
Preparing for Large-Scale Development

Morten Knudsen, Soft Design

2 Copyright © 2013 CA. All rights reserved.

Morten Knudsen

Soft Design, Consultant

 This presentation will take you through knowledge on starting

large Plex projects. This has been gathered in Soft Design

through projects, employees, and partners and extended by

the introduction of new Websydian products. It also reflects an

increased focus on a service-oriented approach to Plex

development.

 The presentation will go through a number of relevant

decisions and considerations to be made, standards and

abstractions to be used, and questions to be asked before

starting up real-life Plex projects.

Abstract

 Introduction

 Organization of Plex Development Models

 Specification of Function Parameters

 Scoping and Naming

 Service-Oriented Architecture

 Error Reporting and Sanity Checking

 Questions and Answers

Agenda

This presentation was based on current information and resource allocations as of April 2013 and is subject to change or

withdrawal by CA at any time without notice. Notwithstanding anything in this presentation to the contrary, this presentation

shall not serve to (i) affect the rights and/or obligations of CA or its licensees under any existing or future written license

agreement or services agreement relating to any CA software product; or (ii) amend any product documentation or

specifications for any CA software product. The development, release and timing of any features or functionality described

in this presentation remain at CA’s sole discretion. Notwithstanding anything in this presentation to the contrary, upon the

general availability of any future CA product release referenced in this presentation, CA will make such release available (i)

for sale to new licensees of such product; and (ii) to existing licensees of such product on a when and if-available basis as part of

CA maintenance and support, and in the form of a regularly scheduled major product release. Such releases may be made

available to current licensees of such product who are current subscribers to CA maintenance and support on a when and

if-available basis. In the event of a conflict between the terms of this paragraph and any other information contained in this

presentation, the terms of this paragraph shall govern.

Certain information in this presentation may outline CA’s general product direction. All information in this presentation is for

your informational purposes only and may not be incorporated into any contract. CA assumes no responsibility for the accuracy

or completeness of the information. To the extent permitted by applicable law, CA provides this presentation “as is” without

warranty of any kind, including without limitation, any implied warranties or merchantability, fitness for a particular purpose, or

non-infringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document,

including, without limitation, lost profits, lost investment, business interruption, goodwill, or lost data, even if CA is expressly

advised in advance of the possibility of such damages. CA confidential and proprietary. No unauthorized copying or distribution

permitted.

FOR INFORMATION PURPOSES ONLY

Terms of this presentation

Introduction

 KODA (Danish Composers)

 MSG/Synchronicer

 Danish Film Directors

 SIF Insurance

Participation in Start up of Several Large Projects

+40 Man Years

 Uniform, transparent, and predictable

 Facilitation of reuse

 Robustness to changes

 Declarative and high-level rather than procedural code

 Layered design, service-oriented

 Quality (detect and reduce errors)

 Performance

Organize Development Model to Facilitate Key Design
Goals

 Should have been covered

– Various coding standards

– System documentation

 Not covered (not Plex model issues)

– Project management, staffing, and organization

– How to enforce decided standards

– User participation

– Specification

– Test

Only Selected Model Issues Covered by Presentation

Some decisions are hard to redo once been taken and

development has started

Organization of Plex
Development Models

 Share abstract model between multiple development models

 Reuse abstract definitions across multiple projects/customers

 High ambitions…

Abstract Patterns and Components in Separate Model(s)?

COMP_ABSTRACT

CUST_ABSTRACT

DEV1 DEV2

Model splitting is overhead

COMP_ABSTRACT

DEV1 DEV2DEVELOP

ABSTRACT

 User Interface

– Panel/menu functions, Page generators, event handlers

 Transaction/services

– Server functions for update and retrieval

 Database

– Entity and field definitions, ‘rule functions’

Horizontal versus Vertical Splitting of Development Models

User Interface

Transactions/Services

Database/Rules

Plex Model Splitting Based on Inter-Connected Subject
Areas in Data Model

 Typical development tasks

– Involves components in several layers

– Cross-model development

 Entity patterns span multiple application layers

– Less likely to cross data model boundaries

 Even larger overhead if different developers/roles are

responsible for each layer

Application Layers Splitting across Development Tasks and
Entity Patterns

User Interface

Transactions/Services

Database/Rules

Use API Model to Separate Development Models

APIMDL

MDL_A

(MA)

MDL_B

(MB)

MDL_C

(MC)

MDL_D

(MD)
. . .

