML0

 PROTOCOL IDMS

 DEFAULT DATABASE NULL

 ESTIMATED ROWS 1

 SYSTEM MODE

 TRANSACTION SHARING OFF

 LOCAL WORK AREA 0 ;

30 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Processing XML Input
SQL Procedure Execution

SELECT

 PARSER_MESSAGE

 , PARSER_RETURN_CODE

 , APPLICATION_MESSAGE

 , APPLICATION_RETURN_CODE

 , IUA_MESSAGE

 , IUA_RETURN_CODE

 FROM IUA.XML_PARSER_00

 WHERE ENABLE_PARSER_TRACE = 'Y'

 AND ENABLE_SQL_TRACE = 'Y'

 AND XML_INPUT =

 ‘XML text’;

 The Trace (DISPLAY commands) go to the CA IDMS LOG

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 16

Generating XML Output

32 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Example 1 - Convert a print report to XML
– This report accesses existing non-SQL data structures.

 Example 2 - Generate XML for transaction processing and
data replication
– The XML is built using SQL Procedures

– SQL Procedure Language

– These examples utilize SQL defined tables designed and populated just
for this process

– A data item can have three states: data, no data, or NULL

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 17

33 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Requirement

– Convert a printed 1 page report to an XML structure

 SQL Tools Utilized:

– SQL Procedures – CA ADS and SQL procedure language

– SQL Functions – CA ADS and SQL procedure language

– SQL Table Procedure – COBOL

– SQL intrinsic functions

– SQL Views

Example 1 - Convert a print report to XML

34 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 <ProductionOrder xmlns="http://sample.xml.schema">

 <OrderType>Custom</OrderType>

 <OrderNumber>2014-10-01-00001</OrderNumber>

 <ModelName>Tundra</ModelName>

 <ModelId>4781</ModelId>

 <MoreStuff>...</MoreStuff>

 <ResultMessage>Order processed</ResultMessage>

 <ResultCode>0</ResultCode>

 <ProductionRemarks>

 <Remark>Do NOT begin schedule production

until</Remark>

 <Remark>all the TRD options are

available.</Remark>

 </ProductionRemarks>

Example 1 - Convert a print report to XML

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 18

35 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 <SpecialPartsList>

<SpecialPart>

 <Type>Exterior</Type>

 <PartNum>1412</PartNum>

 <Name>Power rear window</Name>

 </SpecialPart>

<SpecialPart>

 <Type>Exterior</Type>

 <PartNum>3813</PartNum>

 <Name>Power heated Mirrors</Name>

 </SpecialPart>

<SpecialPart>

 <Type>Interior</Type>

 <PartNum>2254</PartNum>

 <Name>16 way adjustable driver seat</Name>

 </SpecialPart>

Example 1 - Convert a print report to XML

36 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 <SpecialPart>
 <Type>Interior</Type>

 <PartNum>2251</PartNum>

 <Name>2 way adjustable passenger seat</Name>

 </SpecialPart>

 <MoreStuff>...</MoreStuff>

 </SpecialPartsList>

</ProductionOrder>

Example 1 - Convert a print report to XML

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 19

37 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 A starting point SELECT statement, then multiple nested
SELECT statements to retrieve additional data

 The end user implementation executes the SQL command
from an SQL procedure

Example 1 - SQL syntax with XML Functions

38 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Begin the SQL command that includes the XML functions

 CREATE VIEW IUA.ORDER_NUM_XML

 (ORDER_NUM, XML_OUT)

 as

SELECT order_num,

 -- The XMLSERIALIZE begins the XML generation

XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "ProductionOrder",

 XMLNAMESPACES(default

 'xmlns="http://sample.xml.schema"'),

 XMLCOMMENT

 ('Oct 1, 2014-Sample paper report to XML . ‘

 || 'This uses ordering a truck as an example. ‘

), -- close the comment

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 20

39 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Begin listing the data elements that occur once / are based on the

outermost

 SELECT

XMLFOREST(ORDER_TYPE AS "OrderType“

 ,ORDER_Number AS "OrderNumber“

 ,RTRIM(Model_name) AS "ModelName“

 ,Model_ID_NUMBER AS "ModelId“

 ,substr(cast(current date as char(26)),1,4) ||

 substr(cast(current date as char(26)),6,2) ||

 substr(cast(current date as char(26)),9,2)

 AS "OrderDate“

Example 1 - SQL syntax with XML Functions

40 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 A user written SQL function converts the Plant_Code to the Plant_Name

 ,RTRIM(IUA.CONVERT_Plant(PLANT_CODE)) -- ADS SQL Function

 AS "PlantName“

 ...

