DevTest 8.0 - Custom Extensions

Summary

DevTest 8.0 supports customization of its components by scriptable or programmable extensions. These
extensions are envisioned as configuration steps to complement the rich set of features available
already out of the box. Custom DevTest Extensions might be necessary to implement accommodating
customer specific configuration of the system under test, to match or to verify correctness of complex
dependencies and data integrity, for instance.

This document intends to help engineers, who are new to the concept of scripted extensions in DevTest
solutions, to get started. It is not supposed to replace current product documentation, but to
complement it: information about scripted extensions is scattered to various locations in product
documentation, located close to the DevTest components they can extend. This document pulls
together all this information into this single document. Because of its focus on scripting, commonalities,
specifics, recommendations, and finally best practices of the multiple scripting environments are
described and explained.

This document does not cover introductions into scripting languages used in DevTest.

Some extension capabilities become available with Service Packs for DevTest 8.0 only. This is noted
along with the description.

This document covers DevTest 8.0.2.

Document History

Date Version | Author Comment

06/02/2015 | 1.0 Cameron Bromley Initial version. Covers DevTest 8.0.1.
Rick Brown
Ulrich Vogt

04/10/2015 | 1.1 Ulrich Vogt 8.0.2 enhancements

e Coloring custom events
e Scripted data
e Document references updated to wiki for 8.0.2

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Contents
SUIMIMIAIY e e e e e e s e s e s e s e s e s e s e s e s s e e e e e e e e e s e e aaaaaaaaasaaaaasasasaasaasaaasssassassasasasasssesasasaenaasesaneneennnnns 1
DOCUMENT HISTONY ettt ettt e e ettt e e e e s e ettt e e e e e s s b bbeeeeeeesesannsbbaaaeeesessannsenaaaeeessnan 1
1= == Y SR 4
[00o] o1V T={ oL ol o 4 [T 4
I L XU T 1T o ol YU 4
D ToTol0] 4 gT=T o1 =1 o o[RS PT PPN 5
=] Ny (oYW O T o T o1 L =TSP 5
=Y Y (oY T o1 AT T [o= U 5
D L] = [0 LYol gl o4 Yl X V=T o T SRR 6
GIOOVY e e e s e e s e s e s e s s s e s e s e s e s e s e e e s e s e e e e e e e e e aaeaaaaaaaananns 6
LY Yol g1 o) PP PPPPT PP 6
BEANSKEIL....ceeeeee ettt ettt e s bt e s b e e s bt e e e a b e e s beeesabeesbee e nbeesbaeenareens 6
LV =] (ool 1 4 RSP 7
SCripting SUPPOIT iN DEVTEST 8.0 ... ci i eeeeeeeeens 7
NV BT ol T o] =T o B PSP PP OPPPTPPPPPPPURIN 7
1671 1270 0o o PP PP PPPPPTPTN 7
Injected Variables and Properti@s.........cuueiiciiiieiecieeeectee et e st e et e e e e e e e e e ata e e e enbe e e e enteeeeeenneeas 7
TESTEXCEC ClaSS c.uveeuteetieiute ettt ettt ettt s bt bt st e et e e bt e sbe e sae e sa b e et e e bt e bt e sbeesueeeateenteebeenbeesanenas 8
SCripts IN MODIIE TESTING .. .uviiiiiiiee e e et e e st e e e e rta e e e eenbaeeesnasaeeeens 17
VSE ClasS@S ..uuriutieiieitesiee sttt ettt ettt st sttt b e s bt bt s et e st e et e bt e b s ae e san e e bt ne e r e re e s ree et e e e s 17
Yol [1 YOO PP PP P TUPPPPPIRE 19
0 == 1 = N 19
Y= o | PP T PR PUR OO 21
Y o1 a4 D | - PSPPSR 23
(DT o T U= =4 1o V-SSR 26
=0T o TSP TST PR 27
CONTIGUIATION A ...ueiiiiiiiiec ettt ettt ettt e e ettt e e e ettt e e e e ebteeeeeebtaeeeeassaeaesbsseaeastasaeasssaaeaassneananses 27
(0] Y T=To1 a1 1= ox oY SR 28
(6o o [=T [} o PP P PR PR PR PP PRTPPPOURO 29
STATUS @ A .eviiiiiiiiii ittt eaa e 30
Y g o A=Te I oY =TT Lo o SR URTRN 31
Y= 4] o[SRRNE 31
Test Step - EXECULE SCrIPL (JSR-223)...iiiiiieiieeeieeeeteeeitteeete e etee e rtte e s teeestbeesteeesabeesbeeesaseesaresesseesaseeennnes 33
Page 2 of 57 Copyright ® 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and

is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

DevTest Product DOCUMENTATION.ccuutiiiieiiiieiiee ettt ettt et e et e s e snee e sabeeesanes 33
LY o0 Lo o= =T g L= =T N 33
OULPUL ParamBtersS oo e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e eeeeseeeeaeeesessessennnnns 33
(0T =f =1 0= 20 10 o] U AN 34
X0 1o TSP PUPTO PP 34
Y=Y 001] L= PRSP 35
Yol g oL 0=To I XYY =T o 4 (o o PSP 37
DevTest Product DOCUMENTATION......ccitiriiiiieieeetee ettt ettt ettt et e bt e sae e st e st s b e ns 37
LY o 10 Lol o= = g =L =] RN 37
OUTPUL ParamBLers .. e sasaaeaasasassnsaasannnns 37
(o <=4 oT=A o 0| o 1V | AT OO PP PP OTPPPPPPN 37
=011 o T OO TSP PP PRR PPN 37
=T 101] LTS 38
VirtUl SEIVICE ROULEE STEP wiiiiiiiiiei ettt ettt e e e et e e e st e e e s st aee s e sabeeeeesabeeessnnseeeeennsenas 39
DevTest Product DOCUMENTATION.cuuiiiiiiiiiieiee ettt ettt sttt st e e e sbe e st e e sbeeesanes 39
LYo 10 Lol o= o= 4 L= =] N 39
UL PUL ParamBLrS eeeeeeeeeeeeeaeeeeeeeas 39
[0 == 10 =20 11 o1 U N 39
=211 o T PP TSP PRSPPSO 40
Y=Y 001] L= PSRRI 40
Match Script in Virtual SErVICE IMAGES ...cccuvieiiiciieee ettt ettt eeectte e e e e bte e e e e stteeeeebsaeeeesseeeesnnes 42
DevTest Product DOCUMENTATION......cuuiiiiieiiiieiiee ettt e 42
INPUL PAr@mMETEIS .ttt ssssssssssssssssssnnen 42
OULPUL ParamBters oo e e e e e e e e s e s e e e e e e e e e e e s e e e e s easesasasasassassasasasanannnnnns 42
(oY <=4 aT= A @101 o V) SO PP PP PP OTTPPPPPN 42
Y =Y ol g Yo a1 o Al o [o RS 43
=T 10]] L= T SRR 44
Y=Y 00]] L= RSP 44
Yol gTel =] o] [D F-Y = Tl 2 o) ol | PRSP 46
DevTest Product DOCUMENTATION.cuuiiiiieiiieeiee ettt st e e e s e sne e e sareeesnnes 46
R ol o) &Nt 46
oY o TU Lol o= =0 g =L =] TR 46
OULPUL ParamBters .o e e e e e e e e e e e e e e e e e e e s e e e s e s e e e e eeeeesaaesssssssssenaesssnnannsnnnnns 46
LOBEING OULPUL ..ttt ettt ssssssssssssssssssnsnnan 47
Lo 1o TP PPR TR 47
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 3 of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

2Ty A o = ot o] LU UROT 47

L = PP TP 50

Y=Y 20]] L= SR 50

Y=Y 00] o] L= RS 53

Yo g1 =To [D] = 1 PRSP 54

DeVvTest DOCUMENTATION ..cciiuiiiiiiiiee ettt st e s st e e s s e e s s enre e e s e smreeesenreees 54

oY o 10 Lo o= o= 0 4 =L =] N 54

DU PUL ParamBtersS e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e eeeeeeseeseeeeeseseeesnsnanns 54

=011 o T OO T TSRO PR PPN 54

Y= Y001] L= PO 55

Yo7 o T=] oo [PPN 56

Performance CONSIAEIATIONS.ii i iiiiee ettt st st sttt e b e sbe e saeesaeeeneean 56

Y1021 o] (=3 @ o Lo [P 56
Legal

e What kind of CA support is provided with a custom extension? Custom extensions are not
covered by common CA product support conditions. Special support can be negotiated. Please
contact your CA representative.

e What happens when a new version of DevTest is installed? A custom extension might need to be
recompiled to meet the differences in DevTest API. CA strives for DevTest APl backward
compatibility.

e What happens if the customer finds a problem with the custom extension? If no special support
contract is in place CA Professional Services can be contracted to find the problem, fix it and
deploy it to every place it has been installed (all DevTest workstations, all DevTest servers).

All sample code provided in this document

Copyright notice

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective
companies. This document does not contain any warranties and is provided for informational purposes
only. Any functionality descriptions may be unique to the customers depicted herein and actual product
performance may vary.

Target Audience
This document is intended for customers, partners, and CA field personnel familiar with DevTest, who
want to create scripts to extend or to customize existing functionality in DevTest solutions.

Programming skills are required, as well as basic knowledge of scripting languages such as JavaScript,
Groovy or BeanShell. Java knowledge is required to understand java based code samples.

