

CA Release Automation

Token Support

Best Practices Guide

Author : Walter Guerrero

Version: 1.4

Filename: CA-Release-Automation-Token-Support-Best-Practices-GuideV1.4

Date: 3/18/2015

Page 2 of 15

Table of Contents
Overview ... 3

Setting up a Token .. 3

Token Masks ... 3

Token Type .. 3

Token Custom Masks .. 5

Metacharacters supported ... 5

Quantifiers supported ... 6

Brackets supported ... 7

Custom mask - number token ... 8

Custom mask – string token.. 9

Artifacts Using Tokens .. 9

Tokenizing artifact type .. 10

Tokens and Manifest Files... 10

Best Practices .. 11

Number of tokens to use .. 11

Number of token manifest files to use ... 12

Artifacts affected by tokens .. 12

Simple Use case .. 12

Copyright Notice ... 15

Useful Links ... 15

Page 3 of 15

Overview

Starting with release 5.5.0 of Release Automation, the concept of “tokens” has been
introduced. Tokens provide the user with the ability of providing different values for
different token values within configuration files based on the environment that is being
used.

Tokens work very closely with artifact definitions. Tokens can also be used for replacement
of objects that are part of a file.

Tokens provide you with a lot of flexibility when it comes to replacing file contents that have
been downloaded by Release Automation to a given server, this is very important when you
are dealing with different environments and tokens reduce the number of errors at
deployment time.

Setting up a Token

The token administration is accessed via the “AdministrationToken Management” option
in the ROC. Let us go over how to setup tokens and available options, there are two main
areas that you will have to concentrate prior to the creation of a token.

Token Masks

Masks are used to enforce validation on token values. The pre-defined masks that have
been created deal with enforcing validation of IP and email addresses, for custom mask you
will defined the validation rule.

The pre-defined masks apply to String and Number token types.

 Predefined
o IP address
o email

 Custom
o The value that you provide for the token must match the mask

Token Type

There are four available token types that you can use. For the String and Number types, you can use

pre-defined masks, whereas for the Boolean type, you can only have “True or False”; for a password

type, you get to enter the password, which will be masked.

 Boolean

 Number

 String

 Password

Page 4 of 15

Figure 1: Typical token creation

Once the tokens that you will be using have been defined as shown below, we are going to have to

create

Figure 2: Token definitions as shown in the RA ROC

After the tokens have been defined, you can setup the necessary values for the environments that

you have already defined. This is accomplished by selecting “EnvironmentParameter

ConfigurationTokens”.

Page 5 of 15

Figure 3: Token values at the environment level

Any environment level changes can be saved and be reflected for the given token.

Token Custom Masks

The custom masks for the Release Automation token are based off the JavaScript regular expressions

(regex), below is the list of the regular expression syntax

Metacharacters supported

These are special characters that will be used for to control what type of character, how to search

for a word, and other conditions.

Metacharacter Description

. Find a single character, except newline or line

terminator

\w Find a word character

\W Find a non-word character

\d Find a digit

\D Find a non-digit character

\s Find a whitespace character

http://www.w3schools.com/jsref/jsref_regexp_dot.asp
http://www.w3schools.com/jsref/jsref_regexp_wordchar.asp
http://www.w3schools.com/jsref/jsref_regexp_wordchar_non.asp
http://www.w3schools.com/jsref/jsref_regexp_digit.asp
http://www.w3schools.com/jsref/jsref_regexp_digit_non.asp
http://www.w3schools.com/jsref/jsref_regexp_whitespace.asp

Page 6 of 15

\S Find a non-whitespace character

\b Find a match at the beginning/end of a word

\B Find a match not at the beginning/end of a word

\0 Find a NUL character

\n Find a new line character

\f Find a form feed character

\r Find a carriage return character

\t Find a tab character

\v Find a vertical tab character

\xxx Find the character specified by an octal number

xxx

\xdd Find the character specified by a hexadecimal

number dd

\uxxxx Find the Unicode character specified by a

hexadecimal number xxxx

Quantifiers supported

Quantifiers are used to match the desired number of characters.

Quantifier Description

n+ Matches any string that contains at least one n

n* Matches any string that contains zero or more

occurrences of n

http://www.w3schools.com/jsref/jsref_regexp_whitespace_non.asp
http://www.w3schools.com/jsref/jsref_regexp_begin.asp
http://www.w3schools.com/jsref/jsref_regexp_begin_not.asp
http://www.w3schools.com/jsref/jsref_regexp_nul.asp
http://www.w3schools.com/jsref/jsref_regexp_newline.asp
http://www.w3schools.com/jsref/jsref_regexp_formfeed.asp
http://www.w3schools.com/jsref/jsref_regexp_carriagereturn.asp
http://www.w3schools.com/jsref/jsref_regexp_tab.asp
http://www.w3schools.com/jsref/jsref_regexp_vtab.asp
http://www.w3schools.com/jsref/jsref_regexp_octal.asp
http://www.w3schools.com/jsref/jsref_regexp_hex.asp
http://www.w3schools.com/jsref/jsref_regexp_unicode_hex.asp
http://www.w3schools.com/jsref/jsref_regexp_onemore.asp
http://www.w3schools.com/jsref/jsref_regexp_zeromore.asp