 ,'Order processed' AS "ResultMessage“

 ,'0' AS "ResultCode“

) -- close the XMLFOREST

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 21

41 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Process an owner member structure. Note the nested SELECT

,XMLELEMENT(NAME "ProductionRemarks“

 ,select XMLAGG(-- < new SELECT

 XMLELEMENT(NAME "Remark",

 rtrim(Remark_text)

 OPTION ABSENT ON NULL

) -- close XMLELEMENT

) -- close XMLAGG

 FROM ORDRSCHM."Order" AS Order_RMK

 ,ORDRSCHM."REMARKS“

 WHERE

This inner SELECT gets a key from the outer SELECT

 outer_ORDER.ORDER_NUM =

 Order_RMK.ORDER_NUM

 AND "ORDER_REMARKS"

Example 1 - SQL syntax with XML Functions

42 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Five options on how to document no remarks / handle a NULL indicator

OPTION NULL ON NULL

OPTION EMPTY ON NULL <- default

OPTION ABSENT ON NULL

OPTION NIL ON NULL -- This is an single item

 ‘<Remark xsi:nil=“true”/>’

OPTION NIL ON NO CONTENT -- This handles a group

 ‘< ProductionRemarks xsi:nil=“true”/>’

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 22

43 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 This SELECT is driven by a Table Procedure
,XMLELEMENT(NAME "SpecialPartsList“

 ,select XMLAGG(-- < new SELECT

 XMLELEMENT(NAME "SpecialPart",

 XMLFOREST(

 RTRIM(Part_TYPE) AS "Type“

 , Part_Number AS "PartNum“

 , RTRIM(Part_Name) AS "Name“

) -- close XMLFOREST

 OPTION ABSENT ON NULL

) -- close XMLELEMENT

) -- close XMLAGG

 FROM IUA.SpecialPartTblProc AS SPECIAL_TBP

 WHERE

 SPECIAL_TBP.SPEC_NUM = SPECS_OUTER.SPEC_NUM

)-- close the XMLELEMENT

Example 1 - syntax with XML Functions

44 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 This ends the outer most SELECT
) -- close the XMLELEMENT

 AS VARCHAR(15000)

) -- this closes the XMLSERIALIZE

 AS "XML_OUT“

 FROM

 ORDRSCHM."ORDER-MODEL-JCT“

 , ORDRSCHM."Model“

 , ORDRSCHM."ORDER" as OUTER_ORDER

 , ORDRSCHM."MODEL-OPTIONS" as SPECS_OUTER

 ... Other records, views

WHERE "ORDER-MOD-JCT“

 AND "MODEL-ORD-JCT“

 ... other sets, constraints, etc ;

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 23

45 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Execution
– We always want to get back XML – even when the order number is not found

– Reference the VIEW IUA.ORDER_NUM_XML in an SQL procedure

– XML is always returned

– This SQL view is compiled!

Example 1 - SQL syntax with XML Functions

46 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Sample SQL procedure to always return something
SET OPTIONS COMMAND DELIMITER '++';

CREATE PROCEDURE IUA.ORDER_LOOKUP

 (ORDER_NUM_IN CHAR(6) WITH DEFAULT

 , ORDERS_FOUND INTEGER WITH DEFAULT

 , XML_OUT CHAR(15000) WITH DEFAULT

 , ORDER_LOOKUP_MSG CHAR(80) WITH DEFAULT

 , ORDER_LOOKUP_RC INTEGER WITH DEFAULT

)

 EXTERNAL NAME IUAORDL0

 LANGUAGE SQL

 PROTOCOL ADS

 DEFAULT DATABASE NULL

 SYSTEM MODE

 TRANSACTION SHARING ON

 LOCAL WORK AREA 1024

 BEGIN NOT ATOMIC

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 24

47 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 DECLARE XMLOUT_P1 CHAR(400);

 /* Determine if the order is valid. */

SELECT COUNT(*)

 INTO ORDERS_FOUND

 FROM IUA.ORDER_NUM_XML

 WHERE ORDER_NUM = ORDER_NUM_IN

 ;

 My convention is to try and use the “COUNT(*)” function

instead of SQLCODE = 100

Example 1 - SQL syntax with XML Functions

48 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 IF ORDERS_FOUND = 0 THEN

 SET ORDER_LOOKUP_MSG = 'Order not found. Order_found

count=zero.' ;

 SET ORDER_LOOKUP_RC = 2 ;

 EXEC ADS

 SNAP TITLE ' Order not found'. ;