P 4 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age4o0 X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

It is strongly recommended to review related product documentation. References to related DevTest
product guide sections on CA support are given.

Documentation

[1] DevTest Solutions: Using Service Virtualization — DevTest 8.0.2 Product Documentation
Using CA Service Virtualization

[2] DevTest Solutions: Using Agents — DevTest 8.0.2 Product Documentation
Using CA Application Test

[3] DevTest Solutions: Using the SDK — DevTest 8.0.2 Product Documentation Using the SDK
[4] DevTest Solutions: Administering — DevTest 8.0.2 Product Documentation Administering
[5] SDK JavaDoc — {{LISA_HOME}Ndoc\SDKJavaDoc\index.html

Extension Capabilities

DevTest 8.0 allows for custom extensions in various components

e Test cases

o
o

o
o

Custom Java Test step - Java

Custom JSR-223 script Test step - Script

Custom Assertions to verify customer specific dependencies [3] — Script/Java
Custom Filters to store additional data in properties [3] — Java

Custom Companion [3] — Java

e Staging documents

o
o
e Agent
o
o
o

e Broker
o
o
o

Custom reports to report on customer specific events [3] — Java
Custom Report Metrics to extract customer specific metrics from test cases [3] —Java

Modify agent behavior [2] — Java

Manipulate data captured by the agent [2] — Java

Execute additional steps during recording or playback before or after virtualized
methods are called [2] — Java

Change data in frames [2] — Java
Add/remove frames [2] — Java
Customize the stitching algorithm for data from different agents [2]

e Virtual Services

o
o
o

Match script in Virtual service images [1] — Script

Virtual Service Router step in Virtual Service models

Scriptable Data Protocols to modify service requests or responses while recording [1] —
Script

Custom Data Protocol Handlers modify service requests or responses while recording
[1] - Java

Extension by Scripting
Out of the box DevTest 8.0 supports scripting languages
e BeanShell

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 5 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://wiki.ca.com/display/DTS802/Using+CA+Service+Virtualization
https://wiki.ca.com/display/DTS802/Using+CA+Application+Test
https://wiki.ca.com/display/DTS802/Using+the+SDK
https://wiki.ca.com/display/DTS802/Administering

DevTest 8.0 — Custom Extensions
——|

e Groovy
e JavaScript

e Velocity
BeanShell was the only scripting language available and supported in previous product versions. It is
now being deprecated, because it is rather slow if compared to JavaScript and Groovy, and because it is
not maintained actively by the internet community any more. Therefore BeanShell is discouraged to use
for new scripts. BeanShell scripting remains supported for backward compatibility.
BeanShell scripts are processed by a BeanShell interpreter. When possible, JavaScript and Groovy scripts
are compiled into Java byte code first before run. Therefore JavaScript and Groovy scripts have better
performance once compiled than BeanShell scripts.

Default Scripting Engine
BeanShell is the default scripting language in DevTest 8.0. To change the default scripting language to
Groovy, for instance, edit file ‘local.properties’ and add following line:

Tisa.scripting.default.language=groovy

DevTest can be configured to support additional scripting engines. Please see Enabling Additional
Scripting Languages for details.
The scripting languages that are installed and found by the runtime environment are listed out in the

relevant log file (e.g. workstation.log) once a script is called the first time:
2015-01-22 09:50:46,346Z (10:50) INFO com.itko.lisa.test.UserScriptNode -

JSR anguage engine Groovy Scripting Engine 2.0 for language Groovy 2.3.3
yroovy Groovy) from file:/D:/DevTest-800GA/lib/shared/groovy-all-2.3.3.jar
2015-01-22 09:50:46,346Z (10:50) INFO com.itko.lisa.test.UserScriptNode -
JSR223 language engine BeanShell Engine 2.1.8 for language BeanShell 2.1.8
beanshell bsh]) from file:/D:/DevTest-800GA/lib/shared/bsh-2.1.8.jar
2015-01-22 09:50:46,347Z (10:50) INFO com.itko.lisa.test.UserScriptNode -

JSR223 language guage
ECMAScript 1.8 (s rhino JavaScript javascript ECMAScript ecmascript]) from

<unknown>
p015-01-22 09:50:46,347Z (10:50) INFO com.itko.lisa.test.UserScriptNode -

B anguage engine velocity 1.5 for language velocity 1.5]
) from file:/D:/DevTest-800GA/lib/shared/itko-velocity-engine-1.7.jar

Each log entry lists the valid names for the scripting engine. These names can later be used as language
specifiers to determine the scripting engine to use.

Groovy
Introduction, documentation, tutorials on groovy can be found on http://groovy.codehaus.org/.

JavaScript
Introduction, documentation, tutorials and samples are found on JavaScript at
http://www.w3schools.com/js/.

BeanShell
BeanShell is run by a Java interpreter. In a BeanShell script you can type normal Java statements and
expressions and display the results.

P 6 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age oo X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

vary.

https://wiki.ca.com/display/DTS802/Enabling+Additional+Scripting+Languages
https://wiki.ca.com/display/DTS802/Enabling+Additional+Scripting+Languages
http://groovy.codehaus.org/
http://www.w3schools.com/js/

DevTest 8.0 — Custom Extensions

Introduction, documentation and samples on BeanShell can be found at http://www.beanshell.org/.

DevTest Product documentation includes a basic introduction into BeanShell at Using BeanShell in
DevTest.

Velocity

Velocity can be downloaded from https://velocity.apache.org/index.html. Documentation on Velocity is
available at https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html.

Scripting support in DevTest 8.0
Extending the existing rich set of DevTest functionality by scripting is available at following places:

e Scripted Expressions - Anywhere you use {{expressions}} you can specify a scripting language

e Execute Script (JSR-223) - A test case or virtual service model can be extended by a test step
that executes a script. This script can run additional logic to execute commands and return data
to the test case context for other tests steps to use. This test step replaces the ‘Java Script Step’
available in previous product releases, which is deprecated in DevTest 8.0.

e Scripted Assertion — An assertion can be added to a test step that executes a script in order to
assure and verify test step results

e Match Script - For virtual services images complex algorithms can be implemented in VSE by a
script to find a matching transaction to a client request.

e Scriptable Data Protocol Handler (DPH) — If built-in data protocol handlers do not correctly
translate client data into a format VSE understands or vice versa, a scriptable DPH can be
developed to bridge the gap.

e Virtual Service Router Step — This step routes a request from a virtual service listen step to the
response selector step and the protocol-specific live invocation step, or both. The decision is
made based on the current execution mode for the running model. If running in DYNAMIC mode
a script can be used to determine the route of the request.

Java Script Step

The ‘Java Script Step’, which is available previous product releases, but deprecated in DevTest 8.0, will
not be covered. The ‘Java Script Step’ step is functional equivalent to ‘Execute Script (JSR-223)’ step
configured for BeanShell scripting language with a property scope of ‘Test state and system properties’.

Common

This section covers information that is common to all the scriptable extensions in DevTest. Deviations
will be covered in the sections covering specifics of extensions.

Injected Variables and Properties

DevTest gives scripts access to the runtime environment by different means. It supplies built-in —
injected — variables to access information available in the current test case or virtual service.

e ‘textExec’ object — specifies the current test execution environment. The testExec object
includes the state and supporting behaviors for running the test.

e ‘lisa_vse_request’, ‘lisa_vse_response’ objects — specifies the current live transaction request,
current live or recorded transaction response in a scriptable Data Protocol Handler (DPH) of a
virtual service in action.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 7 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

http://www.beanshell.org/
https://wiki.ca.com/display/DTS802/Using+BeanShell+Scripting+Language
https://wiki.ca.com/display/DTS802/Using+BeanShell+Scripting+Language
https://velocity.apache.org/index.html
https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

DevTest 8.0 — Custom Extensions

e ‘incomingRequest’ and ‘sourceRequest’ objects — specify the live incoming and the recorded
source transaction request in Match Scripts

e ' logger’ object — specifies a logger object available to the current script environment

e Test state properties (optional) — provide shortcut access to test properties. This is also available
by ‘testExec’ via method calls

e System properties (optional) — provides shortcut access to java system properties, also available
via ‘testExec’ method calls

e ‘ webDriver’ —references the MobileSession object that is associated with the test case, and is
used to script Appium. ‘_webDriver’ works during runtime only. *_webDriver’ is available
starting with DevTest 8.0.1.

When creating a script in DevTest the developer can often choose the scope of variables to be injected
into the script:

. ‘testExec’ and ‘_logger’ only: only the ‘testExec’ and ‘_logger’ objects are available to the
script (recommended)

. Test state properties: direct access to properties that provide information about the test
case. ‘testExec’ and ‘_logger’ objects are also available

. Test state and system properties: all properties for the test case and system. This is the
same scope as in previous product versions. ‘testExec’ and ‘_logger’ objects are also
available.

The caveat to the wide scope of accessibility to the test environment is the fact that the broader the
scope is the longer it takes to setup the scope for the script and to start the script.
Test state and system properties are also available via ‘testExec’ object.

The syntax to access the variables may vary on language.

Some scripting entry points have other variables, e.g. Data Protocol Handlers and Match Scripts have
access to more variables, see specific examples below.

{{some_property}}

Referring to a property in property tags {{some_property}} in a script is supported. The property is
substituted for the property value at runtime before the script is executed. This use of property tags is
discouraged, though, as parsing for replacements slows down execution of the script setup.

