Techniques For Improved Batch Designs

Session 660

Greg Moll Texas Instruments

1

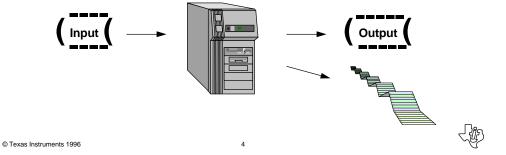
© Texas Instruments 1996

Agenda

- Define Batch Processing
- Techniques of Batch Processing
- Designing for Parallel Processing
- Alternatives for Input/Output
- Describe Strategies and Infrastructure Components of Batch Processing

- Logic Errors
- Checkpoint
- Restartability

Session Objectives


- Enhance batch processing techniques
- Compare and contrast alternative design methods
- Improve software quality

© Texas Instruments 1996

• Improve developer productivity

What is Batch Processing?

- Volumes of data that are processed with no human intervention
- Can be accomplished by batch or on-line "No display" Procedures

Typical Uses

- Interface
- Conversion
- Service-related processing, e.g., Billing
- Distributed data
- Data retrieval for reports

Design System Structure

5

- Define procedures (batch or on-line)
- Dialog flows to indicate procedure step flow

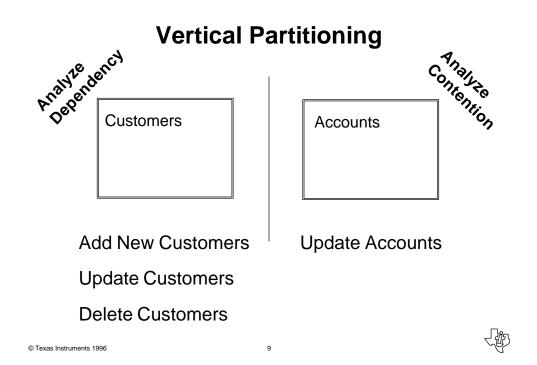
6

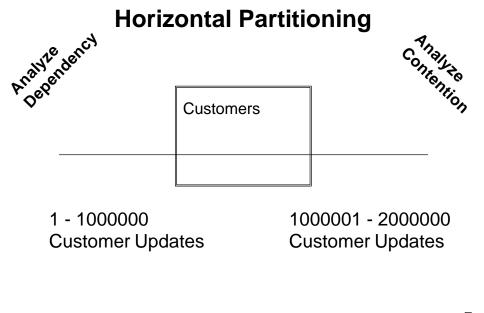
- Define input/output
- Define reuse requirements

© Texas Instruments 1996

Batch Processing Techniques

- · Method determined by procedure definition
- Batch
 - Supported by COBOL only
 - Completely accomplished within Composer
 - Conforms to MVS batch theory
- On-line no display
 - Supported by any language
 - Terminal-dependent/terminal-independent
 - More flexible, e.g., any type of dialog flow


7


© Texas Instruments 1996

Think about Parallel Designs

- Run multiple units of work simultaneously
- Best opportunity for throughput of work
- Also aids in better usage of development resources

- Two types:
 - Horizontal partitioning
 - Vertical partitioning

10

-J¢

Alternatives for Input/Output

- Designer-added entity type
 - Load transactions
 - Increased I/O cost (locking, logging, index)
- Data sent through dialog flow
 - Import 32K limit
 - Export 32K limit
- · Structures available within environment
 - External Action Block
 - DL/I not available within TSO Testing Facility

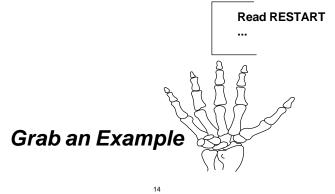
11

© Texas Instruments 1996

Advantages/Disadvantages for Input/Output

- Designer-added entity type
 - Ease of usage
 - Increased overhead
- Data sent through dialog flow
 - 32K limit
- · Structures available within environment
 - Efficiency
 - Portability
 - Expertise

Reuse Requirements


- Batch design strategy and reusable components
 - Shorten development lifecycle
 - Quality
 - Maintainability
- Examples
 - Handling Errors
 - Checkpoint
 - Restart
 - Logging