 SET XMLOUT_P1 = '<ProductionOrder ‘

 || 'xmlns="http://sample.xml.schema">‘

 || '<OrderNumber>‘

 || ORDER_NUM_IN

 || '<ResultCode>2</ResultCode>'

 || '<ResultMessage>Order number not

found</ResultMessage>‘

 || '</ProductionOrder>'

 ;

 SET XML_OUT = RTRIM(XMLOUT_P1) ;

END IF;

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 25

49 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 IF ORDERS_FOUND = 1 THEN

 EXEC ADS

 SNAP TITLE ' Order found = 1. Before SELECT'. ;

 SELECT XMLEXTRACT.XML_OUT

 INTO XML_OUT

 FROM IUA.ORDER_NUM_XML as xmlextract

 WHERE ORDER_NUM = ORDER_NUM_IN ;

 SET ORDER_LOOKUP_MSG = 'Order found. Count=1.' ;

 SET ORDER_LOOKUP_RC = 0 ;

 EXEC ADS

 SNAP TITLE ' Order found. After SELECT'. ;

END IF;

Example 1 - SQL syntax with XML Functions

50 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

IF ORDERS_FOUND > 1 THEN

EXEC ADS

 SNAP RECORD (SQLLOC0000IUAORDL0)

 TITLE ' Order found > 1 MAJOR PROBLEM'. ;

 SET XML_OUT =

 'SQL routine error. More than 1 row found. contact the

DBA';

 SET ORDER_LOOKUP_MSG = 'SQL routine error. More than 1

row.';

 SET ORDER_LOOKUP_RC = 99 ;

 EXEC ADS

 SNAP RECORD (SQLLOC000IUAORDL0)

 TITLE ' Order found. After SELECT'. ;

END IF;

END ++

Example 1 - SQL syntax with XML Functions

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 26

Generating XML Output
Example 2

52 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Requirement
– Create and manage over 10 different XML outgoing transactions

– The requesting application asks if any transaction is available – not
knowing which type

– One SQL request will return the oldest transaction ready to be
processed

– Create the XML from the data in the tables, archive the XML, and pass
the XML to the requestor

– Document the final status of the transaction, success or failure

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 27

53 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Transaction processing structure:
– Other application programs populate the tables used to build the

outgoing XML

– All XML work is performed by SQL procedures written using the SQL
procedure language

– There is one driver or top level SQL procedure that is started by the
end user through JDBC / CA IDMS Server

– There are many SQL procedures to handle the different XML
transactions and components of a transaction

Example 2 - Generate XML for transaction processing and data replication

54 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 SQL Tools Utilized:
– SQL Procedures (Many) – CA ADS and SQL procedure language

 Transaction Sharing On

– SQL Functions –CA ADS and SQL procedure language

– SQL intrinsic functions

– SQL Views

– SQL Tables to hold the outgoing data

 SQL WHENEVER

– Use the WHENEVER to issue the SQL equivalent of PERFORM IDMS-

STATUS and provide debugging information

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 28

55 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 SQL WHENEVER

– Use the WHENEVER to issue the SQL equivalent of PERFORM IDMS-

STATUS

– Very helpful during development

– Include columns like these to the SQL Procedure definition like:

ERROR_CODE INTEGER,

ERROR_MESSAGE CHAR(160),

ERROR_TRACE CHAR(500)

– At key points in the code, document where you are

SET ERROR_TRACE = ‘Select TRANS_ID is not NULL.’;

… more code

SET ERROR_TRACE = ERROR_TRACE ||‘ COUNT the rows.’;

Example 2 - Generate XML for transaction processing and data replication

56 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 SQL WHENEVER

– Code something like this

DECLARE EXIT HANDLER FOR SQLWARNING

 LABEL_WARNING:

 BEGIN NOT ATOMIC

 SET ERROR_CODE = 512;

 SET ERROR_MESSAGE =

 ‘IUA_PROC_00: SQL Warning-SQLSTATE:’ || SQLSTATE;

 SET ERROR_TRACE = ‘Error_trace: ‘ || ERROR_TRACE;

END;

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 29

57 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Table structures
– Header / Parent table – holds data common to all transactions

including a unique transaction identifier that is the primary key in
other tables

– Child tables defined to support the unique data requirements of each
transaction

– A table is used to archive the generated XML used for reconciliation,
error research, and because we always keep everything

– The same archive XML procedure that is used for incoming also
handles outgoing

Example 2 - Generate XML for transaction processing and data replication

58 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Sample table structures

 The identifies tables that are managed by an SQL
Procedure with Transaction Sharing turned off.

