
Page - 1 -

“Data Hiding” with IDMS/SQL:

Making an IDD Code Table behave like a “real” SQL Table

Page Contents

1 Accessing an IDD Table with IDMS/SQL
2 Tailoring an SQL Display of an IDD Table
3 Data “Hiding” – making an IDD table look like an SQL Table
4 The End Game – Using our SQL State Table
5 An IDD Code Table that behaves like an SQL Table – but don’t tell anybody
5 Before You Start – Some Things That Some will Have and Others Will not

Accessing an IDD Table with IDMS/SQL

I expect that most sites (in USA anyway) have an IDD Code Table of American State codes
(Encode value in the database) and State Names (Decode value for display).

I have created a shortened version of such a table here. You can display the table in IDD
at any time – but unless you specify “FORM FIXED.” Before the display, the output can
become very confusing with Encode/Decode values all “smershed” together in a jumble.

add TABLE NAME USACODEC ver 1
Description 'USA State Codes'
TYPE IS CODE SEARCH LINEAR
ENCODE DATA ALPHANUMERIC DECODE DATA ALPHANUMERIC
TABLE UNSORTED VALUES ARE (
SA 'South Aus' MA 'Maine'
UN 'Unwanted' ' ' 'Blank'
NOT FOUND 'Unknown') GENERATE.

*+ I DC601133 CARD 000022 WORD 03
*+ - GENERATE SUCCESSFUL - 'OBJECT' TABLE SIZE IS 76 BYTES

So – let’s just say I want a better display of the Table, and the ability in fact to display any
other IDD code table – I could create an SQL View as shown here:

CREATE VIEW RSQLSHR.codecTable
(CODETABLE, CODETABLENAME, ENCODEVALUE, DECODEVALUE) AS

select MOD_NAME_067 as codeTable ,
substr(MOD_NAME_067,1,8) as codeTableName ,
cast(rtrim(substr(CMT_INFO_084_1,5,34)) as VARCHAR(34))

as encodeValue ,
concat(substr(CMT_INFO_084_1,39,12) ,
CMT_INFO_084_2) as decodeValue

FROM jisdict."MODULE-067" ,
jisdict."MODCMT-084"

WHERE "MODULE-MODCMT"
and LANG_067 = 'TABLE'

Page - 2 -

and CMT_ID_084 = -9 and IDD_SEQ_084 = 0
and substr(CMT_INFO_084_1,5,1) <> '?' ;

*+ Status = 0 SQLSTATE = 00000

Now I get quite a tidy looking “IDD Code Table Report” – but there are still some
somewhat “User Unfriendly” aspects to this display – in particular when we have short
Encode values (2 characters as in this case), and short Decode or display values as well.

For example – notice how the output is split because of the default lengths of the table
Columns:

select codetablename, encodevalue, decodevalue
from rsqlshr.codectable where codetable = 'USACODEC';

*+ CODETABLENAME ENCODEVALUE
*+ ------------- -----------
*+ USACODEC SA
*+ USACODEC MA
*+ USACODEC UN
*+ USACODEC
*+
*+ DECODEVALUE
*+ -----------
*+ South Aus
*+ Maine
*+ Unwanted
*+ Blank
*+
*+ 4 rows processed

Tailoring an SQL Display of an IDD Table

We can easily fix this with SQL, knowing the specific sizes of the data values in both the
Encode and Decode columns, as shown here:

select codetablename,
cast(encodevalue as char(2)) as code,
cast(decodevalue as char(20)) as value

from rsqlshr.codectable where codetable = 'USACODEC';

*+ CODETABLENAME CODE VALUE
*+ ------------- ---- -----
*+ USACODEC SA South Aus
*+ USACODEC MA Maine
*+ USACODEC UN Unwanted
*+ USACODEC Blank
*+
*+ 4 rows processed

Page - 3 -

That’s nice – for this particular Table. But – you would need to know how and what
tailoring to do for other IDD Code Tables so the output could also be tailored to produce
such a nice, friendly report.

But also - this is just a static report. The IDD Table values might be used in Mapping for
Encode:Decode purposes – but what if we are developing new applications that won’t be
using Mapping, and we want to ensure that there is consistency between the names that
are displayed in both the old (green screen) and new application?

Here is a “what if” scenario. What if, we defined a View of this specific code Table, the one
with the American States, and made it look as though it was a “State table” in an SQL
database?

This has some interesting possibilities from an application point of view that are worth
exploring. But, first things first.

Data “Hiding” – making an IDD table look like an SQL Table

Let’s start by creating a “virtual” State Table – with a View of the underlying IDD Code
Table, as follows:

CREATE VIEW RSQLSHR.USASTATES
(STATE, STATENAME) AS

select substr(encodeValue,1,2) as state ,
substr(decodeValue,1,20) as stateName

from rsqlshr.codecTable
where codeTable = 'USACODEC'

;
*+ Status = 0 SQLSTATE = 00000

Notice how we have taken advantage of the existing codecTable View – since it already
has the knowledge of the “internal” physical characteristics of an IDD Code Table, which
we don’t want to code again!

Now look at the “report” we can get from SQL showing our American State Table content –
with no user tailoring required – and look – it looks just like an SQL State Table! You would
never know that it is actually an IDD Code Table.

select * from rsqlshr.USAstates;

*+ STATE STATENAME
*+ ----- ---------
*+ SA South Aus
*+ MA Maine
*+ UN Unwanted
*+ Blank
*+
*+ 4 rows processed

Page - 4 -

Well, because it looks like an SQL Table, and smells like an SQL Table, does it also
behave like an SQL Table? Can we do an SQL JOIN with it?

The End Game – Using our SQL State Table

Let’s extend our scenario to now display the Offices from the EMPSCHM demo database
that comes with IDMS when it is installed. Here is an example of an SQL Select against the
underlying network EMPSCHM Office table:

select OFFICE_CODE_0450 as Offc,
OFFICE_STREET_0450 as Street,
OFFICE_CITY_0450 as City,
OFFICE_STATE_0450 as St

from empschm.office
order by office_city_0450;

*+ OFFC STREET CITY ST
*+ ---- ------ ---- --
*+ 002 567 BOYLSTON ST BOSTON MA
*+ 012 734 MASS. AVE CAMBRIDGE
*+ 005 7690 NEAR SIGHT AVE GLASSTER SA
*+ 001 20 W BLOOMFIELD ST SPRINGFIELD MA
*+ 008 910 E NORTHSOUTH AVE WESTON MA
*+
*+ 5 rows processed

Well that’s fine as far as it goes – but our users are used to seeing the State Names, not
just the State Codes – so how can we easily see the State names, without redundantly
creating, populating and maintaining an SQL State Code Table? Well – why don’t we take
advantage of our existing IDD Code Table and the View we have of it that “looks and
smells” like an SQL Table?

Here’s what the SQL would look like – and the resultant output:

select OFFICE_CODE_0450 as Offc,
OFFICE_STREET_0450 as Street,
OFFICE_CITY_0450 as City,
OFFICE_STATE_0450 as St ,
StateName

from empschm.office ,
rsqlshr.USAstates

where office_state_0450 = State
order by office_city_0450;

*+ OFFC STREET CITY ST STATENAME
*+ ---- ------ ---- -- ---------
*+ 002 567 BOYLSTON ST BOSTON MA Maine
*+ 012 734 MASS. AVE CAMBRIDGE Blank
*+ 005 7690 NEAR SIGHT AVE GLASSTER SA South Aus
*+ 001 20 W BLOOMFIELD ST SPRINGFIELD MA Maine

Page - 5 -

*+ 008 910 E NORTHSOUTH AVE WESTON MA Maine
*+
*+ 5 rows processed

So there we have it – an IDD Code Table that behaves just like an SQL Table – not too
shabby – and all done with IDMS/SQL!

An IDD Code Table that behaves like an SQL Table – but don’t tell anybody

I hope that this gives you some new ideas of how you can “package” SQL into Views, and
then re-package those Views into higher levels of abstraction for specific purposes – so
that you can then create some opportunities for effective, simplified use of SQL to access a
variety of IDMS data, which your developers may currently think of as being “too hard” to
use in their new applications.

Before You Start – Some Things That Some will Have and Others Will not

You will need, at least, two SQL Schemas in order to carry out the work that is described in
this document. I’ll describe 3 of them for completeness:

 The JISDICT Schema referenced above
o An SQL Schema that allows you to access the IDD Database
o Access a Network Schema with SQL
o Establish this Schema with the following syntax (using the Schema Name

referenced in this document):

CREATE SCHEMA JISDICT
FOR NONSQL SCHEMA JISDICT.IDMSNTWK VERSION 1

DBNAME JISDICT ;

Note: you can not CREATE additional components within a “Schema for
nonSQL” schema – hence the need for an SQL schema to create Views
(Procedures, Functions) which operate against this schema!

 The RSQLSHR Schema referenced above
o An SQL Schema which we use for creating VIEWs in the examples in this

document -optionally used for creating “native” IDMS/SQL Tables
o The syntax is:

create Schema RSQLSHR ;

 The EMPSCHM Schema
o An SQL Schema distributed with CA-IDMS and which may optionally be

installed during initial installation of IDMS, or at any time afterwards
o We do not provide the “create” syntax for this schema – check it out in the

IDMS Installation Guide