Page 7 of 15

n? Matches any string that contains zero or one

occurrences of n

n{X} Matches any string that contains a sequence of X n's

n{X,Y} Matches any string that contains a sequence of X to

Y n's

n{X,} Matches any string that contains a sequence of at least

X n's

n$ Matches any string with n at the end of it

^n Matches any string with n at the beginning of it

?=n Matches any string that is followed by a specific string n

?!n Matches any string that is not followed by a specific

string n

Brackets supported

The brackets are used to find the range of characters.

Expression Description

[abc] Find any character between the brackets

[^abc] Find any character NOT between the brackets

[0-9] Find any digit between the brackets

[^0-9] Find any digit NOT between the brackets

(x|y) Find any of the alternatives specified

http://www.w3schools.com/jsref/jsref_regexp_zeroone.asp
http://www.w3schools.com/jsref/jsref_regexp_nx.asp
http://www.w3schools.com/jsref/jsref_regexp_nxy.asp
http://www.w3schools.com/jsref/jsref_regexp_nxcomma.asp
http://www.w3schools.com/jsref/jsref_regexp_ndollar.asp
http://www.w3schools.com/jsref/jsref_regexp_ncaret.asp
http://www.w3schools.com/jsref/jsref_regexp_nfollow.asp
http://www.w3schools.com/jsref/jsref_regexp_nfollow_not.asp
http://www.w3schools.com/jsref/jsref_regexp_charset.asp
http://www.w3schools.com/jsref/jsref_regexp_charset_not.asp
http://www.w3schools.com/jsref/jsref_regexp_0-9.asp
http://www.w3schools.com/jsref/jsref_regexp_not_0-9.asp
http://www.w3schools.com/jsref/jsref_regexp_xy.asp

Page 8 of 15

The most common JavaScript regular expressions that you will see being used are:

Expression Description

. Matches any character

^regex Finds regex that must match at the beginning of the line.

regex$ Finds regex that must match at the end of the line.

[abc] Set definition, can match the letter a or b or c.

[abc][vz] Set definition, can match a or b or c followed by either v or z.

[^abc] When a caret appears as the first character inside square brackets, it negates the

pattern. This ccontent/an match any character except a or b or c.

[a-d1-7] Ranges: matches a letter between a and d and figures from 1 to 7, but not d1.

X|Z Finds X or Z.

XZ Finds X directly followed by Z.

$ Checks if a line end follows.

Based on the JAVA regular expressions above, we are going to provide some example to get you

going.

Custom mask - number token

The following are examples of how to create the different number masks

 999999.99  Enter up to that value with two digits for the suffix value, i.e. 128474.45

 \d{6}  A number with a fixed value of 6 digits, i.e. 123456

Page 9 of 15

 ^[-0-9].*  Enter a number (positive or negative) with a floating suffix, i.e. 234, -204.02,

93.394

Custom mask – string token

The following examples are for string masks

 ^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$  Hex values with a minimum of 3 characters and a
maximum of 6 characters, i.e. #3F0, #FFA

 (0?[1-9]|[12][0-9]|3[01])/(0?[1-9]|1[012])/((19|20)\d\d)  Date format in the form of

DD/MM/YYYY, i.e. 10/03/2015

 (0?[1-9]|1[012])/(0?[1-9]|[12][0-9]|3[01])/((19|20)\d\d)  Date format in the form of

MM/DD/YYYY, i.e. 03/10/2015

 ([01]?[0-9]|2[0-3]):[0-5][0-9]  Time in a 24 hour format, i.e. 18:20

 ^([0-9]|([1][0-2])):[0-5][0-9][[]]?([ap][m]?|[AP][M]?)  Time in a 12 hour format, i.e. 7:30

am

 ([^\s]+(\.?([jpg|png|gif|bmp]?|[JPG|PNG|GIH|BMP]?))$)  Image file extension, i.e.

tester.jpg

 ^[a-z0-9_-]{3,15}$  Username, i.e. rauser

 ^[_A-Za-z0-9-]+(\.[_A-Za-z0-9-]+)*@[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2,})$  email

address, i.e. demouser@anycompany.com

 ^([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\\d?|2[0-4]\d|25[0-

5])\.([01]?\d\d?|2[0-4]\d|25[0-5])$  IP address, where you could just set this up to look

at a specific subnet, if so desired

As it has been demonstrated above, the JAVA based regular expression are a powerful

mechanism to setup the desired Release Automation token’s custom mask.