. . .

MDL_E

(ME)

MDL_A

(MA)
MDL_B

(MB)

MDL_C

(MC)

MDL_D

(MD)

MDL_E

(ME)

Entity Keys and Interface Specification only in API Model

MDL_S MDL_P . . .

. . .APIMDL

P1

Interface

Implementation

(code)

S2

Interface

Implementation

(code)
S1

Interface

Implementation

(code)

S2

Interface

Calls

 Pros

– Smaller models (faster update and extraction)

– Encapsulation at model level

– Focus on interface rather than implementation

– Formal delegation of responsibility

– Replacement of high-level components

 Cons

– Redundant specifications need to be made

– Object “Usage” harder to follow – stopped by the API

– API functions should be documented…

Pro and Cons of API Models

Service-Oriented Architecture – Separate the Systems

Service-Oriented Architecture – Focus on Interfaces

Principle Applied at System Level

 API model contains Interface specification only

 Can contain shared data type and domain fields

 Can be handed over to external providers

API Model as Service Catalogue in Own Lean Model

 Possible to correct errors on running version

 No Magic

 Object existence…

 Used to be a performance overhead…

 Levels/versions may be collapsed

 Make first production date version 1.0

Use of Levels and Versions

 Separate models with abstract patterns and components?

 One or more Plex development models?

 Vertical or horizontal model splitting?

 Model ‘encapsulation’ or full extract?

 Use of Plex levels and versions

Organization of Plex Development Models – Decisions

Organization of Plex development models – early and

irreversible decisions

Specification of
Function Parameters

 “It Is All About the Interface”

 “Make interfaces easy to use the right way and hard to use the

wrong way”

 Keep interfaces stable

– Trivial changes should not change interface definitions unnecessarily

About Interfaces

Use of View Parameters in inherited DataAccess Functions

 Fetch.SingleFetch

– Fetch view as output in Output/FetchedData

 Fetch.BlockFetch

– Fetch view (64) as output in Output/FetchedData

 Update.InsertRow

– Update view as dual input in Input/InsertData

 Update.UpdateRow

– Update view (non-key) as dual input in Input/InsertData

 Bold arrows indicate calls
to functions containing all
view fields in their
parameter interface

Restricted Usage of All-Field Views as Function Parameters

Entity X

Entity Y

Entity W

Entity Z

Restricted Usage of All-Field Views as Function Parameters

Entity X

Entity W

Entity Z

Only selected fields in

function interfaces
Entity Y

Restricting Parameters

 Specific fields and Selected views only in function interfaces

– Robustness to changes

 Add new fields/relations to entity –> Only generate:

– Table, Views and Server functions

– Functions calling explicitly changed functions

 Rules of design

– Use views as parameter lists (VW contains Selected)

– Omit superfluous parameters

– Avoid mapping of constants…

MyInsertRow

View
fields

InsertData
fields

Less Parameters -> Looser coupling

Abstract RelationalTableSelected Entity

 Define from scratch

– Traditional naming of Physical table and Update and

Fetch views

 Or extend STORAGE/RelationalTable?