When retrieving a property from test case that includes property tags there are methods, which replace
properties by their values.

TestExcec class

The TestExec class supplies several methods. The following list is just an overview of methods available
for this class. Please see [5] for more details. Of interest are mostly how to retrieve and to set properties
of the current test case under execution:

java.lang.Object getStateValue(String strkey) Returns the java.lang.Object of the given key

boolean getStateBoolean(String strkey, boolean bDefault) Returns the value of strKey as a boolean value.

If property strKey does not exist, has no value or no
boolean value, bDefault is returned

int getStatelnt(String strKey, int nDefault) Returns the value of strKey as an int value.

If property strKey does not exist, has no value or no int
value, nDefault is returned.

P 8 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
ageo o0 X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

String getStateString(String strKey, String strDefault) Returns the value of strKey as a String value.

If property strKey does not exist, has no value or no
String value, strDefault is returned.

void setStateValue(String strKey, java.lang.Object value) Sets property strKey to value of type java.lang.Object
void log (String shortMsg, String longMsg) Pushes a ‘Log message’ event message

void warn (String shortMsg, String longMsg) Pushes a ‘Step warning’ event message

void raiseEvent(int eventID, String shortMsg, String Send a custom event message

longMsg)

For samples on retrieval or setting of properties see Reading a Property and Setting a Property. Samples
for different scripting languages are given in Script Samples Accessing testExec objects and Properties.
Samples to create event messages are described in Events.

There are many other methods available through TestExec objects - see [5] for details.

Reading a Property

Almost every script needs to retrieve data from test case. The recommended way to do that is using a
‘testExec.getState*()’ method.

The ‘testExec.getStateValue(“Key”) method returns the value of property ‘Key’ as Object. If Key is not
set the returned string is empty, if ‘Key’ does not exist the returned value is ‘null’.

Then there are type specific ‘testExec.getState*()’ methods, such as ‘testExec.getStateString(“Key”,
defaultString)’, ‘testExec.getStatelnt(“Key”, defaultinteger)’, ‘testExec.getStateBoolean(“Key”,
defaultBoolean)'. These type specific retrieval methods return their respective default value in case
property ‘Key’ is undefined. For Boolean and Integer values the default string is also returned if property
‘Key’ is not set. For String values the empty string is returned if property ‘Key’ exist but is not set.

Sample

For each of the String, Boolean, and Integer type two properties are defined, one set with a valid value,
another one not set.

Available Objects

Name Type Value
AA_Boolean1 java.lang.Boolean true
AA_Boolean2 java.lang.String
AA_Integer1 java.lang.Integer 1234
AA_Integer2 java.lang.String
AA_String1 java.lang.String This is a test string
AA_String2 java.lang.String

The following sample groovy code executes for each property ‘testExec.getStateValue(“Key”) and the
type specific method to retrieve the property value. Additional both methods are applied to retrieve an
undefined property.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 9 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

String

1 strInfol = testExec.getStateValue ("AA_Sctringl")

2 strInfo2 = testExec.getStateValue ("AA String2")

3 strInfo3 = testExec.getStateValue ("AA_Sctring3")

4|_logger.info("1l. Info-1=("+strInfol+") - Info-2=("+strInfo2+") - Info-3=("+strInfo3+").")
5

6 strInfol = testExec.getStateString("AA_Stringl”,"Default String")

7|strInfo2 = testExec.getStateString("AA_String2", "Default String")

8 /strInfo3 = testExec.getStateString("AA_String3","Default String")

9 _logger.info("2. Info-1=("+strIinfol+") - Info-2=("+strInfo2+") - Info-3=("+strInfo3+").")
in

Please note the differences in the output when retrieving the value for the undefined property
‘AA_String3’ in ‘Info-3’ output. Retrieving an empty property returns identical values (‘Info-2’).

INFO com.itko.lisa.script.logger - 1. Info-1=(This is a test string) -|}Info-2=() - Info-3=(null).
INFO com.itko.lisa.script.logger - 2. Info-1=(This is a test string) -|Info-2=() - Info-3=(Default String)
Boolean

11 bInfol testExec.getStateValue ("AA_Booleanl")

12 bInfo2 = testExec.getStateValue ("AA_Boolean2")

13 bInfo3 testExec.getStateValue ("AA_Boolean3")
14| logger.info("3. Info-1=("+bInfol+") - Info-2=("+bInfo2+") - Info-3=("+bInfo3+").")
15

16 bInfol = testExec.getStateBoolean("AA Booleanl”, false)

17 bInfo2 = testExec.getStateBoolean("AA Boolean2", false)

18 bInfo3 = testExec.getStateBoolean("AA Boolean3", false)

19 logger.info("4. Info-1=("+bInfol+") - Info-2=("+bInfo2+") - Info-3=("+bInfo3+").")
20

Please note the differences in the output when retrieving the value of the empty property
‘AA_Boolean?2’ in ‘Info-2’ output and of the undefined property ‘AA_Boolean3’ in ‘Info-3’ output. For
Boolean and Integer type the default value is returned if respective property is not set or does not exist.

INFO com.itko.lisa.script.logger - 3. Info-1=(true) - Info-2=() - Info-3=(null).
INFO com.itko.lisa.script.logger - 4. Info-1=(true) - Info-2=(false) - Info-3=(false).
Integer

21 nInfol = testExec.getStateValue ("AA Integerl”)
22 nInfo2 = testExec.getStateValue ("AA_ Integer2")

23 nInfo3 testExec.getStateValue ("AA_Integer3")

24| logger.info("S. Info-1=("+nInfol+") - Info-2=("+nInfo2+") - Info-3=("+nInfo3+").")
25

26 nInfol testExec.getStatelnt ("AA_Integerl®, 0)

27 nInfo2 = testExec.getStatelnt ("AA_Integer2”, 0)
28 nInfo3 = testExec.getStatelnt ("AA_Integer3”, 0)
29| logger.info("6. Info-1=("+nInfol+") - Info-2=("+nInfo2+") - Info-3=("+nInfo3+").")

Please note the differences in the output when retrieving the value of the empty property ‘AA_Integer2’
in ‘Info-2’ output and of the undefined property ‘AA_integer3’ in ‘Info-3’ output. For Boolean and
Integer type the default value is returned if respective property is not set or does not exist.

INFO com.itko.lisa.script.logger - 5. Info-1=(1234) -}JInfo-2=() - Info-3=(null).
INFO com.itko.lisa.script.logger - 6. Info-1=(1234) -|Info-2=(0) - Info-3=(0).
Using parselnState()

Retrieving a property that includes property tags, i.e. {{some_prop}}, requires the use of method
‘testExec.parselnState()’ in order to replace a property by its current value.

P 10 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Sample
Using property ‘EXAMPLES_ HOMEFE’

Available Objects
Name Type Value
EXAMPLES_HOME java.lang.String {{LISA_HOME}}/examples

The following groovy script returns the real path only after applying the ‘parselnState()’ method in
variable ‘strinfo2’

1|/strInfol = testExec.getStateString ("EXAMPLES HOME", "Examples Home")
2 strInfo2 = testExec.parselnState(strInfol)
3

4 return "INFO-1 = (" +strinfol+ ") - INFO-2 = (" +striInfo2+ ")."

@

Message

Script executed. Result is INFO-1 = ({{LISA_HOME}} /examples) - INFO-2 =
(D:\DEVTES ~1\/examples).

Note that scripts are parsed for {{properties}} before they are executed, so the following script is
equivalent to the above:

strinfol = “{{EXAMPLES_HOME}}”
return “INFO-1 = (“ + strInfol + “)”;

%&

If environment error: |Abort the Test v | Script language: | Groovy 5
Copy properties into 5cope:[Test properties (faster) = |

ament error
sption Then Fail [X]

ssertion strInfol = " {{EXAMPLES_HOME}}"
return "INFO-1 = (" + strInfol + ")"; N T Ve
| D...jaujuu.

Scripting Step

Message
Script executed. Result is INFO-1 = (fUsers/cam/projects /main/lisa/dist//examples)

Setting a Property

Scripts return results when finished. Depending on the scripting language there are different means to
do that, usually by a return value.

If there is a need to return more than one value a script can create and update properties of a test case.
‘testExec.setStateValue(“Key”, value)' sets a property ‘Key’ to a string value.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 11 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions
]

Sample
This groovy code snippet (creates and) sets three new properties:

1/ testExec.setStateValue ("BB_Stringl", "AbCdEL")
2 testExec.setStateValue ("BB_Booleanl", true)

3| testExec.setStateValue ("BB_Integerl", 9876)

4

S|/return true

Scripting Step

0 -
Script executed. Result is true

Opening the ‘Properties pane’, clicking on the ‘Refresh’ button and sorting the properties by ‘Key’ lists
all the properties of the test case.

All Properties Y4 @ =Y -
ke
AA_Boolean1 true -
AA_Boolean?2 F
AA_Integer1 1234
AA_Integer2)
This is a test string E
@
true 3
9876

Access to Test state and system property
Test state and system properties can be accessed directly by name or via ‘testExec’.

Sample

Please note the property scope, which includes direct access to test case properties, as used in line #2 of
the code sample.