Example 2 - Generate XML for transaction processing and data replication

Header

Order Remarks Optional_Parts

XML_Archive Process_status

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 30

59 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Beginning of the XML

create VIEW IUA.TRAN_HEADER (transaction_id, xml_header) as

SELECT

 HEADER.TRANSACTION_ID,

XMLSERIALIZE(CONTENT

 XMLELEMENT(NAME "IUA2Transaction" ,

 -- XMLNAMESPACES information removed

 XMLELEMENT(NAME "IUA-com:Header",

 XMLFOREST(ACTIONTIME AS "IUA-com:ActionTime"

 ,rtrim(cast(TRANSID as char(20))) AS "IUA-com:TransactionId"

)), -- close the XMLFOREST, XMLELEMENT HEADER

) -- close the outermost XMLELEMENT

AS VARCHAR(2000)) -- this closes the xmlserialize

 FROM IUA.HEADER , IUA.ORDER

WHERE HEADER.TRANSACTION_ID = ORDER.TRANSACTION_ID ;

Example 2 - Generate XML for transaction processing and data replication

60 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 XML is built in pieces and spliced together

 Strip off the closing tag, to splice on at the end
set string_position =

 locate('</IUA2Transaction>', XML_HEADER);

set string_position_Out = string_position;

SET transaction_out =

rtrim(substr(XML_HEADER,1,string_position - 1));

 Splice it on when you are done
SET transaction_out = rTrim(transaction_out) ||

'</IUA2Transaction>' ;

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 31

61 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Some data items have three "states" when sent out
– Data exists and is sent with the XML tag

– No data – nothing sent

– Target system needs to NULL / clear the value. We send "nil=true" with
the tag

– We added an additional one character column with a "_N" suffix to
allow us to identify when to send the "nil=true“

Example 2 - Generate XML for transaction processing and data replication

62 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

SQL Procedure code sample:

 IF CANCELLEDDATE_N_O IS NULL THEN

 select xmlserialize(content

 xmlelement(NAME "CancelledDate"

 , cancelleddate_n option nil on null)

 as varchar(99))

 into attribute_text from IUA.product

 WHERE TRANSACTION_ID = HEADER_TRANS_ID ;

 SET transaction_out =

 RTRIM(transaction_out) || RTRIM(ATTRIBUTE_TEXT);

ELSE

 select xmlserialize(content

 xmlelement(NAME "CancelledDate"

 , cancelleddate option ABSENT on null)

 as varchar(99))

 into attribute_text from IUA.product

 WHERE TRANSACTION_ID = HEADER_TRANS_ID ;

 SET transaction_out =

 RTRIM(transaction_out) || RTRIM(ATTRIBUTE_TEXT);

END IF;

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 32

63 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

SQL Procedure code sample:

 IF CANCELLEDDATE_N_O IS NULL THEN

 Set attribute_text = ‘<CancelledDate xsi:nil=“true”/>’;

 SET transaction_out =

 RTRIM(transaction_out) || RTRIM(ATTRIBUTE_TEXT);

ELSE

 select xmlserialize(content

 xmlelement(NAME "CancelledDate"

 , cancelleddate option ABSENT on null)

 as varchar(99))

 into attribute_text from IUA.product

 WHERE TRANSACTION_ID = HEADER_TRANS_ID ;

 SET transaction_out =

 RTRIM(transaction_out) || RTRIM(ATTRIBUTE_TEXT);

END IF;

Example 2 - Generate XML for transaction processing and data replication

64 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Generating XML Output

 Large subcomponents of XML are more easily handled in
their own SQL procedures

 Transaction Sharing:
– All the XML building SQL procedures utilize the

TRANSACTION SHARING functionality

– CA IDMS SQL Programming Guide has the most detailed definition of
Transaction Sharing

– This will be discussed more in the next presentation

Example 2 - Generate XML for transaction processing and data replication

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 33

65 © 2014 CA. ALL RIGHTS RESERVED.
 CA IDMS™ Technical Conference

Summary – My Observations

 XML Parsing is more tedious, than difficult
– COBOL data division

– Don’t be surprised if the first attempt doesn’t work out

 XML Output
– The XML functions work, and work well with SQL and non SQL data

 SQL Procedures
– Great for creating reusable / sharable routines

 SQL Procedure language
– Big fan

– I build and manage the source in TSO

Online Session Evaluation

Please provide your feedback about this
session: A5

On the CA Communities web site:
http://communities.ca.com

More details in your conference bag

http://communities.ca.com/

 CA IDMS™ Technical Conference

Framingham MA
December 2-5, 2014 34

Questions and Answers

