©

©

API's —
Accessing the Encyclopedia

Session 140

Frances Casey
Texas Instruments

Texas Instruments 1996 1

Composer Encyclopedia API

* Introduction to the Composer Open Initiative
* How Composer works
* How model information is stored

* Reading Composer information using the
Application Programming Interfaces (APIS)

» Tips on getting started

Texas Instruments 1996 2

©

©

Composer Open Initiative

* Published architectures
— Developmenttools
— Application runtime
» Application Programming Interfaces (APIs)
» Alliances for complementary products

Texas Instruments 1996

Technical Documentation

» Composer Information Model

Composer
Encyclopedia

» Encyclopediaphysical structur7[

~

Texas Instruments 1996

~

Composer
Information
Model

]

e

r>0—W0W<I7T

mIuCcC—HOCXTH®W

(

(—o>

Composer Encyclopedia APIs

o Project
Application Management
Programming

Interface

Composer
N

=
T

Configuration

Testing
Management Tools

Report
Writers

© Texas Instruments 1996 5 2 E

Using the API

» To effectively use the Composer
Encyclopedia Application Programming

Interface (API), you need to understand
how:

— Composerworks
— Composer model information is stored

— to read Composer information using APIs
—to program in C or C++

© Texas Instruments 1996 6 2 E

©

©

How Composer Works

Texas Instruments 1996 7

Diagrams to Code

» Composer toolkit diagrams support
analysis and design of business

information requirements in terms of:

— Data
— Activities
— Interaction

* Rigorous diagramming conventions
convey specific meaning to each
graphic representation

Texas Instruments 1996 8

l—CD

S)

Ne——
© Texas Instruments 1996 9 2 E

Encyclopedia

* The encyclopedia is the heart of Composer
model-driven development strategy

— Stores all information

— Controls access for authorization and
concurrent development

— Supports multi-user development by model

— Supports multi-project development with
separate models

— Primary support for application generation

© Texas Instruments 1996 10 2 E

Encyclopedia Architecture

» Developed using the same concepts used for
Composer toolset diagrams

— A model of the process of building models
— Data about data
* Consists of a set of relational tables

* A data management and reporting tool for
data collected during systems development

© Texas Instruments 1996 11

How Composer
Model Informationis
Structured and Stored

© Texas Instruments 1996 12

©

©

Model, Meta-Model, Meta-Meta-Model

* A Composer MODEL forms a picture, or
representation, of the business of
interest

 The Composer META-MODEL can be
viewed as the data model of the
modeling process

 The Composer META-META-MODEL
represents how the META-MODEL is
implemented

Texas Instruments 1996 13

Model

EMPLOYEE S PROJECT

DEPARTMENT

Texas Instruments 1996 14

ENTITY
TYPE

Meta-Model

ATTRIBUTE

© Texas Instruments 1996

15

RELATIONSHIP

Meta-Meta-Model

OBJECT

PROPERTY

© Texas Instruments 1996

16

0}

ASSOCIATION

©Texas

©

Schema Release Levels

* The schema number defines the meta-model
version used for a particular software release

» All Composer tools at the same release level
use the same schema

— Workstation toolsets
— Client/Server Encyclopedias
— Host Encyclopedia

* The Encyclopedia APIs apply to all
encyclopedia platforms

Instruments 1996 17

Summary

» Information is entered as diagrams;
stored as semantic meaning

* Rigorous diagramming conventions
provide the precision necessary to
automatically generate application
code from diagrams

* The encyclopedia is the heart of this
model-driven development strategy

Texas Instruments 1996 18

©

©

Using the Encyclopedia API

Texas Instruments 1996 19

Encyclopedia Tools

* Encyclopedia tools available to view
the meta-model structure

— Public Interface view definitions

— Object Decomposition Report
(DECOMP)

— Orchestra

— WalkEncy

— API functions
— Schema tables

Texas Instruments 1996 20

©

©

Object Decomposition Report

* Full meta-model documentation in report format

» Hierarchical physical structure including
objects, properties, associations, and triggers