RSB awuq
1 infol = testExec.getStateString("LISA USER", "default"); Type Value |
2| info2 = LISA_USER: Java.lang.String D:\DevTes|
3 java.lang.String fie:/D:/Dey
4! return "INFO-1 = (" + infol + ") - INFO-2 = (" + info2 + ")" java.lang.String VOGULO1-4
5 java.lang.String
java.lang.String Ridks
Java.lang.String D:\DevTes
java.lang.String D:/DevTes|
Message - Java.lang.String file:/D: /Dey
Script exeauted. Resultis INFO-1 = (adimin) - INFO-2 = (admin) ﬁ:‘::::‘"s :':tvml
java.lang.String D:/DevTes|
jovaang S fespioe
Java.lang.String D:\DevTes|
java.lang.String file:/D:/Dey
| VT akogsvg s)

Page 12 Of 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

The same code will fail in line #2 if the scope is changed to ‘TestExec and logger only’, because property
‘LISA_USER’ will then be unavailable.
¥ Execute R-223) - Execute ~2 T =

If environment error: ort the 'tlu\g:aqe::ﬂear\dmel v:
Copy properties into scope]

Script

RS d Available Objects
1| infol = testExec.getStateString("LISA USER", "default"); m |Name Type Value
2| info2 = LISA USER; _logger org.s...org....
3 testE... com.i... isa....
4| return "INFO-1 = (" + infol + ") - INFO-2 = (" + info2 + ")";

rg Scripting Step 2)

.@ —)

| Error in Script

m

| Step: Execute script (JSR-223)~2

| Message: bsh.EvalError: Sourced file: inline evaluation of: " “import
com.ca.sv.devtest.util. ing; info1 = testExec ing('L . . . " : Void assignment.

testExec.getStateString("L . . . " : info2 = LISA_USER
in inline evaluation of: " “import com.ca.sv.devtest.util.GenerateString; infol =
testExec.getStateString("L . . . " at line number 2

Access to Properties that not in Java variable format

When a script is being set up, system and test case properties will be copied into the runtime scope of the
script as variables. These variables need to have valid JavaScript/BeanShell/Groovy variable names. Variable
names with dots in them are not valid identifiers. So a property 'foo.bar' is converted into a form suitable for
a variable name, in this case of we change all .’ chars to “_’. So we end up with a variable named ‘foo_bar’.
‘Available Objects’ list contains already converted property names.

With ‘testExec’ unconverted, original property names have to be used. Please see the following sample.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 13 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

Sample

Property scope is ‘Test state and system properties’ and there is a system property ‘file.encoding’
available. ‘Available Objects’ has this property already converted, ready to use as a variable in the script.

Available Objects

file_encoding java.lang.String UTF-8

The following sample script shows how to access this property by its variable name or by ‘testExec’.
‘testExec.getStateString()’ would return the ‘default’ string to indicate that this property is unavailable
or not set.

Reviewing the script output shows that

e Direct access to property ‘file_encoding’ works as expected (INFO-1).
e Reading the converted name by ‘testExec’ does not return the string (INFO-2).
e Reading the original system property name by ‘testExec’ works as described above.

If environment error: |Abort the Test - Script language: Beandiel v:

Copy properties into scopelTststah:mdsyswnpropuﬁes vI
RS E) 2 Available
1| // Use of properties with T...
infol = file_encoding; . jav..
info2 = testExec.getStateString . Jav..
info3 = testExec.getStateString -]av

Script executed. Result is INFO-1=(UTF-8) - INFO-2=(default) - INFO-3=(UTF-8)

P 14 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age O X - R . S
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Script Samples Accessing testExec objects and Properties

Following are some samples of retrieving and setting properties in scripting languages BeanShell,
JavaScript and Groovy.

1 L BeanShell sample code:

2

A e #7: Logs information to current logging file,

4 incl. reading property ‘LISA_PROJ_NAME’ via
5 TestExec object

6 e #10: Sets var ‘osname’ via property

7 ‘os_name’, which is in fact a system property
8| + testExec.getStateObject ("LIS: *))> ‘os.name’

9 e #11: Reads String property ‘LISA_HOST’ via
Ig :’“:me = °’—:°m:; R) TestExec object with default string ‘No Host’
oS _name - es Xec.ge ate, ring ",.3;—._.":,5?", "No Host"™):; . ‘. .

12 port no = testExec.getStatelnt ("PORT", 9989):; * #12: Reads I.nteger property PORT via
13 porc:no = port_no + 101; TestExec object with default value of 9989
14 port db = DBPORT; e #13: Adds to read port number to proof
15| port_db = port_db + 94; integer type
16 e #14: Reads property DBPORT
17| testExec.setStateObject ("SCRIPT_OUT", "Be on " + host_name + e #15: Adds to read DBPORT property to proof
18| ":" + port_no + " with " + osname): integer type
12 2 e #17: Sets property SCRIPT_OUT via TestExec
20| return " " + host_name + "): (" + port no + ") with (" + osname +)
2 " " + port db + ")."; ObJeCt
e #20: Returns some string.

|| S '5’| i 24 | Groovy sample code:
§§// bailt-in logger object o #1: Logs information to current logging file,
2| logger.info("Hello from Groovy at " + LISA_PROJ_NAME) incl. reading property ‘LISA_PROJ_NAME’
3 . — —
directly

4/// interact directly with testExec))
e #5: Sets property Hello via TestExec object

S testExec.setStateObject ("Hello", "Groovy World") .

6 e #7: Sets var ‘osname’ via ‘System’ call

7 osname = System.getProperty("os.name") e #8: Reads String property ‘LISA_HOST’ via

8 host_name = testExec.getStateString("LISA_HOST", "No Host") TestExec object

9 port_no = testExec.getStatelnt ("PORI", 9989) e #9 Reads Integer property ‘PORT’ via
Egjpoxt_no = port_no + 101 TestExec object with default value of 9989
fqPo=t_db = DBEORT e #10: Adds to read port number to proof

12 port db = port db + 94 .

13 - - integer type

14 testExec.setStateObject ("SCRIPT_OUI", "Groovy on " + host_name + e #11: Reads property DBPORT

15|":" + port_no + " with " + osname) e #12 Adds to read DBPORT property to proof
16 integer type.

17 return "On (" + host_name + "):(" + port_no + ") with (" + e #14: Sets property SCRIPT_OUT via TestExec
18 osname + "). DB Port = (" + port_db + ")." object

e #17: Returns some string.

e Message
(@) Script executed. Result is On (VOGUL01-W7):(8181) with (Windows 7). DB Port = (3400).

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 15 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

RADSFE) 2| &

1 buil i 1

2| _logger.info("H from JavaScrir at " + LISA_PROJ_NAME)

3

S| testExec.setStateObject("Hello"™, "Jav

6| host_name = testExec.getStateString("LISA HOST", "No Host")

7 osname = os_name;

8| port_no = testExec.getStatelnt("PORT", 0)

9 port_no = port_no + 101

10, port_db = DBPORT

11, port_db = port_db + 94

12

13| testExec.setStateObject ("S PT_OUT", "JavaScript on " + host_name +
14 ":" + port_no + " with + osname)

15

16

17

ie

19| returnString = "JavaScript: (" + host_name + "): (" + port_no +
20 ") with (" + osname + "). DB Port (" + port db + ")."
214

g Scripting Step

Message
Script executed. Result is JavaScript: (VOGULO1-W7):(8181) with (Windows 7). DB Port = (3400).

JavaScript sample:

e #1: Logs information to current logging file,
incl. reading property ‘LISA_PROJ_NAME’
directly

e #5: sets test state property Hello via TestExec
object

e #6: Reads String property ‘LISA_HOST’ via
TestExec object with default string ‘No Host’

e #7: Sets var ‘osname’ via property ‘os_name’,
which is in fact a system property ‘os.name’

e #8: Reads Integer property ‘PORT’ via
TestExec object with default value of 9989

e #9: Adds to read port number to proof
integer type

e #10: Reads property DBPORT

e #11: Adds to proof integer type.

e #13: Sets property SCRIPT_OUT via TestExec
object

e #19:Last expression evaluated is returned by
script

Page 16 of 57

vary.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

DevTest 8.0 — Custom Extensions

Scripts in Mobile Testing

Test cases for testing mobile application are part of DevTest Application Test. Test cases for mobile
Applications can be customized by scripting using ‘Execute Script (JSR-223)’ test step the same way as
for other applications.

Specifically for scripting Appium the ‘_webDriver’ variable is available since DevTest 8.0.1. This variable
is a reference to the ‘MobileSession’ object associated with the test when running. Because of this, the
‘Test’ button at the bottom of the script editor is mostly useless as the *_webDriver’ variable is only
active in a running session that is being recorded or played back. Otherwise errors are thrown when
clicking this button.

‘

" webDriver’ is an instance of class ‘org.openga.selenium.remote’. Javadoc documentation of the APl is
available at org.openga.selenium.remote.

Following sample executes on an iOS application:

’/ simulate a double click

var imgPath = "//UIAImage[@name="theImage']";

var imageElem = _webDriver.findElementByXPath(imgPath);
// double click simulation

imageElem.click();

imageElem.click();

/ assert that it recognized the double tap
var actionPath = "//UIAStaticText[@name="'Double Tap']";
var actionElem = _webDriver.findElementByXPath(actionPath);

// try to pinch the image on screen
var pinch = {

startX: 335,

starty:
endX: 333,
endY: 474,
duration: 1.8410
}s
_webDriver.executeScript("mobile: pinchClose", pinch);
var actionText = actionElem.getText();

VSE Classes

Match Script and Scriptable Data Protocol Handlers work on transactions of virtual services. These
scripts are supported by DevTest. DevTest supplies injected variables automatically giving access to the
objects needed.

