
Service-Oriented Design in a
Large Plex Project

Customer Case

Contents

 Speaker and Project

 SOA Interpretation and Focus

 Separate Development Models Accessed
through Interface Model

 Stable Interfaces by Restriction of
Parameters

 Stable Interfaces by Versions

 Transactions and Server-Side Validation

SPEAKER AND PROJECT

About the Speaker

 Morten Knudsen

 Danish Post IT Department

 M.Sc. Computer Science

 Zurich Insurance

 Soft Design (Websydian Development)

 KODA – Head of IT development

 Various…

 Soft Design (Project leader, Consultant)

About the SIF Project

 Insurance application built from scratch using
Plex

 7 Plex development models

 20 Plex developers

 SOA approach – focus on server functionality

 Online synchronization with existing system

 Soft Design is a sub-contractor (5-7
consultants)

SIF: Websydian, Ext-js, Ajax, Java

SOA INTERPRETATION AND
FOCUS

SOA Definition

 ”SOA establishes an architectural model that
aims to enhance the efficiency, agility, and
productivity of an enterprise by positioning
services as the primary means through
which solution logic is represented in
support of the realization of the strategic
goals associated with service-oriented
computing.”

Thomas Erl (http://www.whatissoa.com)

SIF – Collection of Services

 Collection of services accessed from
client programs and external systems

Plex/Websydian

SIF Client Pgm.

SIF Application – Collection of services

(Plex)

Exposed services

Non-Plex

Client Pgm.

External

Systems

Plex/Websyd.

Cust. Client Pgm.

SIF – Collection of Services

 Pragmatic approach taken in
implemented system

Plex/Websydian

SIF Client Pgm.

SIF Application – Collection of services

(Plex)

Exposed services

Non-Plex

Client Pgm.

External

Systems

Plex/Websyd.

Cust. Client Pgm.

Services in SOA Architecture

 Client/External

 Server

 Database

SIF application regarded as set of services

S1

EX 1
UI 2

UI 5

UI 3

UI 4

S10S7

S3S2

S9

S5

S11

S8

S6S4

S12

E2E1 E3 E4 E5 E6

UI 1

Presentation

Services/transactions

Database (tables/views){Server

SIF Application Architecture

Flow

Building blocks
Rules/validations

{Client

Presentation

Services/transactions

Database (tables/views){Server

Decoupling the Role of the Client and
the Server

Flow

Building blocks
Rules/validations

{Client

SOA Focus in SIF Project

 From Plex we get:

 Modularization

 Single-view access for each function

 Alternative to portions of inline code

 Focus on interfaces, not implementation

 Expose selected programs as web services
(TransacXML)

Plex is also a great tool for organization, reuse and

documentation of code (but this is not particularly SOA)

SOA Focus in SIF Project

 Additional focus on stable interfaces

 Further modularization

 Business focus

 Test bench applied for services…

 Further stabilisation of function interfaces
by restriction of parameters

 Versions of services

 Responsibility and ownership

 Statefull versus stateless…

4 SOA-Related Issues in This Presentation

 1) Interfaces

 Separate development models accessed through
interface model

 2) Interfaces

 Stable interfaces by versions

 3) Interfaces

 Stable interfaces by restriction of parameters

 4) Interfaces

 Server-side validation providing a single interface
to main transactions comprising validation rules

1) SEPARATE DEVELOPMENT
MODELS ACCESSED THROUGH
INTERFACE MODEL

SOA – Separate Systems

Principle applies for large-scale applications as well as

programs and components

SOA – Establish Interfaces

Split Application Database into
Separate Models

System Party Agreement Claim DMR . . .

. . .SIFAPI

Plex Models

System Agreement . . .

. . .SIFAPI

A1

Interface

Implementation

(code)

S2

Interface

Implementation

(code)
S1

Interface

Implementation

(code)

S2

Interface

API Model as Service Catalogue

 SIFAPI model contains only
interface specification

SIFSERVICES

. . .

. . .SIFAPI

Customer

development

(Plex)

3. Party

Development

(Non-Plex)

System Party Agreement Claim DMR

Customer

development

(Non-Plex)

Customer Access to SIF Services

Customer development

Customer

Plex Models

Non-Plex

udvikling 1Non-Plex

udvikling 2Non-Plex

development 3

SIF development

SIFSERVICES

SIF Application

Web services

Purpose of Splitting

 SOA-principles applied to internal
application structure

 Ownership and responsibility

 Possibility to replace model/subsystem

 Simple API Plex model handed over to
Customer

2) STABLE INTERFACES BY
VERSIONS

SIFSERVICES

. . .

