How to LINUX enable

COOL:Gen Java Proxy

[image: image21.png]
[image: image1.png]
[image: image2.png]





by
Mickaël SOUSSAN,







Senior Consultant







Application International Group.
[image: image3.png]
Version 2.0

February 2000

(last updated on 10 February, 2000)

Table of Contents

aBSTRACT
3

4Chapter 1 :  Introduction

1.1
LINUX Overview
4
1.1.1
What is LINUX ?
4
1.1.2
What makes LINUX different ?
4
1.1.3
How is LINUX used ?
5
1.1.4
To quote LINUX journal
6
1.2
COOL:Gen Java Proxy and LINUX
7
1.2.1
Internet/Intranet 3-tier architectures and COOL:Gen Java Proxy
7
1.2.2
COOL:Gen 5.1 Java Proxy and Applet/Servlet communication
8
1.2.3
COOL:Gen 5.1 Java Proxy and Java Server Pages
9
1.2.4
COOL:Gen Java Proxy and LINUX
10
Chapter 2 :  The ENVIRONMENT
11
2.1
Overview
11
2.2
Technical Requirements
11
2.2.1
Hardware requirements
11
2.2.2
Software requirements
12
Chapter 3 :  step by step installation guide
13
3.1
LINUX CALDERA
13
3.2
LINUX Compatibility
14
3.3
JAVA environment
15
3.4
JRUN servlet engine
17
3.5
COOL:Gen JAVA Proxy environment
22
3.6
JAVA Proxy deployment
25
3.6.1
Applet/Servlet based communication
26
3.6.2
JSP/ApplicationBean based communication
27
Chapter 4 :  A FULLY DOCUMENTED EXAMPLE
29
4.1
The technical architecture
29
4.2
COOL:Gen host Server
32
4.3
Applet/Servlet communication test
35
4.4
JSP/ApplicationBean communication test
37


ABSTRACT

This document describes a technical architectures, showing how COOL:Gen 5.1 Java Proxy can be successfully deployed on LINUX operating system with SUN’s JDK and ALLAIRE’s JRUN servlet engine. The architecture study has been highly motivated by the fact that the number of LINUX users has considerably increased in the past few years, and there are already many references of applications currently running in production on that operating system.

For more details regarding the implementation, or if you do have any question, feel free to contact me (e-mail : Mickael.Soussan@sterling.com).

Document structure

The document consists of the following parts:

Chapter 1:
Introduction.

Chapter 2:
Describes the architectures studied within this paper.

Chapter 3:
A step by step installation and deployment guide in order to LINUX enable COOL:Gen Java Proxy.

Chapter 4 :
A fully documented example.

Introduction

1.1 LINUX Overview

1.1.1 What is LINUX ?

Linux was started in the early 1990s as a small research project by a Finnish college student named Linus Torvalds. Soon after Linus started his project, hundreds of others began to participate in its development via the Internet. A cooperative venture grew in which thousands of people were working together to create a new operating system.

It is a clone, written entirely from scratch, of the UNIX operating system. One of the more interesting facts about Linux is that development occurs simultaneously around the world. 

Linux has been copyrighted under the terms of the GNU General Public License (GPL). This is a license written by the Free Software Foundation (FSF - see http://www.fsf.org) that is designed to prevent people from restricting the distribution of software. In brief, it says that although money can be charged for a copy, the person who received the copy can not be prevented from giving it away for free. It also means that the source code must be available. This is useful for programmers. Anybody can modify Linux and even distribute his/her modifications, provided that they keep the code under the same copyright. 

1.1.2 What makes LINUX different ?

Why work on Linux ? Linux is generally cheaper (or at least no more expensive) than other operating systems and is frequently less problematic than many commercial systems. But what makes Linux different is not its price (after all, why would anyone want an OS -even if it is free- if it is not good enough ?) but its outstanding capabilities: 

· Linux is a true 32-bit multitasking Operating System, robust and capable enough to be used from universities to large corporations. 

· It runs from low-end 386 boxes to massive ultra-parallel machines in research centres. 

· There are out-of-the-box available versions for Intel/Sparc/Alpha architectures, and experimental support for Power PC and embedded systems among others (SGI, Ultra Sparc, AP1000+, Strong ARM, MIPS R3000/R4000...) 

· Finally, when coming to networking, Linux is the choice. Not only because networking is tightly integrated with the O.S. itself and a plethora of applications is freely available, but for the robustness under heavy load that can only be achieved after years of debugging and testing in an Open Source project. 