Request

‘lisa_vse_request’, ‘incomingRequest’ and ‘sourceRequest’ are supplied injected variables containing
objects of class ‘com.itko.lisa.vse.stateful.model.Request” and include single transaction requests. This
class provides following methods:

String getOperation() Returns the operation of the incoming request

void setOperation(String newOperation) Changes the operation of the request

Boolean isBinary() Returns whether or not the request body is binary or text data

void setBinary(Boolean bFlag) Sets the ‘Binaryflag’ indicating whether or not the request body contains

binary or text data

String getBodyText() Returns the request body data as text
void setBodyText(String strBody) Changes the request body to content of strBody.
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 17 Of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://selenium.googlecode.com/svn/trunk/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html

DevTest 8.0 — Custom Extensions
——|

This method sets the BinaryFlag to ‘false’ automatically.

byte [] getBodyBytes() Returns the request body data as binary

void setBodyBytes(byte [] arrayByte) Changes the request body to content of arrayByte.
This method sets the BinaryFlag to ‘true’ automatically.

String toString() Returns the entire request as String
long id() Returns the ID of the request
Response

‘lisa_vse_response’ is a supplied injected variable containing objects of class
‘com.itko.lisa.vse.stateful.model.Response’ and include a transaction response. This class provides
following methods.

Boolean isBinary() Returns whether or not the response’s body is binary or text data

void setBinary(Boolean bFlag) Sets the ‘Binaryflag’ indicating whether or not the response’s body contains
binary or text data

String getBodyText() Returns the response body data as text

void setBodyText(String strBody) Changes the response body to content of strBody.
This method sets the BinaryFlag to ‘false’” automatically.

byte [] getBodyBytes() Returns the response body data as binary

void setBodyBytes(byte [] arrayByte) Changes the response body to content of arrayByte.
This method sets the BinaryFlag to ‘true’ automatically.

String toString() Returns the entire response as String
long id() Returns the ID of the response
String getThinkTimeSpec() Returns the time difference passed by between the request and this
corresponding response, called ‘Think time’
void setThinkTimeSpec() Changes the ‘Think time’ of the response.
ParameterlList

Transaction requests and responses contain arguments, attributes and Metadata. Access to each of
them is provided by class ‘com.itko.util.ParameterList’. A ‘ParameterList’ object is a set of key/value
pairs. Methods of this class are available to both requests and responses:

ParameterList getArguments() Retrieves the set of arguments from request or response

void setArguments (ParameterList args) Changes the set of arguments

ParameterlList getAttributes() Retrieves the set of attributes from request or response

void setAttributes (ParameterList args) Changes the set of attributes

ParameterList getMetaData() Retrieves the Metadata from request or response

void setMetaData (ParameterList args) Changes the Metadata

Boolean isDupesAllowed() Indicates whether or not duplicate transactions are allowed in

the Virtual Service

void setAllowDupes(boolean bFlag) Sets the flag to indicate whether or not duplicate transactions
are allowed in the Virtual Service.

void addParameter(String strKey, String strVal) Sets a single parameter as key/value pair

void addParameters(String strParams) Sets multiple parameters at once. Key and value are separated
by ‘=’, multiple key value pairs are concatenated by ‘&’.

P 18 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Sample:

p.addParameters("keyl=val 1&key2=val2");

String getParameterValue(String strkey) Returns the value of a parameter given by strkey.

void setParameterValue(String strKey, String strVal) Changes value of parameter strKey to strVal.

void removeParameter(String strkey) Removes parameter strKey from parameter list

void clear() Removes all parameters from list

For additional methods available on ‘com.itko.util.ParameterList’ please see [5].

Security

You cannot call ‘System.Exit" or ‘System.Exec’ from scripts. This is to prevent terminating the java
process that runs the embedded script or running malicious scripts.

Logging
The injected ‘_logger’ variable logs data to the log file of the DevTest component that the script is
executed within.

_logger

The injected variable ‘_logger’ is a SLF4J logger (http://www.slf4j.org/manual.html) with namespace
‘com.itko.lisa.script.logger’. Log level is set to INFO level by default, so a script can call something like
_logger.info("foo") and that will show in the relevant log file (simulator.log, vse.log,
workstation.log).

The log level for ‘com.itko.lisa.script.logger’ can be set to other values (e.g. DEBUG) in
‘logging.properties’. Then any calls to /ogger.debug(“A debug message, my x value is {} and my y value
is {}”, x, y) will be printed to the log file.

The default ‘logging.properties’ file does not contain a log level setting for ‘com.itko.lisa.script.logger’.
So, the following line has to be added to {{LISA_HOME}}/logging.properties to enable different settings.

for Togging of scripts
log4j.logger.com.itko.Tisa.script.logger=DEBUG

Possible log level values are:

e OFF - switches off logging

e ERROR —report error logs (_logger.error()) only. Errors have a serious impact to functionality

e WARN - report warning (_logger.warn()) and error logs only. Warnings can have an impact to
expected functionality

e INFO —report informational (_logger.info()), warning and error logs only. Informational logs are
for informational purposes only and are not supposed to have an impact to functionality

e DEBUG - report debug (_logger.debug()), informational, warning and error logs only. Debug logs
are additional informational logs that should support error analysis.

e ALL-report any log, including trace logs (_logger.trace()). Trace logs are intended for extended
diagnostic requests.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 19 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

http://www.slf4j.org/manual.html

DevTest 8.0 — Custom Extensions
——|

Sample 1
The following script snippet

_logger.error("ERROR: Sample script test - false");
_logger.warn("WARN: Sample script test - false");
_logger.info("INFO: Sample script test - false");
_logger.debug("DEBUG: Sample script test - false");
logger.trace("TRACE: Sample script test - false"):

And a setting of in {{LISA_HOME}}/logging.properties

for Togging of scripts
Tlog4j.logger.com.itko.lisa.script.logger=ALL

Creates following log file output:

2015-01-21 13:49:03,770Z (14:49) [AWT-EventQueue-0] ERROR com.itko.lisa.script.logger - ERROR:Sample script test - false
2015-01-21 13:49:03,770Z (14:49) [AWT-EventQueue-0] WARN com.itko.lisa.script.logger - WARN: Sample script test - false
2015-01-21 13:49:03,771Z (14:49) [AWT-EventQueue-0] INFO com.itko.lisa.script.logger - INFO: Sample script test - false

2015-01-21 13:49:03,772Z (14:49) [AWT-EventQueue-0] DEBUG com.itko.lisa.script.logger DEBUG:Sample script test false
2015-01-21 13:49:03,773Z (14:49) [AWT-EventQueue-0] TRACE com.itko.lisa.script.logger TRACE:Sample script test false
Changing the setting in {{LISA_HOME}}/logging.properties to
for Togging of scripts
Tlog4j.logger.com.itko.lisa.script.logger=INFO
Generates:
2015-01-21 14:08:38,253Z (15:08) [AWI-EventQueue-0] ERROR com.itko.lisa.script.logger - ERROR:Sample script test - false
2015-01-21 14:08:38,254Z (15:08) [AWT-EventQueue-0] WARN com.itko.lisa.script.logger - WARN: Sample script test - false
2015-01-21 14:08:38,255Z (15:08) [AWI-EventQueue-0] INFO com.itko.lisa.script.logger - INFO: Sample script test - false
Sample 2

The following script snippet demonstrates how to pass parameters of different types to a ‘_logger’ call
using ‘{} as place holders in the output string:

String p1 = "one";
int p2 = 2;
long p3 = 3;
double p4 = 4;
boolean p5 = true;

string[] p6 = {"five", "six"};
_logger.error("\nThis is an error message with parameters > {} {} {} {} {} {} <",
pl, p2, p3, p4, p5, p6);

This leads to following output:

2015-02-09 12:09:09,518Z (13:09) [AWI-EventQueue-0] ERROR com.itko.lisa.script.logger -
This is an error message with parameters > one 2 3 4.0 true [five, six] <

P 20 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Sample

3

Even complex objects can be logged. Following snippet logs content of injected variable ‘testExec’:

_logger.error("\nThis is testExec > {} <", testExec);

And generates following output:

Events

2015-02-09 12:13:21,837Z (13:13) [AWT-EventQueue-0] ERROR com.itko.lisa.script.legger -
This is testExec > lisa.Execute script (JSR-223).rsp=true

