
 

 

 

 

 

 

 

 

CA Release Automation  

Puppet Integration 

Best Practice Guide 

 

 

 

 

 

 

 

Author : Walter Guerrero 

Version: 1.2 

Filename: CA-RA-Puppet-Best-Practices-GuideV1.2 

Date:  7/23/2015 



Page 2 of 24 
 

Table of Contents 
Copyright Notice ..................................................................................................................................... 3 

Introduction ............................................................................................................................................ 4 

What is Puppet ........................................................................................................................................ 4 

Pre-Requisites ......................................................................................................................................... 4 

Generic Modules ................................................................................................................................. 4 

Module: ABC ................................................................................................................................... 5 

Module: LinuxFiles .......................................................................................................................... 6 

Puppet Role and Profile ...................................................................................................................... 7 

Module: Profile ............................................................................................................................... 8 

Module: role.................................................................................................................................... 8 

RA Puppet Integration ............................................................................................................................ 9 

Configuration Management ................................................................................................................ 9 

Release Automation Application ...................................................................................................... 11 

Adding Puppet Roles ......................................................................................................................... 11 

Release Automation Dashboards ...................................................................................................... 13 

Sample RA Application .......................................................................................................................... 17 

Create RA Application ....................................................................................................................... 17 

Create RA Deployment ..................................................................................................................... 20 

Best Practices ........................................................................................................................................ 22 

Connecting to Puppet Master ........................................................................................................... 22 

Defining the proper Puppet roles ..................................................................................................... 22 

References ............................................................................................................................................ 24 

 

  



Page 3 of 24 
 

Copyright Notice 

Copyright © 2015 CA, Inc. All rights reserved.  All marks used herein may belong to their respective 
companies. This document does not contain any warranties and is provided for informational 
purposes only. Any functionality descriptions may be unique to the customers depicted herein and 
actual product performance may vary. 
  



Page 4 of 24 
 

Introduction 

Release Automation 5.5.2 introduces the seamless integration with Puppet by PuppetLabs, a 
configuration management product. This integration provides all Release Automation users 
the ability of calling the desired Puppet classes during the Release Automation deployment 
phase. 

What is Puppet 

Puppet is an IT automation software manager that allows system administrators to 
programmatically provision, configure, and manage servers, storage and network devices, 
regardless of the location of these systems whether in a data center or in the cloud. 

For the integration with Release Automation, you can Puppet Enterprise (PE) version 3.7 
and above.  

 

Pre-Requisites 

A pre-requisite is for the Puppet Enterprise has been installed and configured in your local 
systems, once your Puppet Enterprise is up and running and you have installed and 
configured the necessary Puppet nodes, as well as creating the necessary node groups. 

Generic Modules 

To show you how to setup Puppet Enterprise to integrate with Release Automation, we 
need to perform the following steps. 

 The systems to use should be Red Hat or CentOS. CentOS is the preferred version of 
Linux for the Puppet Enterprise installation 

 The Puppet Enterprise agent has been installed and configured in these systems 

After making sure that the Puppet Enterprise agent has been installed in the necessary Linux 
systems, we are going to create two modules1 for verification purposes, you can use your 
modules, if so desired. 

 Change directory to ‘/etc/puppetlabs/puppet/environments/production/modules 

o Run the following command ‘mkdir –p abc/manifests’ 

o Run the following command ‘mkdir –p linuxfiles/manifests’ 

Now, we are going to create the following “classes” for the different modules.  

Puppet classes are named blocks of Puppet code, and they are stored in modules for later 
use; which are not applied until they are invoked by name. 

                                                           
1
 For additional information in how to create Puppet modules, please check the reference section. 



Page 5 of 24 
 

Classes are used to configure large or medium-sized chunks of functionality, such as config 
files, packages, and services that would be needed to run an application. 

Example of a class 

# A class with no parameters 

    class base::linux { 

      file { '/etc/passwd': 

        owner => 'root', 

        group => 'root', 

        mode  => '0644', 

      } 

      file { '/etc/shadow': 

        owner => 'root', 

        group => 'root', 

        mode  => '0440', 

      } 

    } 

 

Module: ABC 

Change directory to the 

‘/etc/puppetlabs/puppet/environments/production/modules/abc/manifests’ and create the files 

with the contents shown below. 