» Supplemented with indices of objects,
properties, and associations by short name
(mnemonic) and by long name

* Includes more than is currently used

— objects, properties, associations defined for
unimplemented functionality

— future capabilities

Texas Instruments 1996 21 2 E

Hierarchical Structure

Level O
Level 1 Level 1
Level 2 Level 2 Level 2 Level 2

 Each level inherits all information from
levels above it

* Only the lowest level objects are stored
* Think ‘subtypes’

Texas Instruments 1996 22 2 E

OBJECT
ONE

Trigger Groups

Tricoer Groun A
gJI Ll

Trigger Group B

OBJECT
TWO

* An association may belong to a Trigger
Group, which further defines conditional
optionality

* Generally, at least one association within the
Group must be present for the object to exist

© Texas Instruments 1996

*)

**>

>
..<
==>

>

type

req,

dfit=

[]
{}

23

Object Decomposition Symbols

Object hierarchy values, object, property or association

mnemonics, or trigger association counts

Object meta-properties

Object properties

Forward associations

Backward associations

Trigger delete association groups
Physical structure groups

Property types (USHORT, SHORT, ULONG, LONG, CHAR,
NAME, MACRONAME, LOADNAME, STRING, DESC)

opt Required or optional property

Default property values

Protection indicators used by Subsetting (modifying, referencing)

Aggregate action indicators used by Version Control (copy, include,
required, optional, special, ignore, notused)

© Texas Instruments 1996

24

.

B

Object Decomposition Example

| (4) Identifier IDENT)
| *>Boundary
| *>Has ART

---Primary Identifier? Y/N/sp (PRIMARY), type CHAR, opt, dflt=space, column=2
|..>sometimes contains (CNTNSA, inv INIDTA) many ATTR [modifying] {required}
|..>sometimes contains (CNTNSR, inv INIDTR) many RELMM [modifying] {required}
..>sometimes is implemented (IMPLNTBY, inv IMPLMNTI) many ENTRYPNT

[modifying] {ignore}
..> sometimes used as target of fk (TARGETOF, inv TARGETS) many LINKFK

[modifying] {ignore}
| ..> sometimes contains (CNTNSH, inv INIDTH) many ATTRINH [modifying] {copy}
..<always identifies (IDENTS, inv IDNTBY) one ENTY [modifying] {required}
==> trigger assoc CNTNSA (1), in group B
==>trigger assoc IDENTS (1), in group A
==>trigger assoc CNTNSR (1), in group B
| --> physical structure group “5”

© Texas Instruments 1996 25 i E

Orchestra — Online Decomp

* Composer Information Model 6.0.C7 - Hierarchy
» Composer Information Model 6.0.C7 - Collapsed

— Hypertext help versions of Object
Decomposition Report

— Hierarchy version shows properties and
associations at the levels in the hierarchy at
which they are defined

— Collapsed version shows properties and
associations directly or indirectly inherited by
the object type

© Texas Instruments 1996 26 i E

Translating Diagrams

» To write a program accessing model
information, you must be able to specify the
program in terms of the Information Model

* Objects, properties, and associations are
stored with a numeric type code that
represents the mnemonic

» Each modelis uniquely identified with a
numeric model_id; each object is uniquely
identified with a numeric object _id

— Names are properties

© Texas Instruments 1996 27

Data Model Example

WORKS IN
EMPLOYEE S DEPARTMENT
EMPLOYS

© Texas Instruments 1996 28

Occurrence Diagram

HLENT DSCBYR RELMM
employee DSCPR works_in
)
x
Ll
>
Zz
HLENT DSCBYR RELMM
department DSCPR employs
© Texas Instruments 1996 29
Objects

OBJ_ID OBJ_MODEL_ID OBJ_TYPE_CODE

10 33

11 33

12 33

13 33
*HLENT

**RELMM

© Texas Instruments 1996 30

113*
113
51**
51

Associations

ASSOC_ ASSOC_ ASSOC _
FROM _OBJ ID TYPE_CODE TO_OBJ_ID
10 70* 12
11 70 13
12 186** 13
*DSCBYR
*INVERS
Properties
PROP_ PROP_ PROP_
OBJ_ID TYPE_CODE CHAR_VALUE
10 224* EMPLOYEE
11 224 DEPARTMENT
12 224 WORKS _IN
13 224 EMPLOYS
*NAME

Property Type Codes are not stored on CSE

© Texas Instruments 1996 32

Encyclopedia APl Functions

© Texas Instruments 1996 33

Encyclopedia API

* Read-only C subroutines to access
schema, model, and administrative
information

 Same function call for Host or CSE

* Provided as a static library or dynamic
link library (OS/2 only)

» Header files and example programs
also provided

» Encyclopedia must be active to run

© Texas Instruments 1996 34

©

©

Why API?

* Protected, interpretive access to
model information

» Portability between platforms
* Model lock/unlock during access
» Future expansion of functionality

Texas Instruments 1996 35

API Function Types

« APl administrative functions control access
to the encyclopedia

e Count functions determine number of
occurrences

» Array functions retrieve occurrences
— Allocate memory for the array before call

— Maximum number of occurrences is input
parameter

— Result is lesser of number of occurrences
specified or number in encyclopedia

Texas Instruments 1996 36

B

API Function Categories

© Texas Instruments 1996

Encyclopedia Information
Model Lock/Unlock
Model Information
Association Information
Property Information
Subset Information
Checkout Information
User/Group Information
Authorization Information
Schema Information

37

Referencing the Meta-Model

» Headers provided with Encyclopedia
API support using mnemonics rather
than numeric codes for object, property,
and association types

 If you use APIs from non-C program,
you will need to use the numeric codes

© Texas Instruments 1996

38

©

©

Example: List All Entitiesin Model

* Program specification
— Connectto encyclopedia ‘DBIEFD’
— Logon to encyclopedia as user ‘DAACME’

— Fetch the id for a model, using the model
name ‘COMPOSER 3 TEST’

— Lock the model

— Count the number of entity types
— Fetch the entity types

— Commit to release database locks
— Unlock the model

— Disconnect from the encyclopedia

Texas Instruments 1996 39 i E

Example: List All Entitiesin Model

#include <eapidef.h> /* API header file */
#include <otc.h> /* Mnemonics for Object Type Codes */
/* Use API variable types to define parameters */

EAPIRC rc;

DBPARMS szDBParms;

USERID szUserid;

NAME szModelName;

MODELID nModelld;

ENCYLOCKTYPE elLockType;

LCOUNT ICount;

OBJID * hlentids;

Texas Instruments 1996 40 i E

Example: List All Entitiesin Model

strcpy(szDBParms, “DBNAME=DBIEFD DBUSER= DBPSWD=");
rc = EApiConnectToEncy(szDBParms);

strepy(szUserid, “DAACME”);
rc = EApiLogonUserld(szUserld);

strcpy(szModelName, “COMPOSER 3 TEST");
rc = EApiFetchModelByName(szModelName, &nModelld)

eLockType = EAPI_READ_LOCK;
rc = EApiLockModel(nModelld, eLockType);

rc = EApiCountModelTypeObjs(nModelld, OTC_HLENT, &ICount);

© Texas Instruments 1996 41 2 E

Example: List All Entitiesin Model

/* Allocate space for entity type array */
hlentids = (OBJID *)calloc((size_t)lcount, sizeof(OBJID));

rc = EApiFetchModelTypeObjs(nModelld, OTC_HLENT,
&lcount, hlentids);

rc = EApiCommit();
rc = EApiUnLockModel(nModelld);

rc = EApiDisconnectEncy();

© Texas Instruments 1996 42 2 E

©

©

APl Future Plans

Texas Instruments 1996 43

Composer 4

» Scheduled for 4Q96

* Willinclude Phase Il Encyclopedia API
functionality
— Remote Access
— Access to workstation encyclopedia

Texas Instruments 1996 44

©

API's —
Accessing the Encyclopedia

Session 140

Frances Casey
Texas Instruments

Texas Instruments 1996 45