. . .SIFAPI

Customer

development

(Plex)

3. Party

Development

(Non-Plex)

System Party Agreement Claim DMR

Customer

development

(Non-Plex)

Do Not Change Service Interfaces

 First published, Parameter interfaces of
services in catalogue (SIFERVICES)
must be stable

 Internal logic may be modified/corrected

 Define new version of service

 Create and ‘publish’ new service (function)

 Calling functions may shift to new version

 Existing service remain stable

New Version of a Service

Before: After:

3) STABLE INTERFACES BY
RESTRICTION OF PARAMETERS

Use of Views in Parameter Lists of
Abstract Functions

 Fetch.SingleFetch

 Fetch view as output in Output/FetchedData

 Fetch.BlockFetch

 Fetch view (64) as output in Output/FetchedData

 Update.InsertRow

 Update view as dual input in Input/InsertData

 Update.UpdateRow

 Update view (non-key) as dual input in
Input/InsertData

Use of Views in Parameter Lists

 Bold arrows denotes
calls to functions
containing full-entity
views in their
parameter lists.

Entity X

Entity Y

Entity W

Entity Z

Restricted Use of Fields in Parameter Lists

Entity X

Entity Y

Entity W

Entity Z

Only selected fields in

parameter lists of functions

Abstract RelationalTableSelected
entity

 Traditional naming of
Physical table and Update
and Fetch view

 Keys views…

 LookupRow as only
implemented function

 Functions scoped under
_Abstract view…

Example of SingleFetch Function

 Only selected fields in
FetchedData variable

How Does Parameter
Restriction Relate to Stable

Interfaces?

General or Granular?

 General Granular

Function A

SingleFetch

Function B

Function C

Function D

Function A SF A

Function B

Function C

Function D

SF B

SF CD

Function X

Perform

transaction

Function Y

Function Z

Function V

Function X Perform

Transaction 1
Function Y

Function Z

Function V

Perform

Transaction 2

Granular Design?

Pros
 Robustness towards addition of

fields and relation to entities

 Reduction of amount of
objects/functions to be generated
when changing data model

 Less interference in change
management

 Simple design and easy-to-
understand functions

 Use of individual fields can be
tracked

Cons

 Many implemented
objects

4) TRANSACTIONS AND
SERVER-SIDE VALIDATION

Transactions as Key Concept

 Services should have well-defined input,
output and behaviour

 Focus on business and requirements

Transaction

Data model

Work flowUser interface

Scheduled

jobsActivity log

Commitment

control

Server-Side Validation

Client

Server

Event

handler

Traditional (client-

side) implementation

Transac

tion

V1 V2 V3

1

3

2

Error on

page

Event

handler

V1 V2 V3

1

2

3

Error on

page
(formatted)

Error-log
(data)

4

(Handle)

New (server-side)

implementation

Transac

tion

Interface
Interface

*Returned status Used as Error Message
Pointer

 Server-side validation

 Error state passed back in *Returned status as a
pointer to list of messages

 Expected output as contents of list

 Compare with actual list returned by transaction

 Error message list facilitated by Websydian
Express…

Function

X

M1

*Returned status

M2 M3 M4

4 messages generated

Resulting output: M1,M2,M3,M4

Validation rules associated to data
and transactions

1. Data validation

2. Function
validation

3. Validation in
transaction

4. Perform
transaction

Client Server

Event

handler

Transac

tion

Info at error (handle)

Server-Side Validation and Message
Generation

Event

handler

V1 V2
V3

1

2

5

AJAX-based

formatting of

errors

Error log
(data)

Register

MessageID

3

4

6

7

84

9

MX

MessageID

Register

MessageID

MD

MC

MB

MA

1) Call transaction for Event handler

2) Call associated validations from transaction

3) Perform validation functions

4) Call message function (on error)

5) Create record for error message (on error)

6) Perform transaction

7) Call next page or call error on page

8) Retrieve error message(s) associated to MsgID

9) Display and mark errors in page

Next

page

Transa

ction

Meta code applying

validation rules

moved from client

layer to transactions