EJBSERVER=localhost

LISA_PROJ_URL=file:~D:/DevTest-801GA-examples

JMSCONNECTIONFACTORY=ConnectionFactory

LISA_DOC_PATH=D:“DevTest-801GAexamples\Tests

LISA_LAST_STEP=

lisa.designtime.testcaseinfo=com.itko.lisa.editor.TestCaselnfo@28952c1f

ENDPOINT1=http:/~localhost:8080-/itkoExamples/EJB3UserControlBean

JNDIPORT=1099<ER>

order.step.2.queue=gqueue/C<{BR>

DBUSER=sa

DENAME=itko_examples

user=webapp

LISA_RELATIVE_PROJ_URL=file: D:/DevTest-801GA examples

LISA_TC_PATH=D:“DevTest-801GA“examples:Tests

DBPORT=3306

lisa.hidden.scriptEngine.BeanShell=NotSerializableStateWrapper >> bsh.BshScriptEngine@966579c

robot=0

DBCONNURL = jdbe :derby:/~localhost:1529/1lisa-demo-server.db

LISA_HOST=VOGULD1-W7

LISA_PROJ_NAME=examples

LISA_USER=admin

DBPASSWORD=sa

WSPORT=8080

instance=0

LIVE_INVOCATION_SERVER=localhost

EJBPORT=1099<BER>

PORT=8080

JNDIFACTORY=oryg.jnp.interfaces.NamingContextFactory

LISA_TEST_RUN_ID=-EBCCBB4BBOS111E492FFB82F820524153

WSSERVER=1localhost

testCaseld=EBCCBE4BB0S111E492FF82F820524153

LISA_TC_URL=file:/D:- DevTest-801CGA examples Tests

LISA_RELATIVE_PROJ_NAME=examples

LISA_RELATIVE_PROJ_ROOT=D:/DevTest-B801GA examples

testCase=Test Case

password=example-pwd

JNDIPROTOCOL=3np

LIVE_INVOCATION_PORT=8080

DBDRIVER=org.apache.derby.jdbc.ClientDriver

user_prefix=csv_usertest

LISA_PROJ_PATH=D:“DevTest-801GA“examples

LISA_RELATIVE_PROJ_PATH=D:“DevTest-801GANexamples

LISA_PROJ_ROOT=D:~DevTest-801CGA-examples

LISA_DOC_URL=file:/D:-DevIlest-B801GA examples Tests

SERVER=localhost

<
1

‘testExec’ supports methods for pushing a TestEvent with an EVENT_LOGMSG Event ID:

o ‘log()’ — ‘Log Message’ event

e ‘warn() — ‘Step Warning’ event

e ‘raiseEvent()’ — custom event
testExec.log()

This is a convenience method for pushing a TestEvent with an EVENT_LOGMSG Event ID to the event system. This
method comes with two different signatures:

‘testExec.log(String shortMsg)’
‘testExec.log(String shortMsg, String longMsg)’.

Following Code snippet applies both signatures:

testExec.log(“sample single script test - false);
testExec.log(“Sample Log”, “Sample script test - false);

Creates following events (when started in ITR)

Response l Properﬁesj Test Events
Timestamp EventID Short Long
2015-01-21 15:19:00,054 Log message Sample single script test - false N/A -
2015-01-21 15:19:00,055 Log message Sample Log Sample script test - false
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 21 Of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

testExec.warn()
This method raises a warning message into the events for this test. For scripts it supports two
signatures:
e ‘testExec.warn(String shortMsg)’
e ‘testExec.warn(String shortMsg, String longMsg)’
The following Code snippet

testExec.warn(“sample short warning - false);
testExec.warn(“sample long warning”, “Sample script test - false);

Creates following events (when started in ITR):

Response] Properties | Test Events

Timestamp EventID Short Long

2015-01-21 15:28:51,417 Step warning Sample short Warning - false N/A -

2015-01-21 15:28:51,417 Step warning Sample long Warning Sample script test - false
testExec.raiseEvent()

Previously described testExec methods raise specific events ‘Log message’ or ‘Step warning’ to the event
system. Method ‘testExec.raiseEvent()’ enables raising custom events with the event system.

Custom events must be specified in ‘lisa.properties’ before they can be used. Custom event numbers
must start at 101. To define custom events 101 and 102, for instance, add following lines to
‘lisa.properties’:

3+

DevTest Testing Stuff

#.

Tisa.test.custevents=&101="Custom Event 101";&102="Custom Event 102"

There are multiple raiseEvent() signatures available. For details please see the Javadoc on the SDK [5].
The following one is recommended to use:

e public void raiseEvent(int event,java.lang.String shortDesc, java.lang.String longDesc)
Parameters have following meaning and effect:

1. event-thisis the Event ID to use
2. shortDesc —the small-ish data associated with the event
3. longDesc —the long description can have much larger data associated

P 22 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

The following code snippet creates

testExec.raiseEvent(101,”short Msg“, “Long Message“);

This output in the list of test events:

' Response [Properb‘es; Test Events
Timestamp EventID Short Long
2015-01-23 14:36:21,443 Step history C9ES87AO0DA30411E48511764220524153
2015-01-23 14:36:21,443 Step started Execute script (JSR-223)~2
2015-01-23 14:36:21,443 Step request Execute script (JSR-223)~2 testExec.raiseEven
||2015-01-23 14:36:21,444 lagTOM-IOI Short Msg Long Message
2015-01-23 14:36:21,444 Step response Execute script (JSR-223)~2 true
2015-01-23 14:36:21,444 Step response time Execute script (JSR-223)~2 1
2015-01-23 14:36:21,444 Assertevaluated Execute script (JSR-223)~2 [Any Excep... The assertion of tyg
2015-01-23 14:36:21,444 Log message Will execute the default next step

Starting with DevTest 8.0.2 colors can be assigned to the custom events. This is optional but the color
will be used by the workstation test event panel if is defined. The colors are based on hexadecimal
encoding. For some examples please see http://en.wikipedia.org/wiki/Web colors.

This feature can also be used to override the default colors in the event table.
With the above settings for custom events 101 and 102 and the additional settings in ‘lisa.properties’

2
DevTest Testing Stuff

#.
#

here we are assigning 'tomato' and 'mediumPurple' to events 101 and 102
Tisa.test.custevents.colors=101=FF6347&102=9370DB

The following code snippet creates

testExec.raiseEvent(101,”short Msg“, “long Message“);
testExec.raiseEvent(102,”short Msg“, “long Message“);

This output in the list of test events:
Response | Properties Test Eventsl

Timestamp I EventID I Short l Long
2015-04-10 12:20:29,865 Step started Execute script (J5SR-223)
2015-04-10 12:20:29,866 Step request Execute script (JSR-223) testExec.raiseEvent(101,"sh...

2015-04-10 12:20:29,866 Property set lisa.hidden.scriptEngine.Bea... NotSerializableStateWrapper...

015-04-1 m Event 1

2015-04-10 12:20:29,868 Step response Execute script (JSR-223) true

2015-04-10 12:20:29,868 Step response time Execute script (JSR-223) 2
2015-04-10 12:20:29,868 Assert evaluated Execute script (JSR-223) [An... The assertion of type "Asser...
2015-04-10 12:20:29,868 Log message Will execute the default next...

Sharing Data

DevTest supports sharing data between its processes. Non-persistent data can be shared between VSMs
on the same VSE. Persistent data are stored in the reporting database and can be shared across
processes running with the same registry.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 23 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

http://en.wikipedia.org/wiki/Web_colors

DevTest 8.0 — Custom Extensions

SharedModelMap

Sometimes non-persistent data needs to be shared across virtual services. The ‘SharedModelMap’
object supports this requirement. ‘SharedModelMap’ enables exchange of data by keys.

One VSM can do something like this (taken from scriptable DPH sample below):

com.itko.Tlisa.vse.SharedModelmap.put(“transactionName”, “currentOperation”, fileToSave);

And another VSM can retrieve the key’s value as follows:

String fileName = com.itko.Tlisa.vse.SharedModelMap.get(“transactionName”, “currentOperation”);

The first parameter in both calls is the optional namespace. It is optional but recommended so that keys
are distinguished by different namespaces and unique within a namespace.

SharedModelMap supports following methods. For each method there is a variant available with and

without specification of a namespace:

int size()

int size(String nameSpace)

Returns the number of entries in the default or
specified namespace, respectively.

boolean isEmpty()

boolean isEmpty(String nameSpace)

Returns whether or not the (default or
specified) namespace is empty.

boolean containsKey(String key)

boolean containsKey(String nameSpace, String key)

Returns whether or not the (default or
specified) namespace contains an entry with the
given key.

boolean containsValue(Object key)

boolean containsValue(String nameSpace, Object key)

Returns whether or not the (default or
specified) namespace contains an entry with the
given value.

Object getObject(String key)
Object getObject(String nameSpace, String key)

Gets a value from the (default or specified)
namespace.

String get(String key)
String get(String nameSpace, String key)

Gets a value from the (default or specified)
namespace cast as a string.

Object putObject(String key, Object value)
Object putObject(String nameSpace, String key, Object value)

Puts a value into the (default or specified)
namespace.

String put(String key, String value)
String put(String nameSpace, String key, String value)

Puts a value into the (default or specified)
namespace cast as a string, and returns the
currently known value of the key cast as a
String.

String remove(String key)

String remove(String nameSpace, String key)

Removes a value from the (default or specified)
namespace, and returns the currently known
value of the key cast as a String

void clear()

void clear(String nameSpace)

Clears the (default or specified) namespace

Set<String> keySet()
Set<String> keySet(String nameSpace)

Returns the set of keys currently known in the
(default or specified) namespace. The returned
set will never be null.

void setCapacity(String nameSpace, int newCapacity)

Resizes the capacity of the specified namespace

Each unique namespace is backed by a map that is restricted to a default capacity of 256 key/value
pairs. Each namespace has a LRU (Last Recently Used) map created on demand the first time the
namespace is used. It's backed by an ‘org.apache.commons.collections.map.LRUMap’. The LRU map

determines which map entry to remove if there is no capacity left.

P 24 f 5 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age of 57 X . : . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

vary.

DevTest 8.0 — Custom Extensions

SharedModelMaps are not persisted across VirtualEnvironmentService restarts.

PersistentModelMap

DevTest (>7.1.1.141) provides a convenient mechanism to store arbitrary key/value pairs in its reporting
database. The Registry provides a java APl and it is also exposed as a RESTful service by the DevTest
console.

Persistent maps are accessed by namespace and key. Values must be Strings. To store complex objects
then the user is responsible for serialization using libraries such as XStream. By default key/value pairs in
persistent model maps expire over time.

There are 4 basic APIS which are declared in PersistentMap and are implemented by
‘com.itko.lisa.coordinator.TestRegistry’:

String getMapValue(String nameSpace, String key) Gets a value from the specified namespace cast
as a String.
String putMapValue(String nameSpace, String key, String value) Puts a value into the specified namespace, and

returns the value of the key cast as a String.

String removeMapValue(String nameSpace, String key) Removes a value from the specified namespace,
and returns the value of the key cast as a String

Map<String,String> getAllMapValues(String nameSpace) Returns all key/value pairs in a given
namespace. Values are cast as Strings.

Restful API

Access to PersistentModelMap is also available by a RESTful API:

GET http://localhost:1505/lisa-invoke/persistentMap/namespace/key Returns the value of ‘key’ in ‘namespace’
GET http://localhost:1505/lisa-invoke/persistentMap/namespace Returns all key/value pairs in namespace

(equivalent to getAll)

PUT http://localhost:1505/lisa-invoke/persistentMap/namespace/key/value Set ‘key’ in ‘namespace’ to ‘value’
POST http://localhost:1505/lisa-invoke/persistentMap/namespace/key Set ‘key’ in ‘namespace’ to requestBody
DELETE http://localhost:1505/lisa-invoke/persistentMap/namespace/key Removes ‘key’ in ‘namespace’.

Shared Data expiration

‘key/value’ pairs are deleted by the registry when they expire. The relevant data expiration properties
are set in ‘lisa.properties’ files. The default values are as follows:

lisa.persistent.map.delete=true whether to expire the data at all
lisa.persistent.map.delete.cycle=10m check for expired entries every ten minutes
lisa.persistent.map.delete.age=30d delete entries older than 30 days

The timestamps on key/value pairs are updated whenever an entry is added, updated or retrieved.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 25 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

http://localhost:1505/lisa-invoke/persistentMap/namespace/key
http://localhost:1505/lisa-invoke/persistentMap/namespace
http://localhost:1505/lisa-invoke/persistentMap/namespace/key
http://localhost:1505/lisa-invoke/persistentMap/namespace/key
http://localhost:1505/lisa-invoke/persistentMap/namespace/key

DevTest 8.0 — Custom Extensions

Sample
The following sample sets, retrieves and removes values to keys persistently to the reporting database:

¥ Execute saript (JSR-223) - Exeaute sarpt (35R-223) | e #1: create the persistentModelMap object

If environment error: Abort the Test v| saptiangusge: [Groowy. . . 0 gar e 4 R
Copy properbes into scope: Test state properties - ® #4:set key 1" to ‘valuel
e #5: set ‘keyl’ to ‘value2’ and return previous
keesEau value
1 com.itko.lisa.coordinator.TestRegistry tr =) . ,
2 com.itko.lisa.test.Environment.getTestRegistry(); e #6: retrieve current value of ‘keyl
2 e #7: set ‘keyl’ to ‘value3’ and return previous

4 tr.putMapValue ("MyNamespace",

1", "valuel
Nemespace”, "keyl", "value2"): value

§ String vall = tr.putMapValue ("
6 String val2 = tr.getMapValue ("MyNamespace"”, "ke:
7 tr.putMapValue ("MyNamespace”, eyl"”, "value3"):
£ String val3 = tr.removeMapValue (", "keyl");
9

10 recturn ("Val-1 = (" + vall +

e #8: remove ‘keyl’ and return previous value

11 ") ~Val-2 = (" + val2 +
12 ") - Val-3 = (" + val3 +
13 ")i%)z
14

@ Scripting Step

Message
Script executed. Resultis Val-1 = (value1) - Val-2 = (value2) - Val-3 = (value3).

Debugging
Scripts cannot be debugged by an attached debugger. Using ‘_logger’ for debugging scripts and
breakpoints on custom java code called by the script might help.

Best practice is to set the log level for scripting to DEBUG or ALL (Logging) and to use ‘ /ogger.debug()’
when developing. When in production the log level is then set to INFO. With log level of INFO the data of
script calls * Jogger.debug()’ will actually not be logged. Otherwise it would have a negative impact to
performance.

The actual DevTest infrastructure that runs the script has a logger that you can set to DEBUG level —
‘com.itko.lisa.test.ScriptExecHandler’.

P 26 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o . - R . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Editor

For all the scripted extensions there is a Script Editor in context available. The editor comprises of four
sections

e Configuration area: specifies the language that will be used for scripting, the scope of properties
that will be available for the script and context related effects of the script.

e Code editor — contains the script

e Object selector — lists the objects and properties available to the script

e Status/Action area — located at the bottom of the editor, containing information about cursor
position in the editor, writing mode, read-only status, and — depending on the context a button
to test the script.

(JISR-223)

(& SCTiIp!

Config

te script (JSR

ationianeaeror: Abort the Test v| scriptlanguage: [Beanshel v

ur
Copy properties into scope:}'l’st state and system properties; v

FIEEEEDEE T Avaiable Objects
Name Type Value

tep://VOGULO1-W7:2... -
devtest_agent_cons...

1| return true; a

Code Editor

jdbc:derby: /flocalhos... L

org.apache.derby.jd... |~
java.lang.String itko_examples
java.lang.String sa

3306

Configuration Area

The configuration area includes specifications of the script’s context, how to react on the script’s result
or a failure when executing the script.

Common to configuration areas of all script extensions are the specifications of the
e Scripting language
e Scope of available objects and properties

Out of the box script languages

e Beanshell
e Groovy
e JavaScript
e Velocity

Are available.

Additional languages can be added on demand
(Enabling additional Scripting Languages)

Copy properties into scope: Specification of the scope of available

properties and objects:

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 27 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://support.ca.com/cadocs/0/CA%20DevTest%20Solutions%208%200-ENU/Bookshelf_Files/HTML/Doc_Library/2336295.html

DevTest 8.0 — Custom Extensions

‘Copy properties into scope’

o Test state and system properties: all
properties for the test case and system. This
is the same scope as in previous product
versions

e Test state properties: properties that provide
information about the test case

o TestExec and logger only: only the TestExec
and logger objects are available to the script
(recommended)

Object Selector

Depending on the selection in drop-down list ‘Copy properties into scope’ the objects available for use
in the script editor are listed in the ‘Available Objects’ panel to the right of the screen. The list includes
primitive types of data (strings and numbers) and objects such as EJB response objects that were

executed in the test case.
The drop-down list includes

o Test state and system properties: all properties for the test case and system. This is the
same scope as in previous product versions
o Test state properties: properties that provide information about the test case
o testExec and logger only: only the testExec and logger objects are available to the script
(recommended)
Notes:
o The less objects and properties are required by the script the better the performance to

start the script.
o Properties can also be retrieved via testExec.

Double-click an entry in the Available Objects table to paste that variable name into the editor area.

Available Objects

testExec and logger only

Name Type Value
_logger org.slf4j.impl.Log4jLoggerAdapter org.sif4j.impl.Log4jLoggerAdap. ..
testExec com.itko.lisa.test. TestExec lisa.Execute script (JSR-223).rs...
Available Objects Available test state properties
Name Type Value The screenshot shows a subset only
DBCONNURL java.lang.String jdbc:derby:/flocalhost: 1529/li... »
DBDRIVER java.lang.String org.apache.derby.jdbc.Client...
DBNAME java.lang.String itko_examples
DBPASSWORD java.lang.String sa
DBPORT java.lang.Integer 3306
DBUSER java.lang.String sa
EJBPORT java.lang.Integer 1099
EJBSERVER java.lang.String localhost
ENDPOINT 1 java.lang.String http:/flocalhost:8080/itkoExa...
IMSCONNECTIONFA iava.lana.String [= actorv

28 f 5 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
Page of 57 . - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

vary.

DevTest 8.0 — Custom Extensions

Available Objects Available test state and system properties

Name Type Value The screenshots show a small subset only
AGENT_BROKER _URL java.lang.String tcp://VOGULO1-W7:20097dae... »
AGENT_LOG_NAME java.lang.String devtest_agent_console_1301... [|
IDBCONNURL java.lang.String jdbc:derby: /flocalhost: 1529/i... |
DBDRIVER java.lang.String org.apache.derby.jdbc.Client... |~
DBNAME java.lang.String itko_examples
DBPASSWORD java.lang.String sa m
DBPORT java.lang.Integer 3306
IDBUSER java.lang.String sa
EJBPORT java.lang.Integer 1099
EJBSERVER java.lang.String localhost
IENDPOINTT === bjavalanaStina = htin:/Ancalhnst:R08N/itkaFya
) java.lang.String sun.awt. Win32GraphicsEnviro...

java.lang.String sun.awt.windows. WPrinter Job
java.lang.String D:\DevTest-800GA\.install4j\i4...
java.lang.Float 51.0

java.lang.String D:\DevTest-800GA\binV/.. fibje...
java.lang.String d:\devtest-800ga\jre\ib\ext;C...
java.lang.String d:\devtest-800ga\jre —
java.lang.String C:\Users\vogul01\AppData\Lo... '
java.lang.String D:\DevTest-800GA\bin\..\bin;... |=
java.lang.Boolean true ’
java.lang.String org.apache.axis.transportjco...
java.lang.Boolean true

iava lann Strinn lavalTM) SF Runtime Environm

Code Editor

The code editor can be configured to display line numbers, a toolbar at the top and a status bar at the
bottom.