Init.pp 
class abc { 

 notify {'creating files and directory for the abc comp in linux 

nodes':} 

} 

 

Abcdir.pp 

class abc::abcdir { 

  # creating the dir first 

  $abc_dir = '/opt/abc_demo' 

  file {$abc_dir: 

     path => $abc_dir, 

     ensure => directory, 

     mode => '0755', 

     owner => 'root', 

     group => 'root' 

   } 

} 

 

Abcfiles.pp 

class abc::abcfiles { 

   # creating a file first 

   $abc_file = '/opt/abc_demo/abcdemo_file.txt' 

   file {$abc_file: 

     path => $abc_file, 

     ensure => file, 

     content => 'This is a just a simple line added here... \n Another 

line here \n', 



Page 6 of 24 
 

     mode  => '0755', 

     owner => 'root', 

     group => 'root' 

    } 

} 

 

Module: LinuxFiles 

Change directory ‘/etc/puppetlabs/puppet/environments/production/modules/linuxfiles/manifests’ 

and create the files with the contents listed below. 

Init.pp 

class linuxfiles { 

 notify {'creating files and directories for linux nodes!':} 

} 

 

Createdir.pp 

class linuxfiles::createdir { 

 # creating a directory first 

 $demo_dir = '/opt/ra_demo' 

 file {$demo_dir: 

   path  => $demo_dir , 

   ensure => directory, 

          mode  => '0755', 

   owner => 'root', 

   group => 'root' 

 } 

} 

 

 

Createfile.pp 

class linuxfiles::createfile { 

 # creating a file first 

 $demo_file = '/opt/ra_demo/rademo_file.txt' 

 file {$demo_file: 

   path  => $demo_file , 

   ensure => file, 

   content => 'This is just a test to see what is going on 

here...\nHere is a second line to be used...\n', 

          mode  => '0755', 

   owner => 'root', 

   group => 'root' 

 } 

} 

 

After creating the above modules, create the node group for the corresponding modules above, 

named “abc” and “linuxfiles” in the Puppet Enterprise console. 

Create another node group that could be named “RAlinux”, and make sure that nodes allowed to be 

part of this node group is based off the entry listed below. 



Page 7 of 24 
 

 

Figure 1: RAlinux node group node rule 

Add all the classes and sub-classes for the “abc” and “linuxfiles” modules under the “Classes” tab in 

the ”RAlinux” node group as shown below. 

 

Figure 2: Sample Classes added to RAlinux node group 

 

After you have completed all the above steps, it is recommended that you execute the following 

command on each of the Linux nodes that you have setup: “puppet agent –t”.  

This demonstrates that the Puppet modules listed in this guide can be created, added to a node 

group, and executed via the Puppet command listed above. 

 

Puppet Role and Profile 

Role and profile in a Puppet installation are just normal modules with no special features. 
What sets “role and profiles” apart is the how they will be used. Normal modules are 
publicly releasable bundles of code that take care of the configuration for a single 
technology. Whereas “role and profiles” modules are private, site-specific code that 
configure technology stacks (that is what a profile is) and complete configurations for 
categories of nodes (which is what roles are). 

There is a need to define the necessary Puppet profiles (technology stacks), which reference 
the necessary modules that you have either created or have been created for you. 

Afterwards, you will define the necessary roles (the complete configuration), which will 
include the necessary profiles to be used. 



Page 8 of 24 
 

For the seamless integration with Release Automation to be successful, the following 
actions in the Puppet Enterprise installation need to be performed. 

 In the ‘/etc/puppetlabs/puppet/environments/production/modules 

o Create the following directories: ‘mkdir –p profile/manifests’ 

o Create the following directories ‘mkdir –p role/manifests’ 

Please add the necessary entries as shown below to get familiar with the process to be 
followed for the seamless integration with Release Automation. 

