
© Texas Instruments 1996 1

API’s –
Accessing the Encyclopedia

Session 140

Frances Casey
Texas Instruments

© Texas Instruments 1996 2

Composer Encyclopedia API

• Introduction to the Composer Open Initiative
• How Composer works
• How model information is stored
• Reading Composer information using the

Application Programming Interfaces (APIs)
• Tips on getting started

© Texas Instruments 1996 3

Composer Open Initiative

• Published architectures
– Development tools
– Application runtime

• Application Programming Interfaces (APIs)
• Alliances for complementary products

© Texas Instruments 1996 4

Technical Documentation

A
P
I

S
T
R
U
C
T
U
R
E

P
H
Y
S
I
C
A
L

Composer

Information

Model

• Composer Information Model
• Encyclopedia physical structure

Composer
Encyclopedia

© Texas Instruments 1996 5

Application
Programming

Interface

Composer Encyclopedia APIs

Report
Writers

Other

Project
Management

Configuration
Management Testing

Tools

Composer
Encyclopedia

Data
Dictionary

© Texas Instruments 1996 6

Using the API

• To effectively use the Composer
Encyclopedia Application Programming
Interface (API), you need to understand
how:
– Composer works
– Composer model information is stored
– to read Composer information using APIs
– to program in C or C++

© Texas Instruments 1996 7

How Composer Works

© Texas Instruments 1996 8

Diagrams to Code

• Composer toolkit diagrams support
analysis and design of business
information requirements in terms of:
– Data
– Activities
– Interaction

• Rigorous diagramming conventions
convey specific meaning to each
graphic representation

© Texas Instruments 1996 9

© Texas Instruments 1996 10

Encyclopedia

• The encyclopedia is the heart of Composer
model-driven development strategy
– Stores all information
– Controls access for authorization and

concurrent development
– Supports multi-user development by model
– Supports multi-project development with

separate models
– Primary support for application generation

© Texas Instruments 1996 11

Encyclopedia Architecture

• Developed using the same concepts used for
Composer toolset diagrams
– A model of the process of building models
– Data about data

• Consists of a set of relational tables
• A data management and reporting tool for

data collected during systems development

© Texas Instruments 1996 12

How Composer
Model Information is

Structured and Stored

© Texas Instruments 1996 13

Model, Meta-Model, Meta-Meta-Model

• A Composer MODEL forms a picture, or
representation, of the business of
interest

• The Composer META-MODEL can be
viewed as the data model of the
modeling process

• The Composer META-META-MODEL
represents how the META-MODEL is
implemented

© Texas Instruments 1996 14

Model

DEPARTMENT

PROJECTEMPLOYEE

© Texas Instruments 1996 15

Meta-Model

ATTRIBUTE

RELATIONSHIPENTITY
TYPE

© Texas Instruments 1996 16

Meta-Meta-Model

PROPERTY

ASSOCIATIONOBJECT

© Texas Instruments 1996 17

Schema Release Levels

• The schema number defines the meta-model
version used for a particular software release

• All Composer tools at the same release level
use the same schema
– Workstation toolsets
– Client/Server Encyclopedias
– Host Encyclopedia

• The Encyclopedia APIs apply to all
encyclopedia platforms

© Texas Instruments 1996 18

Summary

• Information is entered as diagrams;
stored as semantic meaning

• Rigorous diagramming conventions
provide the precision necessary to
automatically generate application
code from diagrams

• The encyclopedia is the heart of this
model-driven development strategy

© Texas Instruments 1996 19

Using the Encyclopedia API

© Texas Instruments 1996 20

Encyclopedia Tools

• Encyclopedia tools available to view
the meta-model structure
– Public Interface view definitions
– Object Decomposition Report

