
What's New in TDM 4.1?

CA TDM Product Team



© 2016 CA. All rights reserved.

Legal Statement 

© 2017 CA. All rights reserved. CA confidential & proprietary information. For CA, CA Partner and CA Customer use 

only. No unauthorized use, copying or distribution. All names of individuals or of companies referenced herein are 

fictitious names used for instructional purposes only. Any similarity to any real persons or businesses is purely 

coincidental. All trademarks, trade names, service marks and logos referenced herein belong to their respective 

companies. These Materials are for your informational purposes only, and do not form any type of warranty. The use 

of any software or product referenced in the Materials is governed by the end user’s applicable license agreement. 

CA is the manufacturer of these Materials. Provided with “Restricted Rights.” Use, duplication or disclosure by the 

United States Government is subject to the restrictions set forth in FAR Sections 12.212, 52.227-19(c )(1)-(2) and 

DFARS Section 252.227-7014(b)(3), as applicable, or their successors.



© 2016 CA. All rights reserved.

Agenda

 Tester Self Service – Find and Reserve

 Parameterised Variables

 Set Source & Target in Meta Functions and TDM Portal

 Enterprise Option in Datamaker



Tester Self Service – Find and Reserve



© 2016 CA. All rights reserved.

Problem Statement - Test Data Engineer/Data Analyst

 Overhead of creating and maintaining TSS tiles for changing 
test data requirements

 Lack of common language between testers who work on 
application objects and TDE who work on backend data 
sources

 The current architecture restricted to relational data sources 
and the reserve action – no support for APIs, VSAM files as a 
data source



© 2016 CA. All rights reserved.

Problem Statement - Tester

 Lack of support to find and visualize the test data before 
initiating a test data engineering activity

 Lack of support for rapid release cycles – APIs, aggregate & 
reuse reservations

 Inability to synthetically generate in context of the missing 
data



© 2016 CA. All rights reserved.© 2016 CA. ALL RIGHTS RESERVED.

Core Value Propositions

 Define an environment that allows logical grouping of 
application data sources so that we needn’t create duplicate 
projects for every environment

 Build a logical model via the UI so that extensive effort is not 
needed to build a denormalized data mart

 Provide a self-service catalog UI so that the testers can find 
the data and then reserve or release it

 Provide REST API support so that I can find, reserve and 
release data from my automation scripts



© 2016 CA. All rights reserved.© 2016 CA. ALL RIGHTS RESERVED.

Demo



Parameterised Variables



© 2016 CA. All rights reserved.

What are Parameterised Variables (macros for short)?

 A macro is an extension of the existing notion of a variable.

 Normal variables can contain expressions which get evaluated when 

required. 

 Previously, expressions could contain only constants, variables and 

functions of constants, eg ~v1~ = @add(42,~v2~)@

 In effect, a variable was secretly a function with no parameters.

 In TDMWeb 4.1, a variable can have parameters which are used in the 

expression. Eg ~v1(param1)~ = @add(#param1#,~v2~)@

 So if v2=2 then ~v1(100)~ returns 100+2=102



© 2016 CA. All rights reserved.

What are they for?

 A macro allows the TDE to re-use expressions.

– Previously invocations of an expression in different columns or tables required 
replication of that expression. If a change was required then all occurrences 
had to be changed. 

– Multiple occurrences with variations can be defined which vary only in the 
parameters, not by duplicating and modifying code.

 A macro allows a library of more flexible common expressions to be 

created.

– These macros would be defined with global scope.

– They could then be used in multiple projects.

– Complex expressions are written and tested once only.



© 2016 CA. All rights reserved.

How do you create a macro?

 Macros are created using the variables page in the usual way.

 The name of the macro specifies the parameters, eg myvar(a,b,c).

 The expression is defined using datapainter as usual.

 Note that DP can’t evaluate a macro because it doesn’t know what the 

values of the arguments are so it just does a syntax check.



© 2016 CA. All rights reserved.

Examples

Variable Expression Purpose

ifmore5(a) @if(#a# > 5, yes, no)@ Outputs yes if a>5 
otherwise no

addcheck(a,b
,c) 

@if(@sum(#a#,#b#,#c#,~OFFSET~)@ > 
1000, std, non-std)@

Add three numbers and 
the value of variable 
OFFSET. If the result is 
more than 100, then 
output the string "std", 
otherwise "non-std".

sayhello(n) @repeat(hello,#n#,-)@ Output “hello” n times

factorial(x) @case(#x# < 0, error, #x# = 0, 1, #x#=1, 1, 
@multiply(#x#,~factorial(@subtract(#x#,1)@
)~)@)@

Factorial function eg
@factorial(4)@ = 4x3x2x1 
= 24



S & T Feature



Using S & T in Meta functions

SQL commands in meta-function expression can contain a connection profile name.

Examples:

@execsql(connection,select column from table where something)@

@seqlov(percnull,@sqlist(connection, select column from table where something)@

Previously TDMWeb(Portal) only supported connections of the format
P{profilename}

@execsql(Ptravel,select name top 1 from cities)@



Using S & T in Meta functions

In Datamaker
At login, the user selects a source & target profile.

These can be used by meta functions, replacing P{profile} with T or S.

@execsql(S,select name top 1 from cities)@
@execsql(T,select name top 1 from cities)@

This feature now available in TDM Portal.



Enterprise option in Datamaker



© 2016 CA. All rights reserved.

Enterprise Support in Datamaker

 Call the enhanced publish engine for large publish jobs

 Call Datamaker built in publish engine for smaller and quick job