© Texas Instruments 1996

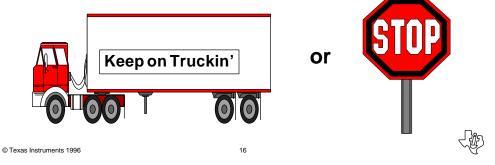
Skeleton

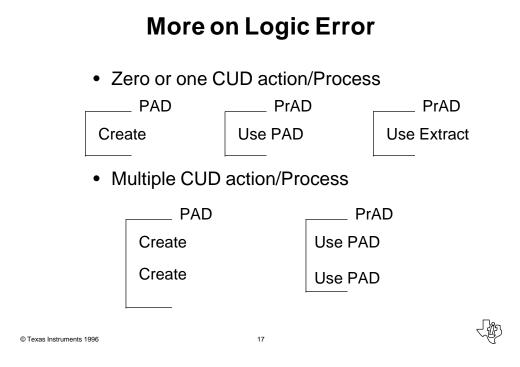
13

- Example action diagrams or external programs
- Support the structure "How"
- Recommend working example

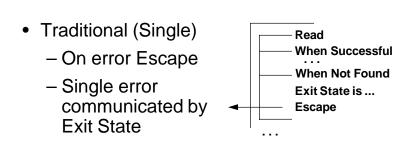
© Texas Instruments 1996

Handle Logic Error – Types


- System
 - Program unable to run
- Runtime
 - Trapped by Composer
 - Under Composer's control
 - TIRTERM
- Logic
 - Under designer's control
 - Level (severity) of error
 - Threshold (count) of error


15

© Texas Instruments 1996


Handle Logic Error

- Zero or one <u>Create Update Delete</u> (CUD) action/process
- Multiple CUD action/Process Rollback
- Correct with default
- Shut down

Errors and Action Block Design

Errors and Action Block Design

• Multiple - On error don't escape, Read - Move CUD to the end When Successful When Not Found - Group view of errors Set ... Read »or When Successful - Duplicate logic When Not Found Set ... »or . . . If error - Validation Action Block • Error dependency

© Texas Instruments 1996

On Notification of Error ...

- Message to operations
- Beeper
- Mail

Checkpoint

- Protect completed work
- Held locks cost resources
- Unit of work
 - Count 1000, 5000
 - Group view size 1 or 2 megs
 - Time interval
- Threshold the commit
- Use a designer entity type to control

© Texas Instruments 1996

Checkpoint Options

21

- Self-reference flow
 - Step must retain position
 - Commit issued at the end of procedure step
 - Database cursors are closed
 - Batch TIRMSGF trace

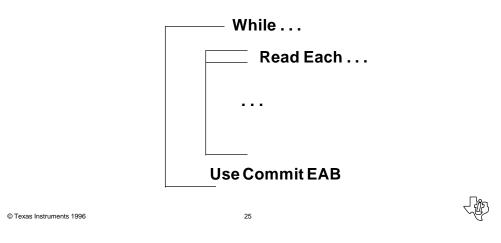
22

• Commit by EAB

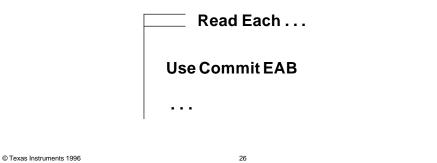
Comparison

	Pros	Cons
Self- Referencing	 Portable Accomplish within Composer TIRMSGF Trace (Batch) 	 Design limitation possible with the 32K view limit Performance Extra Logic
EAB	-Flexible designs can achieve performance gains	 Less Portable Management of code TIRMSGF Trace (Batch)
exas Instruments 1996	23	-Li

© Texas Instruments 1996


Checkpoint Entity Type

- Job name
- Job step name
- Checkpoint amount
- Time interval


Position Commit EAB (without "Cursor withhold")

• EAB must not be placed within a Read Each

Position Commit EAB (with "Cursor withhold")

- Maintain cursor position on commit
- Significant performance improvement
- Commit EAB must be positioned within READ EACH bracket

Restartability

- Begin job from prior point
- Standard JES2 or JES3 in the job card
 - Self-referencing flow
 - Checkpoint information in TIRIOVF
 - JCL RESTART = parameter "Step Name"
 - Batch-defined procedures only
- Designer Entity Type
- 3rd-party product
- Recover tables and re-run job

© Texas Instruments 1996

Batch – TIRIOVF Data Sent

- May be used for checkpoint repositioning, error logic, restartability
- Trace USERID.IEF.TIRIOVF
- JCL temporary
- Default JCL always allocates
- DSORG PS, RECFORMAT FB, LRECL 4096
- CLEANIOF or NO Flow

Restart Entity Type

- Job name
- Job step name
- "N" text restart keys
- "N" numeric keys
- "N" date/time keys
- "N" restart control totals
 - Records read, written, error...

29

© Texas Instruments 1996

Make the Move

- Define the strategies
- Build the reusable components
- Gain the productivity

Techniques For Improved Batch Designs

Session 660

Greg Moll Texas Instruments

31

© Texas Instruments 1996

L B