 Abstract functions with reduced parameter

lists

– Scoped under _Abstract view

– No implementation language specified

 LookupRow as only implemented function

– Inherited call from InsertRowSelected

RelationalTableSelected supports parameter restriction rules

UpdateRowSelected Example

General versus Granular Design

 General Granular

Function A

SingleFetch

Function B

Function C

Function D

Function A SF A

Function B

Function C

Function D

SF B

SF CD

Function X

Perform

Transaction

Function Y

Function Z

Function V

Function X Perform

Transaction 1
Function Y

Function Z

Function V

Perform

Transaction 2

General versus Granular Design

Pros

 Robustness towards data model

changes

 Reduced scope of functions to be

generated

– Developers will not step on each others toes

 Simple design and transparent

functionality

 Function are easy to call/use

 Easer tracking of field usage

Cons

 Many function objects

in model

 Drown in model

function objects –

which one to choose?

 Many implemented objects

 Standards and patterns for parameter restriction?

 How to implement Selected entity pattern

Specification of Function Parameters – Decisions

Scoping and Naming

 Use scoping to organize model objects

 Consistent and unambiguous rules for scoping

– Support navigation in model

– “Where to find object?” (for reuse)

 Scoping rules often given by Plex abstractions

– Through inheritance

– Additional rules may be necessary

 Scoping rules <-> naming standards

 Use of acronyms

 Capitalization of letters

Well-Defined Rules for Scoping

Scoping Levels

 Plex model

 Subject area

 Entities

 Views

 Functions

– Various levels

 Fields

Given by inheritance from

RelationalTableSelected

 Model splitting <-> High-level scoping of data model

Data Model Scoping

APIMDL

MDL_A

(MA)

MDL_B

(MB)

MDL_C

(MC)

MDL_D

(MD)
. . .

. . .

MDL_E

(ME)

Splitting development into multiple Plex models is a

grouping of the data model!

 Subject area – Group

of 4-10 entities

 Grouping

– Plex subject areas

– Scope by entities

 Entity naming

– Single instance

– E.g. “Order”, “Vehicle”

Group Data Model in Subject Areas

View Naming – Examples

 Implemented/indexed views

– Name = ”#” + sorting

 ”#Cust nr seq navn”

 ”#Post nr cust name”

 Parameter lists

– Name = ”Parm” + name

 ”Parm update fields”

 ”Parm main info”

Scope and Naming of Fields Objects – Examples

 Database fields may be
scoped under ’entity field’
– Group fields belonging to

same entity

– Underlying fields belonging
to one entity only

– More specific names
 Default names to appear on panels

– More characters available for
naming

 Scope local fields under
_Local or _Work field

Server/View Functions – Scoping and Naming

 Scope under view being accessed

– Or under Server suite

 Use acronyms for naming, e.g.:

– CRT: Create

– UPD: Update

– DEL: Delete

– SF: SingleFetch

– CHK: CheckRow

– BF: BlockFetch

– BFS: BlockFetchSet (fetch restricted set)

– PG: ProcessGroup

Acronym may stand alone or may be followed by

an additional description

Web Functions – Scoping and Naming

 By use case…

– Scope Web Pages under Entry

(menu point) function

– Associate Pages to flow

 …or data-oriented?

– Scope Web Pages under Entity

or Entity suite function

– Associate Pages to data

Other Model Objects – Naming

 Implementation names

– Tables

– Views

– Page generators?

– Database fields

 Diagram acronyms, e.g.

– WF: Web Flow

– FF: Function Flow

– DM: Data Model

Using Icons

 Use Icons for core model objects, e.g.

– Web Pages

– Events

– Entry points

– Transactions

– Validation functions

– Message function

– BlockFetch Wrapper functions

– Reference entities

– Objects not used

– …

 Divide data model into subject areas – and how?

 Fields scope and naming?

 Standards for function scoping?

 Naming views?

 Use of acronyms?

 Use of icons?

 Explicit specification of implementation names – how, and for

what types of objects?

Scoping and Naming – Decisions

Service-Oriented
Architecture

View

Application Layers (Websydian)

Menu
Flow

Pages / Events

Transactions /Rules

Building block programs

Database / Tables
Views / Indexes / (Triggers)

Page 1

Event X

Page 2

Event Y

Page 3

Event Z

ServiceService

Database

ViewView

Pgm. Pgm.