Artifacts Using Tokens

Once you have defined the tokens, you can either modify existing files or create new files
that will contain the token objects. A token object is defined as follows:

 @@TOKEN@@

 Given the token samples that I have created above, these values would represented
as follows:

o @@Boolean-Token@@
o @@Number-Token@@
o @@Password-Token@@
o @@String-Token@@

An example of what the modified/created file that will handle Release Automation’s tokens
correctly is presented below.

Page 10 of 15

Figure 4: A file containing RA defined tokens

This represents how to setup the Release Automation’s tokens in a file that has been added
to the software package repository and it will be deployed and executed by Release
Automation based on the defined tokens.

Tokenizing artifact type

For the artifact type that you have defined, you will need to “tokenized” for the artifact
definition to perform the replacement of the token with the token contents for the given
environment. Below is an example of how to “tokenized” the artifact type.

Figure 5: Setting Tokenization for artifact type

By default the tokens have been setup to “@@TOKEN@@”, which correlates to how the
token tag has been defined in the artifact file. This can be changed to reflect your coding
standards.

Tokens and Manifest Files

In the Release Automation’s token facilities can also create the necessary manifest files,
which can be used to setup the necessary token values at deployment time. Manifest files

Page 11 of 15

can be downloaded or uploaded via the Manifest drop-down option in the Token Definitions
or Environment Parameter configuration.

Figure 5: Manifest drop-down on right-hand corner

Here is a sample of the tokens manifest that I downloaded for demonstration purposes.

Figure 6: Sample Token Manifest File

Manifest files provide you with the flexibility of determining the correct values for the token
values that will be passed to the different artifacts for processing.

Best Practices

The following best practices will help you in determining the best method to follow in the
usage of tokens.

Number of tokens to use

One of the first steps that you have to take prior to starting the creation of the tokens that
will be used for a given application:

 Number of tokens needed

 How generic are these tokens?

 Are the tokens only specific to one environment?

 Do you need to modify the token mask from “@@TOKEN@@” to your coding
standards?

Page 12 of 15

Number of token manifest files to use

The number of token manifest files to be maintained, how many different manifest files are
going to be utilizing for a given Release Automation application.

Artifacts affected by tokens

At the same time that you are determining the number of tokens to use for a given
application, you need to pay attention to the number of software package artifacts that will
be affected by these Release Automation tokens

It is recommended that you add in the comment for the artifact definition that this artifact
makes use of Release Automation tokens for its successful processing.

Simple Use case

To help you in the understanding of how to use the Release Automation token functionality, we are

going to create a very simple that performs a series of delay actions lasting about 30 seconds each

and adding a user input action to the flow and processes to see how the token values will be

updated.

 Create a Release Automation application

 Setup the corresponding server types, architectures, and environments

 Access the “AdministrationToken Management” in the ROC (Release Operations Center)

 Create the following tokens

Page 13 of 15

 Now we need to add entries to the tokens for the different environments, this can be

performed at the “EnvironmentParameter ConfigurationTokens”

 Now move to Artifacts

 Create a new artifact type and call it “Tokens_Demo.properties” as shown below.

 Make sure that this resides in the “C:\temp” of the Release Automation server prior to

creating an artifact definition for it

 Map the components that you have created in this application to this artifact type, and

make sure that you select the “Tokenized File for… @@TOKEN@@”

 Add an artifact definition based on the file name above

 Add a version to this artifact definition, remember where the file presently resides in the

Release Automation server, since it will be a local file

 Now, we need to switch to the “DesignerProcess Design” and add the following actions:

delay, copy files or folders, and User Input – Stop for Manual Operation

 Create a flow and call it “delay-loops”

Page 14 of 15

 Setup the flow to utilize a loop type: COLLECTION and the input is going to be the “Tokens

Demo” artifact type

 The source path field in the “Copy Files and Folders” action that is part of the flow needs to

have the “Artifact File” parameter needs to be added here

 Create the “c:\temp\demo” folder in the Release Automation server

 Create a process “Tokens Demo” and publish it

 Now we need to switch to “ReleasesTemplate Categories” and create the following

o Template category

o Deployment template

o Add the process that you have already published, and add it as deployment step

o Deployment plan

o Create a project

o Create a new deployment off the deployment template

o Add an artifact package based off the artifact type that you created previously

o Create a deployment

 Once the deployment is running and you get to the user input action

Page 15 of 15

 You can switch to the RA server and check the status of the file that has been placed in the

“c:\temp\demo” folder

 The contents of the downloaded file will be as shown below

This demonstrate the power of the tokenization of the different values being passed in the different

environments that you have setup for your Release Automation application.

Copyright Notice
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their
respective companies. This document does not contain any warranties and is provided for
informational purposes only. Any functionality descriptions may be unique to the customers
depicted herein and actual product performance may vary.

Useful Links

https://wiki.ca.com/display/RA55/Tokens

https://wiki.ca.com/display/RA55/CA+Release+Automation+Home

Mozilla JavaScript Guide Regular Expressions

https://wiki.ca.com/display/RA55/Tokens
https://wiki.ca.com/display/RA55/CA+Release+Automation+Home
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