(DECOMP)
– Orchestra
– WalkEncy
– API functions
– Schema tables

© Texas Instruments 1996 21

Object Decomposition Report

• Full meta-model documentation in report format
• Hierarchical physical structure including

objects, properties, associations, and triggers
• Supplemented with indices of objects,

properties, and associations by short name
(mnemonic) and by long name

• Includes more than is currently used
– objects, properties, associations defined for

unimplemented functionality
– future capabilities

© Texas Instruments 1996 22

Hierarchical Structure

Level 0

Level 1 Level 1

• Each level inherits all information from
levels above it

• Only the lowest level objects are stored
• Think ‘subtypes’

Level 2 Level 2 Level 2 Level 2

© Texas Instruments 1996 23

Trigger Groups

• An association may belong to a Trigger
Group, which further defines conditional
optionality

• Generally, at least one association within the
Group must be present for the object to exist

Trigger Group A

Trigger Group B
OBJECT

ONE
OBJECT

TWO

© Texas Instruments 1996 24

Object Decomposition Symbols
(#) Object hierarchy values, object, property or association

mnemonics, or trigger association counts
**> Object meta-properties
--- Object properties
..> Forward associations
..< Backward associations
==> Trigger delete association groups
--> Physical structure groups
type Property types (USHORT, SHORT, ULONG, LONG, CHAR,

NAME, MACRONAME, LOADNAME, STRING, DESC)
req, opt Required or optional property
dflt= Default property values
[] Protection indicators used by Subsetting (modifying, referencing)
{ } Aggregate action indicators used by Version Control (copy, include,

required, optional, special, ignore, notused)

© Texas Instruments 1996 25

Object Decomposition Example
| (4) Identifier (IDENT)
| **>Boundary
| **>Has ART
 ---Primary Identifier? Y/N/sp (PRIMARY), type CHAR, opt, dflt=space, column=2
|..>sometimes contains (CNTNSA, inv INIDTA) many ATTR [modifying] {required}
|..>sometimes contains (CNTNSR, inv INIDTR) many RELMM [modifying] {required}
 ..> sometimes is implemented (IMPLNTBY, inv IMPLMNTI) many ENTRYPNT

[modifying] {ignore}
 ..> sometimes used as target of fk (TARGETOF, inv TARGETS) many LINKFK

[modifying] {ignore}
| ..> sometimes contains (CNTNSH, inv INIDTH) many ATTRINH [modifying] {copy}
 ..< always identifies (IDENTS, inv IDNTBY) one ENTY [modifying] {required}
 ==> trigger assoc CNTNSA (1), in group B
 ==> trigger assoc IDENTS (1), in group A
 ==> trigger assoc CNTNSR (1), in group B
| --> physical structure group “5”

© Texas Instruments 1996 26

Orchestra – Online Decomp

• Composer Information Model 6.0.C7 - Hierarchy
• Composer Information Model 6.0.C7 - Collapsed

– Hypertext help versions of Object
Decomposition Report

– Hierarchy version shows properties and
associations at the levels in the hierarchy at
which they are defined

– Collapsed version shows properties and
associations directly or indirectly inherited by
the object type

© Texas Instruments 1996 27

Translating Diagrams

• To write a program accessing model
information, you must be able to specify the
program in terms of the Information Model

• Objects, properties, and associations are
stored with a numeric type code that
represents the mnemonic

• Each model is uniquely identified with a
numeric model_id; each object is uniquely
identified with a numeric object_id
– Names are properties

© Texas Instruments 1996 28

Data Model Example

WORKS IN

EMPLOYS
EMPLOYEE DEPARTMENT

© Texas Instruments 1996 29

Occurrence Diagram

DSCBYR

DSCPR

DSCBYR

DSCPR

IN
V

E
R

S

IN
V

E
R

S

HLENT
employee

RELMM
works_in

HLENT
department

RELMM
employs

© Texas Instruments 1996 30

Objects

OBJ_ID OBJ_MODEL_ID OBJ_TYPE_CODE
10 33 113*
11 33 113
12 33 51**
13 33 51

*HLENT
**RELMM

© Texas Instruments 1996 31

Associations

 ASSOC_ ASSOC_ ASSOC_
FROM_OBJ_ID TYPE_CODE TO_OBJ_ID
 10 70* 12
 11 70 13
 12 186** 13

*DSCBYR
**INVERS

© Texas Instruments 1996 32

Properties

PROP_ PROP_ PROP_
OBJ_ID TYPE_CODE CHAR_VALUE
 10 224* EMPLOYEE
 11 224 DEPARTMENT
 12 224 WORKS_IN

 13 224 EMPLOYS

* NAME
Property Type Codes are not stored on CSE

© Texas Instruments 1996 33

Encyclopedia API Functions

© Texas Instruments 1996 34

Encyclopedia API

• Read-only C subroutines to access
schema, model, and administrative
information

• Same function call for Host or CSE
• Provided as a static library or dynamic

link library (OS/2 only)
• Header files and example programs

also provided
• Encyclopedia must be active to run

© Texas Instruments 1996 35

Why API?

• Protected, interpretive access to
model information

• Portability between platforms
• Model lock/unlock during access
• Future expansion of functionality

© Texas Instruments 1996 36

API Function Types

• API administrative functions control access
to the encyclopedia

• Count functions determine number of
occurrences

• Array functions retrieve occurrences
– Allocate memory for the array before call
– Maximum number of occurrences is input

parameter
– Result is lesser of number of occurrences

specified or number in encyclopedia

© Texas Instruments 1996 37

API Function Categories
• Encyclopedia Information
• Model Lock/Unlock
• Model Information
• Association Information
• Property Information
• Subset Information
• Checkout Information
• User/Group Information
• Authorization Information
• Schema Information

© Texas Instruments 1996 38

Referencing the Meta-Model

• Headers provided with Encyclopedia
API support using mnemonics rather
than numeric codes for object, property,
and association types

• If you use APIs from non-C program,
you will need to use the numeric codes

© Texas Instruments 1996 39

Example: List All Entities in Model
• Program specification

– Connect to encyclopedia ‘DBIEFD’
– Logon to encyclopedia as user ‘DAACME’
– Fetch the id for a model, using the model

name ‘COMPOSER 3 TEST’
– Lock the model
– Count the number of entity types
– Fetch the entity types
– Commit to release database locks
– Unlock the model
– Disconnect from the encyclopedia

© Texas Instruments 1996 40

Example: List All Entities in Model

#include <eapidef.h> /* API header file */
#include <otc.h> /* Mnemonics for Object Type Codes */
/* Use API variable types to define parameters */
EAPIRC rc;
DBPARMS szDBParms;
USERID szUserid;
NAME szModelName;
MODELID nModelId;
ENCYLOCKTYPE eLockType;
LCOUNT lCount;
OBJID * hlentids;

© Texas Instruments 1996 41

Example: List All Entities in Model

strcpy(szDBParms, “DBNAME=DBIEFD DBUSER= DBPSWD= ”);
rc = EApiConnectToEncy(szDBParms);

strcpy(szUserid, “DAACME”);
rc = EApiLogonUserId(szUserId);

strcpy(szModelName, “COMPOSER 3 TEST”);
rc = EApiFetchModelByName(szModelName, &nModelId)

eLockType = EAPI_READ_LOCK;
rc = EApiLockModel(nModelId, eLockType);

rc = EApiCountModelTypeObjs(nModelId, OTC_HLENT, &lCount);

© Texas Instruments 1996 42

Example: List All Entities in Model

/* Allocate space for entity type array */
hlentids = (OBJID *)calloc((size_t)lcount, sizeof(OBJID));

rc = EApiFetchModelTypeObjs(nModelId, OTC_HLENT,
&lcount, hlentids);

rc = EApiCommit();

rc = EApiUnLockModel(nModelId);

rc = EApiDisconnectEncy();

© Texas Instruments 1996 43

API Future Plans

© Texas Instruments 1996 44

Composer 4

• Scheduled for 4Q96
• Will include Phase II Encyclopedia API

functionality
– Remote Access
– Access to workstation encyclopedia

© Texas Instruments 1996 45

API’s –
Accessing the Encyclopedia

Session 140

Frances Casey
Texas Instruments