1.1.3 How is LINUX used ?

Today, Linux is first and foremost a server operating system. Although many applications are now appearing that allow Linux to be used as a primary workstation or desktop system, most users of Linux focus on the server capabilities of the operating system.

Some of the reasons that Linux makes a very strong server include: 

· High performance. Linux performs as well as (if not better than) other operating systems running on identical hardware. 

· Security. Alerts to any possible security holes and patches to fix the problem are immediately distributed. No need to wait for months while a vendor creates a fix. 

· Good value. While Linux can be downloaded free of charge, even the commercial products such as OpenLinux 2.3, which include documentation and the support of a stable commercial entity, are still tremendous values compared with other operating systems.

So how, specifically, is Linux used ? The following list shows the most popular uses of Linux. :

· Web server 

· FTP server 

· Email server 

· Samba/"Windows" server 

· DNS (domain name system) server 

· Router between a LAN and the Internet 

In addition to these specialized server uses, many more Linux systems today are being used as database servers. Most of the popular database packages are available in Linux-native versions, including products from Oracle, Informix, Sybase, and IBM.

Finally, Linux is being used more and more for personal workstations or desktop systems. These workstations may be for software development, computer graphics, or high-end Internet access. Personal productivity software such as Corel WordPerfect, StarOffice, and Applixware are all making it possible for Linux to be the primary system for many users. If you use your computer to write letters, send email and browse the Internet, Linux may have all you need to work from day-to-day. (You may never have to watch a system crash again !).

1.1.4 To quote LINUX journal

"Linux is Unix-like operating system. It's free - you can use it without paying a licensing fee to anyone, and the source code comes with the system. It's independent - it contains no code written by Bell Labs or its successors. Linux can run on most 386-, 486- and Pentium based personal computers and Amiga and Atari computers. It's being ported to several more platforms, including Alpha, ARM, MIPS, and PowerPC. Linux implements a superset of the POSIX standard, and software written for many variations of Unix will run under it. 

Linux itself is the kernel, the "core", of the operating system. Most people use "Linux" to mean all the software that goes along with the kernel to make a usable operating system. Many companies, organisations and individuals have packaged Linux with other software to create "distributions" of Linux. You can get Linux over the internet from http://sunsite.unc.edu, http://tsx-11.mit.edu, http://nic.funet.fi, ftp://ftp.cdrom.com and hundreds of other sites. It is also available from vendors, mainly on CD-ROM. 

The Linux kernel is the result of an international collaboration, directed by Linus Torvalds, the original author. The Linux copyright is not in the public domain: each collaborator owns the copyright to the code he or she has written. Linux is licensed under the Free Software Foundations General Public License, which, amoung other things, specifies that the source code to Linux remain freely available, but allows people to charge money for Linux as long as they provide the source code and don't attempt to restrict redistribution. 

Linux Journal serves the worldwide Linux community - hundred of thousands of people who create and use Linux and all the software that goes with it. These people use Linux for software development, networking, end-user applications, and just about anything else "commercial" operating systems are used for. Linux is the cost-effective alternative to Unix."

1.2 COOL:Gen Java Proxy and LINUX

COOL:Gen Java Proxy is a 100% Java interface that allows Java applets and Java applications to re-use COOL:Gen servers.

1.2.1 Internet/Intranet 3-tier architectures and COOL:Gen Java Proxy

The most common Internet/Intranet architecture involving COOL:Gen JAVA Proxy consists of a JAVA applet downloaded by a browser (within an HTML page), and dialoging with a JAVA servlet. From a performance point of view it is not the best solution, since the applet download step is very time consuming. The alternative to an Applet/Servlet architecture is to use a JSP/Application Bean combination.

A typical Internet/Intranet 3-tier architecture involving COOL:Gen JAVA Proxy is shown on the following figure.

[image: image4.png]
1.2.2 COOL:Gen 5.1 Java Proxy and Applet/Servlet communication

As far as Internet/Intranet applications are concerned, the most common way to run COOL:Gen Java Proxy is to use an Applet/Servlet based communication. Such an architecture is presented within the following figure.