 

Module: Profile 

Change directory to the 

‘/etc/puppetlabs/puppet/environments/production/modules/profile/manifests’ and create the files 

with the contents shown below. 

base.pp 
# 

# = Profile: base 

# 

# Manages base and associated software. 

# 

# Including the following as examples in how to defined 

# default entries. For this example, these entries 

# are commented out. 

class profile::base { 

  #include ::stdlib 

  #include ::staging 

  #include ::linuxfiles 

  #include ::abc 

} 

 

profile_linuxfiles.pp 

# this profile makes sure that the linux classes are called correctly 

class profile::profile_linuxfiles { 

  include linuxfiles 

  include linuxfiles::createdir 

  include linuxfiles::createfile 

} 

 

 

profile_abc.pp 

# This profile module contains the abc classes specifically 

class profile_abc { 

   include abc 

   include abc::abcdir 

   include abc::abcfiles 

} 

 

Module: role 

Change directory ‘/etc/puppetlabs/puppet/environments/production/modules/role/manifests’ and 

create the files with the contents listed below. 



Page 9 of 24 
 

init.pp 

# role modules init class 

class role { 

  include profile::base 

} 

 

 

role_linuxfiles.pp 

# this class module will inherit the role class  

# and include the profile_linuxfile class 

class role::role_linuxfiles inherits role { 

  include profile::profile_linuxfiles 

} 

 

role_abc.pp 

# this class will include the abc profile class 

class role::role_abc inherits role { 

  include profile::profile_abc 

} 

 

After you have completed all the above steps, it is recommended that you execute the following 

command on each of the Linux nodes that you have setup: “puppet agent –t” as a sanity check.  This 

command will perform a configuration update on-demand in the foreground with verbose logging 

for the given Puppet node(s). 

Now you need to install the Release Automation agent in the corresponding Puppet (PE) master. This 

is a very important step. 

 

RA Puppet Integration 

Once the Puppet Enterprise (PE) has been installed and configured with the additional modules 

detailed in the prior sections of this document. This section will cover how to setup Puppet (PE) 

connection and setup a Release Automation application to execute the necessary configuration for 

the different server types. 

Configuration Management 

To connect a Puppet Enterprise master to the given Release Automation installation, you will need 

to connect to the Release Automation Release Operations Center (ROC), and go to the 

AdministrationConfiguration Management dialog. 



Page 10 of 24 
 

 

Figure 3: Accessing Configuration Management 

Select the “Puppet” option in the Configuration Management dialog. 

 

Figure 4: The Puppet option in the Configuration Management dialog 

Now, select “+Add New Server” link to bring up the Add Puppet Master Server dialog. 

 

Figure5: The typical entries for a Puppet Enterprise 

The entries that you see in the above image are the default values, where the Puppet Enterprise gets 

installed by default by the Puppet Enterprise installer. 

The default values are: 

 Execution Location 

o /opt/puppet/bin 

 Configuration Location 

o /etc/puppetlabs/puppet 

Please click the “Validate” button to verify that Release Automation can communicate with the 

Puppet master. 



Page 11 of 24 
 

 

Figure 6: Typical Puppet master configuration in RA 

 

Release Automation Application 

Now that you have connected the Puppet (PE) master with Release Automation, we need to perform 

the following actions. 

 Create an RA application 

 Create at least one server type 

 Create the necessary architectures and map the server types to it 

 Include the necessary  components (actions and flows) 

 Create the necessary environments 

 Create and publish the necessary processes 

After creating the logic of the RA application, we need to create a deployment release, so the 

following steps are necessary. 

 Create a template category 

 Create a deployment template and add the necessary steps  

 Create a deployment 

 Create a project 

 Create a deployment plan  

Adding Puppet Roles 
Once you have executed the newly created application successfully, we will need to select the 

correct Puppet role to use with the Release Automation application. 

Select the EnvironmentsParameter Configuration menu option from the Release Automation ROC. 



Page 12 of 24 
 

 

Figure 7: Select Parameter Configuration 

Now we need to select the desired environment where the Puppet (PE) role will utilized. 

 

Figure 8: Parameter Configuration Environments 

The default view will be the type of configuration that will be taking place, in this case this is 

defaulting to “Puppet”. 

 

Figure 9: Typical view of the puppet configuration parameter 

Now you select the RA server type association, the puppet master, and the puppet environment to 

utilize. 