Clicking on the left bar of the editor brings up a

Show Line Numbers v Show Line Numbers menu to add or remove
Show Toolbar v Show Toolbar e Line numbers to the script
Show Status Bar v Show Status Bar * Amenu bar on top of the editor

o A status bar at the bottom of the editor

The Toolbar icons mean from left to right

(Script Editor Toolbar)

e (greyed out) Returns you to the last edit that
was made (Ctrl + Q)

= @ @ | & e Finds the next occurrence of the selected text
QARG () o L e

Finds previous occurrence (Shift F3)

Finds next occurrence (F3)

Toggles the highlight search (Alt+Shift+H)

Shifts the current line to the left four spaces

(Alt+Shift+KeyPadLeft)

o Shifts the current line to the right four spaces
(Alt+Shift+KeyPadRight)

e Inserts comments slashes (//) at the cursor
position

e Removes the comments slashes

|

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 29 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://wiki.ca.com/display/DTS801/Match+Script+Editor+Toolbar

DevTest 8.0 — Custom Extensions
——

BlaesEaie Editor for scripting.
1

import java.text.SimpleDateFormat;

2
3
4
s
6

e (

.format (myDate) ;

19| if (deteFormat.substring(dateFormat.length() - 1).equals("Z"))
20 formattedDate = formattedDate.substring(0, formattedDate.
21

22 return formattedDate;

[T e Status bar:
On the bottom left hand side the cursor
position is displayed, and whether the editor
mode is set to INSert or OVerRide.

Status area

The status area contains the status bar information of the code editor and for some scripted extensions,
such as the ‘Execute Script (JSR-223)’ test step a button to start a test of the script. For some scripted
extensions, such as ‘Scripted Assertion’ this ‘Test’ button is integrated in the ‘Configuration Area’.

30 f 5 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
Page of 57 X - R . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

vary.

Scripted Expression

DevTest 8.0 — Custom Extensions

Expressions in DevTest, such as {{=<expression>}}, can be scripted. Using {{=%<language specifier>%
<script code>}} the runtime environment starts the selected scripting engine to execute <script code>.

For the scripting languages available in DevTest out of the box the following language specifiers are

defined

e BeanShell: %beanshell%, %bsh%
o Groovy: %groovy%, %Groovy%

e JavaScript: %js%, %javascript%, %JavaScript%, %ECMAScript%, %ecmascript%

e Velocity: %velocity%, %Velocity%

Sample

DevTest installation comes with a sample test case ‘scripting.tst’ in the ‘examples’ project. This test case
includes a step ‘Embedded expressions’, which is an ‘Output Log Message’ step.

¥ |=] Step Information l
Nm:[W 49
[V Use global fikers | Quiet

Execute on: [1o -

Next: |JavaSaript -

[, =| Output Log Message |
| ¥ Log Message

|» Assertions

|» .3 Filters

|» % Data Sets

|» /1 Properties Referenced
|» /1 Properties Set

| [Documentation

You can embedd scripts just about anywhere with
{{expressions}}.

To open the log message editor click on the
‘Output Log Message’ node in RHP

|vmmmlmwm

EEEEEEEIEL

1 Anywhere you use expressions ou can specify a scripting language

2 [({=%tvelocity%

3 Hello from Velocity. The host name is SLISA_HOST
441

5

6 Beanshell (result should be 'UPPERCASE'): {{=%bheanshell%
7 return new String("uppercase").toUpperCase():
8 fr

9

10 Groovy (result should be 'blue'): ({=%groovy%

11 class AGroovyBean {

12 String color

13 }

14

15 def myGroovyBean = new AGroovyBean()

16 myGroovyBean.setColor('blue')

17 myGroovyBean.getColor ()

JE BB

19

20 JavaScript (result should be 'HELLO HELLO'): {{=%javascript}
2l var doubleUpper = function(s) {

22 var upper = s.tolUpperCase()

23 return upper + " " + upper

24 1)

25 doubleUpper ("hello™)

26 1)

I28 The default language is now ({=com.itko.lisa.test.ScriptExecHandler.getDefaultLanguage ()} JI

This log snippet includes scripted expressions
for each of the scripting engines available out of
the box.

The script section starts at ‘{{=%<language
specifier>%’ and ends at ‘}}.

Expression in line #28 returns the default
scripting language as configured in
lisa.properties.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 31 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

DevTest 8.0 — Custom Extensions

Response | properties | Test Events | After execution the scripted expression create

BQ @SR a | the output at the left side.

Anywhere you use {{expressions}} you can specify a scripting language

|Hello from Velocity. The host nawe is UV-DVTSTS80-1 |

IGroovy (result should be 'blue'): blue I

1
2
3
4
5 IBeanshell (result should be 'UPPERCASE'): UPPERCASE I
6
7
8
9

IJavaScripr, (result should be 'HELLO HELLO'): HELLO HELLOI

10
11 IThe default language is now beanshell I
12

P 32 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Test Step - Execute Script (JSR-223)

A test step is a workflow test case element that performs a basic action to validate a business function in
the system under test. Steps can be used to invoke portions of the system under test. These steps are
typically chained together to build workflows as test cases in the model editor. For each step, you can
create filters to extract data or create assertions to validate response data. For details please see
Elements of a Test Step).

The ‘Execute Script (JSR-223)’ step lets you write and run a script to perform some function or
procedure. This step has been introduced in DevTest 8.0 and replaces ‘Java Script Step (deprecated)’
(Java Script Step (deprecated)) going forward.

DevTest Product Documentation

e [1] - DevTest Solutions: Using the Workstation and Console with CA Application Test — Elements of a
Test Step

e [2] - DevTest Solutions: Reference — Execute Script (JSR-223) Step

e [3] - DevTest Solutions: Reference — Java Script Step (deprecated)

Input Parameters

Other than the selected injected variables and properties the script does not have any specific input
variables. Input data are retrieved from properties, usually.

As mentioned before, to support test cases for mobile applications variable *_webDriver’ is available
since DevTest 8.0.1 to access the MobileSession object while the test is running. Please see Scripts in
Mobile Testing.

Output Parameters
It is best practice to supply a return value of scripts, if supported by the scripting engine.

¥ Execute script (JSR-223) - Execute script (JSR-223) ==
If environment error: Abort the Test - Script language: Beanshell «
Copy properties into scope:| Test state properties -
Script
RQ®FE o
1 myValue = 1; m|N T.. V.
2| return T |AA.. jav... true «
AA... jav...
AA... jav... 1234
@ Scripting Step & AA... Jav...
AA... jav... This...
Message AA... jav...
Script executed. Result is "string” EN... jav... htt...
LIS... jav... D:\..
LIS... jav... fie:...
LIS... jav... VO...
LIS... jav...
1< iz, Dirlee

As mentioned before, JavaScript does not support the concept of explicit return values in scripts.
BeanShell and Groovy, however, do.

A script in ‘Execute Script (JSR-223)’ test steps does have to supply a specific return value. If no return
value is specified the last evaluated expression is taken as the script’s response. This applies to
BeanShell, Groovy, and JavaScript.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 33 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://wiki.ca.com/display/DTS802/Elements+of+a+Test+Step
https://wiki.ca.com/pages/viewpage.action?pageId=206831615
https://wiki.ca.com/display/DTS802/Elements+of+a+Test+Step
https://wiki.ca.com/display/DTS802/Elements+of+a+Test+Step
https://wiki.ca.com/display/DTS802/Execute+Script+%28JSR-223%29+Step
https://wiki.ca.com/pages/viewpage.action?pageId=206831615

DevTest 8.0 — Custom Extensions

¥ Execute script (JSR-223) - Execute saript (JSR-223) 7 =
If environment error: | Abort the Test - Scbtlang.xage::ﬁeans!'-el v:

Copy properties into scope:'Test state properties -]
Script

2 FE o
1| myValue = 1; L
2| MyVal2 = "= Return String";
3

Message
Script executed. Result is = Return String

By default, following properties are set when execution of the script is finished:

o ‘LASTRESPONSE’ — contains the script’s return value
e ‘lisa.<step name>.rsp — also contains the script’s return value

Other properties can be set by the script explicitly, using ‘testExec.setStateValue() .

Logging output
The script can be started in different ways, which has an impact to the logging output
* Pressing the ‘Test’ button in the Script Editor: *_logger’ output is in workstation.log
e Starting the test case in ITR: ‘_logger’ output is in workstation.log
e Submitting the test case to ‘Stage a Quick Test’
o Stage Local (No Coordinator Server): ‘_logger’ output is in workstation.log
o Coordinator@Default: ‘_logger’ output is in simulator.log
e Submitting the test case to ‘Stage Test’: ‘_logger’ output is in simulator.log

Editor
The editor to create a script opens in context of the ‘Execute Script (JSR-223)’ test step.

© Addwep | