
2B
Generating DDL from a DDS
2E Model with No Changes

Crispin Bates – CPU Inc

2

About Me

— I work for CPU, Inc.

— CPU, Inc. (http://www.cpulink.net) is a CA Partner based in Cincinnati,
Ohio focusing on IBM i, Microsoft Windows and Internet application
development. Our expertise is in designing, constructing and
deploying CA 2E/Plex and RPG applications, as well as Sencha 's Ext JS
user interfaces using Zend Server.

— I started my programming career in 1988 using RPGII in the UK.

— I have been a 2E user since 1989.

— I have been a Plex user since 1998.

3

Session Abstract

— This presentation will look at getting a 2E Model that had been

generating DDS and RPG4 Code to generate DDL for the database

definitions without changing the model generation options.

— We wanted minimal impact to existing code, but wanted to

generate DDL files for our DB2 Web Query implementation.

— We will look at the generator exit points, calling API’s and

parsing the generated DDL.

4

Agenda

— 1. What are we doing and why?

— 2. How are we going to do this?

— 3. Putting it all together.

— 4. Questions & Answers.

5

What are we doing and why?

— We are a fairly traditional 2E RPG shop developing 5250

applications using DDS for the Database

— We also use Web Option

— We looked at DB2 Web Query and decided we wanted to

implement it for our users.

— DB2 Web Query promised to be a new Business Analytics tool for

our users to access the wealth of data that they have in our

application.

6

What are we doing and why?

— One of the first requests that came from our business group was
that the field names in the DB2 Web Query tool match the fields
business name, and not the DDS Name.

— We also noticed that for some of the reports that we were
creating we were getting poor performance. The system was
suggesting that we create SQL Index’s to improve performance.

— At this point I started looking at the SQL Generation options in
2E, and quickly determined that it would be a huge impact to
change to SQL Generation.

7

What are we doing and why?

— The next thing I started looking at was manually creating Views

and Index’s that would provide the Long Field names and the

Access plans that the system was suggesting.

— My first pass at these produced good results, and our Business

people were really happy with the results.

— But…this was all manual work, and I did not want to continue

doing it this way.

8

What are we doing and why?

— It was around this time that I was browsing the CA Community Forums and I

came across a really interesting thread that was discussing mixing DDS and

DDL within the same 2E Model

— The question that was asked was whether is was possible to mix DDS and DDL

in the same Model.

— Several references were posted.

− Dan Cruickshank of IBM had produced a document about Database Modernization

that talked about replacing DDS with DDL without having to recompile any programs

and this was what was being used for reference

− There was also a good article on the Plex/2E Wiki

• http://wiki.2einfo.net/index.php?title=Using_SQL_with_2E

9

How are we going to do this?

— So, I read Dan’s document on database modernization (not for

the first time) and then started playing around with some of the

newer DDL options that were in V5R4, in particular the RCDFMT

clause on the CREATE TABLE specification

— After an hour or two I had recreated a DDS PF as a DDL TABLE,

and that TABLE had the same Record Format Level Identifier as

the original DDS PF. I could use this TABLE without affecting any

programs in my 2E Model. Now I was getting somewhere.

10

Data Validation DDS vs. DDL

— One thing to note is the difference between the way data is validated in a DDL

TABLE vs. a DDS PF.

— Data is validated when written to a DDL TABLE

— Data is validated when read from a DDS PF

— We ran some analysis over our PF’s looking at the Read vs. Write statistics

returned via DSPFD.

— We found that about 98% or more of the data access for almost all of our PF’s

were Read Access.

— This suggested that DDL would provide better performance because validation

is not done on Read Access.

11

How are we going to do this?

— I then came across the QSQGNDDL API. This is where things got

really interesting

— Additionally I read that at IBM i 6.1 the INDEX DDL would allow

the specification of the RCDFMT clause. This was the last piece in

the puzzle, as I could now replace the DDS LF’s with DDL INDEX’s

— So, now for the interesting stuff…

12

QSQGNDDL API

— From the infocenter

− The Generate Data Definition Language (QSQGNDDL) API generates the SQL

data definition language statements required to recreate a database object.

The results are returned in the specified database source file member.

13

Prerequesites

— Some things that I need to say here

− DDL TABLE’s force REUSEDLT(*YES)

− Multi Member PF’s not supported in SQL

− Joins (virtuals) not supported in Index

− QSQGNDDL does not correctly generate DDL for Select/Omit specifications

when an INDEX is the target object

• Note: DCREQ Opened with IBM Rochester and was accepted

− So, I need to cater for this later on…

14

QSQGNDDL

— There are several good resources where you can find

downloadable code that implements the QSQGNDDL API.

— Carsten Flensburg provided a really good article here, with

downloadable code. Requires Pro Membership to

SystemiNetwork

− http://systeminetwork.com/article/apis-example-reverse-engineering-

database-files-and-objects-sql-ddl-statements

15

QSQGNDDL

— Tom Holden has a simplified version that works well here

− http://www.tommyholden.com/downloads/Save%20Files/index.html

— You can also roll your own in 2E…

16

QSQGNDDL Implementation

17

QSQGNDDL Prototype

18

QSQGNDDL Datastructure

19

QSQGNDDL Datastructure 2

20

QUSEC Definition

21

QSQGNDDL Implementation

22

QSQGNDDL Implementation

23

Parameters

24

Parameters

25

QSQGNDDL - Notes

— The QSQGNDDL API does not automatically create the Source

Member in the Source file that is specified on the API. The API

will fail if the member is not found. So, you have to make sure

that the member exists, and is empty before calling the API.

26

Example DDS

27

Fields in SQL

28

Run GENDDL

29

GENDDL

30

Resulting DDL

31

Resulting DDL missing Long Names

— The resulting DDL is missing long field names which I had

originally added in the manual DDL that I had created.

— This is one of the things that will be added in the Post-Compile

processing

32

2E Compile Processing

— The 2E Compile Processor allows for User defined Exit Programs

to be called.

— Data Area YBRTPXA controls the pre and post compile exit

programs.

— 1 - 10 Pre-compile exit program

— 11 - 20 Pre-compile exit program library

— 21 - 30 Post-compile exit program

— 31 - 40 Post-compile exit program library

33

2e Compile Processing

— For the DDL Generation Process we take advantage of the Post-

Compile Exit program.

34

Exit Program

— CL Program TMMFUPC in library CRPDEVUTL is called as part of

the post compile processing by 2E

— We can then take control of any processing that we want to

happen.

— We have many pre and post compile steps that we need to

happen each time an object is generated and compiled.

— After many years of changing CL Programs to cater for it we

externalized it all into a database

35

Processing File

36

Processes

37

Post Processing

38

Each Program has the same Parameter Interface

39

Parameters

40

Source Code to call each Process

41

Source Code to call each Process

42

DDLGEN Post Processing function

— The DDL Generation function that gets called checks to see if the

passed object type is a file, and if so, finds the Object Attribute.

— If it is a PF or LF, then the process of generating the DDL is called.

43

DDLGEN Post Compile Process

44

Building the DDL

— Earlier on I noted that there were some exceptions that could not

be converted to DDL Index’s.

— The DDL Build process checks a file to see if the current file that

is being processed should be converted to DDL.

— As long as there is no exception record, the DDL Build process

continues.

45

Build DDL

46

Adding the long field names

— The Generated DDL is then parsed, and each field is given a FOR
COLUMN value.

— The field name is derived from the 2E Model Name for the field

— Over the years there we have lots of fields that contain invalid
characters for SQL field names

— We built an exception table for the internal DDS name for fields
that caused us problems

— We also removed invalid characters during the parsing process

47

Some examples

48

Resulting DDL

49

DSPFFD on the file

50

Fields in SQL

51

Summary

— So, we now have DDL TABLE and INDEX source being generated

from our 2E Model

— The resulting objects have the same format level identifier that

the DDS versions had, and require no recompiles

— We have long field names visible to SQL that are based on the

Model field names

— Our DB2 Web Query users also see long field names

52

Questions?