 

Figure 10: Selecting a server type and puppet environment 



Page 13 of 24 
 

 

Click on the “Select” button and select the desired puppet role that will be used with this Release 

Automation application. 

 

Figure 11: Selecting a Puppet role 

Now we can launch a new deployment based off the deployment template that you have already 

created.  As the deployment is executing, you will see in the “Pre-Deployment” tab, how the puppet 

role that was selected is being used to execute on the designated puppet nodes. 

 

Figure 12: Typical deployment with Puppet integration 

After setting up the integration between Release Automation and Puppet (PE), you can setup the 

desired RA dashboard to show any type of configuration management baseline drift. 

Release Automation Dashboards 

Release Automation started providing dashboard capabilities starting with release 5.5.0, now that 

the Puppet seamless integration has been completed, we are going to go over the additional 

dashboard that are presently available that can provide you with a graphical representation of the 

different configuration management as executed by Release Automation. 



Page 14 of 24 
 

When logging into the Release Operations Center UI you are presented with the default Dashboard 

as shown below: 

 

Figure 13: Typical RA dashboard 

You can change this default page be deleting the existing widgets and adding your own or you 

can create a new Dashboard by selecting the “+”, provide a name, and select the layout/format. 

 

Figure 14: Adding a new dashboard 

Then select your new Dashboard and proceed to add Widgets and/or Reports.  You can select 

the “+” in the upper right hand corner or in the center of the page.  This will open a new dialog 

with two tabs to select from, one for Widgets and the other for Reports.  There are two Widgets 

and three Reports that are helpful for reviewing Configuration Management information. 



Page 15 of 24 
 

 

Figure 15: Selecting dashboard content 

 

The Run Configuration Throughput & Success Rate shows the status of the configuration run 

during the deployment, not the deployment itself.  For the data to populate, you are required to 

specify the configuration manager type, and define the parameters in the same manner as 

mentioned above.   

 

 
Figure 16: Sample Configuration throughput  

 

The Configuration Management Deployment Overview report provides information regarding 

the configuration run during the deployment.  As with content configuration mentioned above, 

you have the same configuration functionality, i.e. the display of one or more Applications, one 

or more Projects, and one or more environments, for the timeframe specified. 

 



Page 16 of 24 
 

 
Figure 17: Sample configuration management deployment 

 

The Deployment Comparison Report shows a deployment in its different environments for 

comparison or to identify discrepancies during the deployment.  It includes comparative details for 

parameters and artifacts that are listed through Environment Configuration. The comparisons 

include, for example, a side-by-side listing of baselines between two deployments. For each server 

type, the Environment Configuration section compares the following items: 

 The RA Environment, the Puppet environment, the Puppet master, Puppet role, Puppet 

node list, and Puppet role configure result. 

 

 
Figure 18: Sample comparison report 

          

The Deployments Overview Reports provides an overview of current and historical deployments. By 

default, the report does not show all deployments and you are required to set the Start and End 

Time filters.  As with the Configuration Management Deployment Overview report mentioned above 

in step 6, Deployment name is a link that will display the deployment information at the time of 

deployment.  However, unlike that same report, where you can select the content configuration, 



Page 17 of 24 
 

here you will need to configure the time stamp filter as shown below.  Once you retrieve the data, 

you can Save the report for review at a later date. 

 

Figure 19: Sample deployment overview  

              

Sample RA Application 
 

To review that we can accomplish all the steps to integrate the Puppet configuration management 

system with Release Automation, we are going to create a sample application. Prior to creating this 

application, we are under the assumption that the connection with the Puppet master has been 

setup, validated, and it is active. 

Create RA Application 
 

Let’s start by creating the sample RA application and call it “Puppet-Demo”, let’s add the following 

server type: Linux as shown below. 

 

After that, let’s add the following architectures: Dev Arch and QA Arch, as shown below. 



Page 18 of 24 
 

 

Now let’s add the environments as shown below, you might have to rename the default 

environment to “Dev Env” 

 

Move to the “Process Design”, and add the “Delay” action and the “Delay-Loop” and “Delay-Run” 

flows as shown below. 

 

For the “Delay-Loop” flow, add a FOR type loop, and iterate thru it 5 times as shown below. 



Page 19 of 24 
 

 

For the “Delay-Run” flow, just link two Delay actions as shown below. 

 

Now, you need to switch to the “Process” tab and create two processes as shown below. These are 

the same names as the flows that you created previously. Please publish these processes to the “Dev 

Env”. 

 

 



Page 20 of 24 
 

Create RA Deployment 
After the RA application processes have been published, we need to create a deployment release, so 

we start by creating a release template as shown below. 

 

Create a deployment template with the steps shown below. 

 

Now create a deployment plan by clicking on the “Create Deployment Plan” button. 

 

Create a deployment project plan as shown below. 

 

Now we need to assign a Puppet role to the “Dev Env” as shown below. 



Page 21 of 24 
 

 

Add the desired Puppet role by clicking on the “Select Role” button, and select the role as shown 

below, and click the “Save” button. 

 

Let’s go back to the “ReleasesDeployment Plans by Projects”, and select the “Puppet-Simple” 

deployment plan. 

 

Now you need create a deployment as shown below. 



Page 22 of 24 
 

 

The end result of this deployment will be that in the “Pre Deployment” tab, you will see under the 

Environment Configuration the Puppet (PE) configuration running, and once that has completed 

running; you can use the dashboard reports detailed in the prior section to see if you have had any 

type configuration drift. 

 

Best Practices 

The following best practices are presented to help in running Puppet configurations via Release 

Automation. 

Connecting to Puppet Master 

To make sure that you have a valid connection to a puppet master; please make sure that the 

Release Automation agent is installed in the Puppet master and the Puppet agent. At the same time, 

you need to make sure that the Puppet installation is the Puppet Enterprise 3.7 or greater and install 

the puppet agent from the puppet master as defined by Puppet Labs. 

Defining the proper Puppet roles 

A Puppet role can contain as many Puppet profiles as required, so it becomes of the most 

importance that you create the proper Puppet roles, since only one role can be associated with the 

puppet nodes. 

 



Page 23 of 24 
 

The Configuration Run stage during the active deployment can be skipped, by returning to the 

Environment Configuration steps as shown above and selecting the Disable Selected Role.  Then 

select Save to save the current Environment Configuration.  At this point return to the Deployment 

and upon selecting Run, the Configuration Run will be skipped. 

 

  



Page 24 of 24 
 

References 
 

Release Automation 

https://wiki.ca.com/display/RA55/How+to+Set+Up+an+Application  

https://wiki.ca.com/display/RA55/How+to+Create+a+Deployment+Template 

https://wiki.ca.com/display/RA55/How+to+Create+a+Deployment 

 

Puppet Labs 

http://docs.puppetlabs.com/pe/latest/puppet_overview.html 

http://docs.puppetlabs.com/pe/latest/puppet_modules_manifests.html 

http://docs.puppetlabs.com/puppet/3.8/reference/lang_resources.html 

http://docs.puppetlabs.com/puppet/3.8/reference/lang_relationships.html 

http://docs.puppetlabs.com/pe/latest/puppet_assign_configurations.html#assigning-configuration-

data-with-role-and-profile-modules  

http://docs.puppetlabs.com/puppet/3.8/reference/lang_classes.html  

 

 

 

 

 

https://wiki.ca.com/display/RA55/How+to+Set+Up+an+Application
https://wiki.ca.com/display/RA55/How+to+Create+a+Deployment+Template
https://wiki.ca.com/display/RA55/How+to+Create+a+Deployment
http://docs.puppetlabs.com/pe/latest/puppet_overview.html
http://docs.puppetlabs.com/pe/latest/puppet_modules_manifests.html
http://docs.puppetlabs.com/puppet/3.8/reference/lang_resources.html
http://docs.puppetlabs.com/puppet/3.8/reference/lang_relationships.html
http://docs.puppetlabs.com/pe/latest/puppet_assign_configurations.html#assigning-configuration-data-with-role-and-profile-modules
http://docs.puppetlabs.com/pe/latest/puppet_assign_configurations.html#assigning-configuration-data-with-role-and-profile-modules
http://docs.puppetlabs.com/puppet/3.8/reference/lang_classes.html