[image: image5.png]
1.2.3 COOL:Gen 5.1 Java Proxy and Java Server Pages

COOL:Gen GEN5102 PTF enables JSP generation in addition to the JAVA Proxy. As shown within the following figure, for a given method, four sample jsp files will now be generated :

· PstepImport.jsp, for displaying the HTML form to accept import data

· PstepExport.jsp, to display the results of an execute

· PstepError.jsp, an error file for displaying all exceptions

· Pstep.jsp, to control all the other files

JSP is very similar to Microsoft Active Server Page, and there are two main benefits with such an architecture :

· The JAVA ApplicationBean resides on the application server.

· The client only sends/receives HTML (no applet download).

This architecture is summarized within the following figure :

[image: image6.png]
1.2.4 COOL:Gen Java Proxy and LINUX

LINUX operating system is not officially supported by Sterling Software as far as target development platforms are concerned.

Nevertheless, COOL:Gen 5.1 JAVA Proxy are 100% JAVA, which means that they are platform independent and portable (depending only on the Java Virtual Machine level). Thus, in theory, it is possible to run them on LINUX (assuming that we also run the correct JDK/JRE version). The purpose of this study is to demonstrate it.

the ENVIRONMENT

1.3 Overview

LINUX is distributed by a few vendors, the most famous being Red Hat. For this architecture, we used Caldera Systems 2.3 distribution. For less than $ 60, this release includes :

· LINUX kernel 2.2.10 (glibc 2.1.1)

· COAS 1.0 for its administration (peripherals, firewall, etc.)

· StartOffice 5.1

· TCP/IP, Ethernet, PPP, SLIP, PLIP, UUCP, SMTP, POP, IMAP, NFS, SMB, IPX, etc.

· DHCP 1.0, NFS 2.2, NIS 2.0, Samba 2.0.3, DNS, Telnet, WU-FTP 2.5

· Netscape Communicator 4.61, Apache 1.3.4, Sendmail 8.9.3, News (inn 2.2), Majordomo 1.94.3, Dial-in (mgetty 1.1.8 and ppp 2.3), Dial-out (kppp 1.6.11)

· Symbolic Debugger (gdb and ddd), Python 1.5.1, Perl 5.005_02, Tcl/Tk 8.0.4, Java Development Kit 1.0.2, Java Virtual Machine (Kaffe 1.0.b4), C and C++ compilers (egcs-2.91.66)

· MPEGTV, WAV and MPEG 1/2/3.

1.4 Technical Requirements

1.4.1 Hardware requirements

LINUX Caldera 2.3 has been installed on a Pentium 133 MHz, with 32 MB of RAM and 2 GB of hard disk. It can run on a 486 box, with a minimum of 32 MB of RAM ! I would recommend to use at least 64 MB.

1.4.2 Software requirements

To complete these tests, we used the following softwares :

· LINUX 2.3 by Caldera Systems (http://www.calderasystems.com)

· Apache Web Server 1.3.4 (http://www.apache.com)

· Java Development Kit 1.2 pre-version 2 (http://www.blackdown.org)

· JRun 2.3.3 by ALLAIRE (http://www.allaire.com)

Chapter 2 : step by step installation guide

2.1 LINUX CALDERA

In order to install OpenLinux, you must have a dedicated Linux partition. 

The OpenLinux installation can be started using any of the following methods: 

· Insert the "Kernel & Installation" CD-ROM into your CD-ROM drive and reboot your computer. You must have a bootable CD-ROM drive (and have that feature enabled on your computer if necessary). Do not use this option if you need to share a hard disk between Windows and Linux, unless you have already prepared a Linux partition using Partition Magic. The installation program installs the PartitionMagic software on your Windows PC so you can create an OpenLinux partition. You can then learn about and launch the installation of OpenLinux within Windows. Depending on how your computer hardware is configured, additional options are available to start the OpenLinux installation. One of the advantages of using the Windows installation is the hard disk partitioning software that is included with OpenLinux 2.3. By using this software, you can safely and easily share a hard disk with the Windows operating system you're already using (assuming you have enough unused disk space), or prepare a new hard disk for installation of OpenLinux.

· Boot from the Installation floppy diskette.

LIZARD, a set of installation wizards helps you through the installation process. The figure below shows an example for the network configuration.

[image: image7.png]
2.2 LINUX Compatibility

In the past few years, the development of LINUX system matured fast. Due of this, the compatibility of the basic system (kernel) and depending tools (compiler, utilities, libraries) is not fully continuous but was done in more or less incompatible steps. 

The first major step was the switch from "aout" based system (kernels 0.9 up to 1.2.12) to "elf" based system (starting from kernel 1.2.13 up to the current LINUX release 2.2.x). The object code (and libraries) are incompatible for aout and elf systems, but the "aout" applications may be executed by the "elf" based system when required (kernel settings). 

Note: the "aout" is a LINUX naming convention of the (older) system and for the used object format. It has nothing in common with the executable named "a.out" created by default by all Unix systems (also by the "elf" based LINUX), when no other name is specified. 

Also the "elf" based LINUX is developed further, so the system releases are not fully compatible to each other. Although the statically linked executables are usually cross compatible for all LINUX "elf" versions, the dynamically linked are not, caused by significant differences in the libc.so (and other) libraries. 

Note: the libc.so dynamic library (located in the /usr/lib or /lib directory) is the main system Unix library, comparable e.g. to .DLLs of Win32-API on MS-Windows. Fortunately, to be able to detect the library version, the /usr/lib/libc.so is usually a symbolic link to /lib/libc.so.<release>. The new Linux Glibc based systems introduced /lib/libc.so.6 instead of libc.so, which is similarly a symbolic link to /lib/libc-<release>.so . In doubt, you may simply invoke "ls -l /lib/libc*" to determine your system base, or "nm /lib/libc.so.6 | grep -i glibc_2.1" when the symbolic link to the <release> of the .so lib is not available and "uname -r" to see the kernel release.

Consequently, to ensure the full LINUX compatibility of the Java environment you wish to install, you must verify that the JRE is compliant with your LINUX Glibc version.

2.3 JAVA environment

CALDERA LINUX 2.3 installs JDK/JRE 1.1.3 (Kaffe 1.0.b4). COOL:Gen 5.1 generated Java Proxy are not compliant with this JDK/JRE version. It is required to install a 1.2 version. The latest JDK/JRE (1.2.2 so far) version for LINUX can be downloaded from the following web site : http://www.blackdown.org.

JRE version 1.2.2 is built with Glibc 1.2.2 and CALDERA LINUX 2.3 is Glibc 1.2.1 based. Thus, this version cannot be run on that version of LINUX.

The two different solutions to deal with such a problem are either to upgrade the Glibc version of your OS or to find another JRE version Glibc compliant to your LINUX version. Upgrading the Glibc version is not easy at all if you do not know much about LINUX operating system(for instance you have to re-compile your LINUX kernel). It is definitely easier, if available, to find another version of the JRE. The latest Glibc 1.2.1 version of JRE is 1.2 pre-version 2. In order to install it, follow these steps :

· Download the JDK/JRE file (jdk1.2-pre-v2.tar.bz2) from blackdown web site (http://www.blackdown.org):

· Transfer the file to your LINUX operating system using FTP (make sure the binary mode is set).

· Logon as root

· Uncompress the file with the following command :

bzip2 –d jdk1.2-pre-v2.tar.bz2

Note: If you do not have bzip2 program available on your LINUX system, you may download it from blackdown web site (http://www.blackdown.org/java-linux/mirrors.html)

· Place the remaining file within the directory in which you wish to install your JDK/JRE version. (for instance place it in /usr directory) and untar it using the following command :

tar –xvf jdk1.2-pre-v2.tar

As a result jdk1.2 directory will be created (for instance /usr/jdk1.2). It contains all the JDK/JRE 1.2 files.

· Set the Java and system environment variables (for instance within your user’s .bashrc file):

export JAVA_HOME=/usr/jdk1.2

export CLASSPATH=$JAVA_HOME/lib/classes.zip

export PATH=$JAVA_HOME/bin:$PATH

Note: This step is not compulsory, but it might be required in order to avoid a path conflict with another pre-installed (by LINUX) version of JDK/JRE.

Set the environment variables by running the following command :

source .bashrc

· Finally, run the following command to make sure you access the correct version of JDK/JRE :

java -version

And check you got the correct version number displayed as a result. If installing JDK 1.2 pre-version 2 you should get :

java version "1.2"                                                      

Classic VM (build Linux_JDK_1.2_pre-release-v2, native threads, sunwjit)

2.4 JRUN servlet engine

In order to successfully run the servlet generated by COOL:Gen, you need to install a servlet engine like JRUN by ALLAIRE. An alternative to JRUN would be to install an Application Server like IBM WebSphere or BEA WebLogic (they also include a servlet engine). 

We assume that Apache HTTP server is already installed on your LINUX system, with the following default directories :

· /home/httpd/cgi-bin the default scripts directory.

· /home/httpd/html the web server root directory

· /etc/httpd/apache/conf the directory containing all the configuration files (httpd.conf for Apache HTTP server).

· /etc/rc.d/init.d the directory containing all the binary files (httpd for instance).

To install JRUN, follow these steps :

· Download the installation file from Allaire’s web site (http://www.allaire.com). Make sure you select JRUN 2.3.3 for UNIX (jr233u.tar.Z)

· Transfer the file to your LINUX operating system using FTP (make sure the binary mode is set).

· Logon as root

· Uncompress the file with the following command :

compress –d jre233u.tar.Z

· Place the remaining file within the directory in which you wish to install your JRUN version. (for instance place it in /usr directory) and untar it using the following command :

tar –xvf jre233u.tar

As a result jrun directory will be created (for instance /usr/jrun). It contains all the JRUN 2.3 files.

· Make sure JAVA_HOME environment variable is set. JRUN installation program uses it to locate the JDK home directory.

· Read carefully readme and README.apache files, located within your JRUN home directory (/usr/jrun).

Note: As of JRun 2.3 you may be able to use a precompiled DSO module instead of comping the JRun module into your Apache server. We recommend using DSO modules because it will allow you to update your JRun Apache DSO module without re-compiling your server.  Apache 1.2.* does not support DSO modules and you will have to follow the instructions on how to compile the module into your server.

Apache 1.3.4 started using a different DSO module format than previous versions, therefore it is imperative that you know whether you have 1.3.4 before attempting to use DSO support. All versions will work but only if you tell the connector wizards the correct version you have.

· Stop Apache HTTP server with the following command :

/etc/rc.d/init.d/httpd stop

· Run JRUN installation script (located within JRUN home directory) :

./install.sh

A typical installation process is shown below :

· To migrate existing properties enter the older JRun root (e.g: /opt/JRun/2.2):

Click on ENTER if you do not have any previous version of JRun installed on your system. Otherwise, enter the full path to the directory in which the previous version of JRun is located.

· Enter Your JRun License Key (hit return for JRun free version):

Click on ENTER if you are not installing the professional version of JRun. Otherwise, enter your licence key.

· Enter the Service Manager Admin Port for jsm-default [56492]:

Leave it with the default value or enter another port number if it is already used.

· 1 - Send *.cfm requests to <CF_Anywhere>

2 - Do not use <CF_Anywhere>

Select Cold Fusion(tm) handling scheme [2]:

Click on ENTER.

· 1 - Map *.jsp requests to JSP 0.92 implementation

2 - Map *.jsp request to JSP 1.0 implementation

Select JSP version [1]:

Select option [2].

· 1 - Apache 1.2/1.3

2 - Netscape FastTrack/Enterprise

3 - Do not install a connector at this time

Select a connector to install:

Enter your target HTTP server for which you wish to install a JRun connector (option [1] for Apache).

· Enter the full path to the Apache conf directory:

Enter the path to httpd.conf file (i.e. /etc/httpd/apache/conf).

· Do you want to Apache DSO technology? (type '?' for more info):

Type “yes”.

· 1 - 1.3.1 - 1.3.3

2 - 1.3.4

3 - 1.3.6

Select the Apache Server version:

Enter your Apache HTTP server version (option [2] 1.3.4 in our case).

· Enter connector proxy host [127.0.0.1]:

Leave the default value.

· Enter connector proxy port [8081]:

Leave the default value or enter another port if it is already used.

You should then be prompt with the following message :

Connector configuration was successful.

RETURN to exit

· Your JRun connector to Apache HTTP server is now configured. You need to manually update your Apache HTTP configuration file in order to enable DSO access.

Edit /etc/httpd/apache/conf/httpd.conf and go to the JRun connector section :

# JRun Settings                                                                 

# JRun - For DSO support uncomment this line and specify path to mod_jrun.so library.                                                                           

# LoadModule jrun_module134 /path/to/mod_jrun.so                                

<IfModule mod_jrun.c>                                                           

JRunConfig Verbose false                                                        

JRunConfig ProxyHost 127.0.0.1                                                  

JRunConfig ProxyPort 8081                                                       

JRunConfig Timeout 300                                                          

JRunConfig Mappings "/usr/jrun/jsm-default/services/jse/properties/rule

s.properties"                                                                   

</IfModule>                                                                     

Uncomment the line :

# LoadModule jrun_module134 /path/to/mod_jrun.so                                

and modify it as shown below in order to specify the path to mod_jrun.so library :

LoadModule jrun_module134 /usr/jrun/connectors/apache/intel-linux/mod_jrun.so

Save the modifications to httpd.conf file.

· Start your Apache HTTP server by entering :

/etc/rc.d/init.d/httpd start -f /etc/httpd/apache/conf/httpd.conf

· Start JRUN by entering :

/usr/jrun/jsm-default/startjsm.sh

· Test the connection to the Apache HTTP Server using the following URL (assuming that the HTTp server is running on Port 80) :

http://hostname

The default web server page should be displayed.

[image: image8.png]
· Test JRun DSO connector to Apache HTTP server by attempting to load a sample servlet (SnoopServlet or HelloWorldservlet) with the following URL :

http://hostname/servlet/SnoopServlet

You should get prompt with the following screen :

[image: image9.png]
2.5 COOL:Gen JAVA Proxy environment

An important file, commcfg.properties (also initially located within your COOL:Gen directory on your TOOLSET workstation) is used to associate TRANCODEs with the locations of COOL:Gen servers. It is also be used to control some runtime behaviors of a COOL:Gen application/proxy (transport protoc used, etc.).

· To set COOl:Gen Java Proxy environment on your LINUX system, you must follow these steps :

· On your LINUX system, create the directory /usr/commcfg (for COOL:Gen configuration file)

· Transfer commcfg.properties to your LINUX system (using FTP) and put it within /usr/commcfg directory.

· JRun uses its own CLASSPATH to locate the Java classes to load. Therefore, you need to add the path to /usr/commcfg directory to JRun CLASSPATH in first position (to make sure it is the file taken into account). You can either do it by running JRun administration server (refer to JRun documentation) or by directly modifying jsm.properties file, located within /usr/jrun/jsm-default/properties directory. Also add. The file should finally look like :

jrun.rootdir=..                                                                 

jrun.api21=false                                                                

redirect.stderr=true                                                            

redirect.stdout=true                                                            

admin.port=56492                                                                

admin.bindaddress=*                                                             

java.securitymanager=                                                           

java.path=/usr/jrun/./examples/jni/NativeHelloWorld                    

java.exe=/usr/jdk1.2/bin/java                                          

java.classpath=/usr/commcfg:/usr/jrun/./lib/jrun.jar:/usr/jrun/./lib/servlet.jar:/usr/jrun/./lib/jsp.jar:/usr/jrun/./lib/xml4j.jar:/usr/jrun/./lib/xt.jar:/usr/jrun/./lib/fesi.jar:/usr/jrun/./lib/cfanywhere.jar:/usr/jrun/./lib/NetComponents.jar:/usr/jrun/./lib/OROMatcher.jar:/usr/jrun/./lib/jrunadmin/jrunadmin.jar:/usr/jrun/./classes:/usr/jrun/./jsm-default/classes:/usr/jrun/./instantdb/Classes:/usr/jrun/./lib/jrunadmin/

swing.jar:/usr/jrun/./webl/WebL.jar:/usr/jrun/./examples/jni:/usr/jdk1.2/bin/../lib/tools.jar

· A code page is a unique set of relations between a number and a pictorial representation.  In some documents a code page is called a code set, or even character set.  However, for this document we will refer to these relationships as code pages. A code page will normally define relationships between pictures and numbers starting at zero, and will increase incrementally to a predefined upper bound.  Usually, this upper bound is based on some computer word size and is related to a power of 2. Most code pages today define a maximum of 256 relationships. However, the early ASCII standard only defined 128, and the UNICODE set limits us to 65536 relationships.

In today's world, each country uses their own language for communication. However, each language requires its own unique characters when written. All of these unique characters cannot be represented in a single 256 relationship code page. So, each country (or computer manufacturer) has defined their own private code pages. For example, IBM has defined a unique code page for many written languages. Even within one country, the computer manufacturers cannot agree on which code page to support.  Most of these systems claim they support ASCII. But, on closer examination of the relationships, one sees that not all of the pictures are the same, and those pictures which are the same are not always associated with the same number.

LINUX CALDERA uses “ANSI_X3.4-1968” code set. It is a basic variant of ASCII (ISO 646). It can be called “ANSI_X3.4-1968” or “cp367”. The preferred name in MIME context is “US-ASCII”. This code set is not referenced within COOL:Gen codepage.properties file (used by the Java Proxy). Therefore, you will experience the following error when trying to execute a server call through the Java Proxy :

Exception on com.sterling.gen.jprt.commException:  [Function: CFBDynamicMessage::getCodePage]Could not locate an appropriate codepage for ANSI_X3.4-1968

To solve this problem, you need to add the following line to the codepage.properties file you are using :

#US-ASCII

ANSI_X3.4-1968=1252

Place the new codepage.properties file within /usr/commcfg directory and make sure /usr/commcfg is referenced in first position within JRun CLASSPATH. This step is very important to avoid a conflict since each JAR file generated by COOL:Gen includes codepage.properties file.

· Configure commcfg.properties in order to enable access to your COOL:Gen server. Add the following two lines :

CMIDEBUG=ON

*=TCP coolgenserver 2008

With coolgenserver an alias to your COOL:Gen server. You must specify its IP address within /etc/hosts file as explained below :

# UNIX-HP COOL:Gen server

10.48.4.49     coolgenserver COOLGENSERVER

· Stop and Restart JRun in order to take into account the modifications. To stop JRun, enter the following command :

/usr/jrun/jsm-default/stopjsm.sh

2.6 JAVA Proxy deployment

Let us assume that we wish to deploy a COOL:Gen generated Java Proxy with the following properties :

· Bankdemo.ief COOL:Gen model

· Bankdemo load module name

· AccountOperationList Procedure Step (Java method name)

2.6.1 Applet/Servlet based communication

To successfully deploy COOL:Gen generated Java Proxy on your LINUX system for an Applet/Servlet based communication, follow these steps :

· Transfer (using FTP) to your LINUX system :

·  the servlet JAR file (Bankdemo.jar) located within …\models\Bankdemo.ief\java\deploy\Servlet directory on your TOOLSET workstation.

· the applet JAR file (BankdemoUI.jar) located within …\models\Bankdemo.ief\java\deploy\ClientUI directory on your TOOLSET workstation.

· The HTML file (AccountOperationListUI.html) located within …\models\Bankdemo.ief\java\deploy\ClientUI directory on your TOOLSET workstation.

· Place both the HTML file (AccountOperationListUI.html) and the applet JAR file (BankdemoUI.jar) within your Apache html root directory (/home/httpd/html).

· Place the servlet JAR file (Bankdemo.jar) within JRun servlets directory (/usr/jrun/servlets).

· Add the full path to the servlet JAR file (/usr/jrun/servlets/Bankdemo.jar) to JRun CLASSPATH. An alternative is to unjar the servlet JAR file into JRun servlets directory.

· Start both Apache HTTP server and JRun with the following commands :

/etc/rc.d/init.d/httpd start -f /etc/httpd/apache/conf/httpd.conf

/usr/jrun/jsm-default/startjsm.sh

· Test COOL:Gen generated servlet loading through JRun

Enter the following URL :

http://hostname/servlet/Bankdemo.Servlet.AccountOperationListServlet

You should get prompt with this screen :

[image: image10.png]
2.6.2 JSP/ApplicationBean based communication

To successfully deploy COOL:Gen generated Java Proxy on your LINUX system for a JSP/ApplicationBean based communication, follow these steps :

· Transfer (using FTP) to your LINUX system :

·  the ApplicationBean JAR file (Bankdemo.jar) located within …\models\Bankdemo.ief\java\deploy\ABean directory on your TOOLSET workstation.

· The JSP files (AccountOperationList.jsp, AccountOperationListImport.jsp, AccountOperationListExport.jsp, AccountOperationListError.jsp) located within …\models\Bankdemo.ief\java\src\Bankdemo\jsp directory on your TOOLSET workstation.

· Place the JSP files within your Apache html root directory (/home/httpd/html).

· Place the ApplicationBean JAR file (Bankdemo.jar) within JRun classes directory (/usr/jrun/classes).

· Add the full path to the ApplicationBean JAR file (/usr/jrun/classes/Bankdemo.jar) to JRun CLASSPATH. An alternative is to unjar the Applicationbean JAR file into JRun classes directory.

· Start both Apache HTTP server and JRun with the following commands :

/etc/rc.d/init.d/httpd start -f /etc/httpd/apache/conf/httpd.conf

/usr/jrun/jsm-default/startjsm.sh

Chapter 3 : A FULLY DOCUMENTED EXAMPLE

The aim of this example is to prove the technical ability to successfully deploy and run COOL:Gen Java Proxy on LINUX system. In this example, JRun servlet engine is used. Further improvements will be to test such an architecture with an Application Server. IBM WebSphere v2.03 is available for LINUX (see http://www-4.ibm.com/software/webservers/appserv/). An Applet/Servlet based communication will definitely run, but WebSphere v2.03 supports JSP 0.91 and COOL:Gen generates JSP 1.0. Thus, it will not be possible to run JSP/ApplicationBean with this version of WebSphere. It should be possible with version 3.0, which supports JSP 1.0.

BEA WebLogic 4.5 is also available for LINUX (see http://www.beasys.com/linux/), and it could be interesting to test it !

3.1 The technical architecture

With respect to the 3-tiers architecture tested, the LINUX is used as both a front-end Web Server and a Java Platform. As explained above, it could also be used as an Application Server. An overview of the technical architecture is presented within the following figure.

[image: image11.png]
· Apache HTTP front-server is responsible for managing accessibility from outside the system. It is also responsible for the security. We could imagine a firewall installed on that server.

· JRun is responsible for the Java Proxy execution (either JRun servlet engine or JRun JSP interpreter).

As explained earlier, the following platforms have been used :

· Client : NT 4.0 (SP5) workstation with Netscape Communicator 4.7.

· HTTP Server : LINUX CALDERA 2.3

· APACHE HTTP Server 1.3.4

· JDK 1.2 (pre-version 2)

· JRUN 2.3.3

· Host Server : UNIX HP 10.20 with

· COOL:Gen 5.1 Implementation Toolset

· COOL:Gen 5.1 Transaction Enabler

Both and Applet/Servlet based and a JSP/Abean based communications have been successfully tested.

The figure below presents the Applet/Servlet architecture :

[image: image12.png]
It is the most common way to run COOL:Gen Java Proxy within an Internet/Intranet application context. The main drawback is that the applet download and the Applet/Servlet communication are time consuming. Some customers might prefer an architecture with a “thin” client, receiving HTML pages only. In such a case, they would have to run COOL:Gen Java Proxy with a JSP/Abean based communication. Such an architecture is within the following figure.

[image: image13.png]
3.2 COOL:Gen host Server

COOL:gen data model used to perform the tests is shown below :

[image: image14.png]
COOL:Gen Java Proxy deployment on LINUX has been successfully tested for only one transaction. Basically, the server takes an account number as input and returns either the current list of operations for that given account or an error if the account number is invalid.

The server action diagram code is listed on the next page.

[image: image15.png]
Both the DDL and the server have been generated and remotely installed on the UNIX system, targeting an ORACLE database.

The Java Proxy generated according to the server load module definition has been deployed onto the LINUX Server as explained earlier. The resulting list obtained with a COOL:Gen generated client/server interface is shown in the following figure.

[image: image16.png]
3.3 Applet/Servlet communication test

The Java Proxy deployment has been tested with the Applet/Servlet communication. COOL:Gen generated servlet for Bankdemo model (Bankdemo.jar has been deployed to JRun servlets directory on the LINUX system (i..e. /usr/jrun/servlets). The full path to Bankdemo.jar has been added to JRun CLASSPATH. An alternative is to unjar Bankdemo.jar within JRun servlets directory in order to make the Java classes available to JRun.

COOL:Gen generated web client interface (all the HTML files and BankdemoUI.jar applet file) has been deployed to Apache html directory (i.e. /home/httpd/html).

The result of the test is shown within the two following figures.

[image: image17.png]
[image: image18.png]
JSP/ApplicationBean communication test

The Java Proxy deployment has been tested with the JSP/ApplicationBean communication. COOL:Gen generated ApplicationBean for Bankdemo model (Bankdemo.jar has been deployed to JRun classes directory on the LINUX system (i..e. /usr/jrun/classes). The full path to Bankdemo.jar has been added to JRun CLASSPATH. An alternative is to unjar Bankdemo.jar within JRun classes directory in order to make the Java classes available to JRun.

COOL:Gen generated JSP interface (all the JSP files) has been deployed to Apache html directory (i.e. /home/httpd/html).

The result of the test is shown within the two following figures.

[image: image19.png]
[image: image20.png]


� INCORPORER PBrush  ���





40
2

_1011681441