Table Table

Client functions ->

Server functions ->

Views ->

Tables

Move Complexity from Client to Server (Websydian)

Page

Event

P1 P2 P3

P6

P4 P5

PA PB PC

PE

PD

Page

Event

P1’

P2 P3

P6

P4 P5

PA’

PB PC

PE

PD

Redesign

InsertRow – Calculation Field Input

Create race and

entries
Enter fields

Set/calculate parameter values

Call multiple creation functions

Race.Update.

InsertRow

All Race

fields

Race entry.

Update.InsertRow

Race entry

fields

Create race and

entries
Enter fields

Call creation transaction

Race.Update.

InsertRow w

empty entries

Race +

calculation

parameters

Race entry.

Update.Insert

Row initial

Race entry fields

(reduced)

Service-oriented design – move

complexity from client to server

Abstract Patterns Supporting a Service-Oriented Design
(Websydian)

MyPage A

MyEvent

GetInfo Transaction

NextPage

(Optional)(Optional)

(Mandatory)

MyPage A … …

includes FNC MyEvent

replaces FNC
…by FNC

GetInfo
SF My data

MyPage A.MyEvent … …

replaces FNC
…by FNC

Transaction
SF My data

replaces FNC
…by FNC

NextPage
MyPage B

MyPage A

MyEvent

SF My

data

MyTransaction

MyPage B

 Code for exception and error

handling inherited as well

 Transaction function has

commonly used variables as

input

 Mapping will fall in place at

replacement

 Coding effort moved

– From procedural code

– To declarative triples

 …and at the same time

supporting a better design

Replace Inherited Calls

Validation Specifications and ‘Fat’ Field Definitions –
Push Down Development Effort

Server

Client

Menu
Flow

Pages / Events

Transactions /Rules

Building block programs

Database / Tables
Views / Indexes / (Triggers)

‘Fat’ Field Definitions

 Presentation

– Labels, case, edit mode, alignment

 Default values…

 Validation functions

 Scoped objects (structure)

– Values, states, labels, messages, functions etc.

 Other (rarely used)

– Derived fields, Computed by specifications

 Various…

‘Fat’ Field Definitions – Less Work on Client

Specification and Development

Preconditions of Called Transaction – Capture Rules in Plex

 Mandatory fields

 Validation functions – Simple

– Entered (status) field value is defined

– Related record exists (trivial look-up)

– Other rules based on simple logic

 Validation functions – Complex

– Depend on other input

– Depend on database contents

Page with

Transaction

Submit

Transaction
updating
database

Plex Validation Triples

 TRP (FLD) optionality SYS

 FLD validated by FNC

 VW validated by FNC

 TRP (REL) optionality SYS

 TRP (FLD) validated by FNC

 TRP validated by FNC

 ENT checked by FNC

Validation rules specified as part of data model

Page with

Transaction

Submit

Transaction
updating
database

Perform
validation

Validation
rule functions…

Validation

shell

Validations

called by

meta code

Different Validation Architectures Based on Same
Specifications (Websydian)

Page with

Transaction

Submit

Transaction
updating
database

Perform
validation

Validation
rule functions

…

Validation

shell

Page with

Transaction

Submit

Validate and
perform

transaction
updating
database

Validation rule
functions

…

Page with

Transaction

Submit

Transaction
updating
database

Validation
rule functions

…

Websydian Message Log – One Possible Solution for
Server-Side Validation

 Patterns for support of a service-oriented design?

 Level of use of extended (fat) field specifications?

 Specification of rules in Plex or not – and how to pick up by

client?

 Server-side validation or not – and how to implement?

 Validation in ‘mixed’ target environments – Web,

Windows/Java UI, 5250

Service-Oriented Architecture – Decisions

Error Reporting and
Sanity Checking

 Abnormal *Call status

 Abnormal/unexpected

*Returned status

 Error states detection

 Write errors to common

log

Early Error Detection

Q&A

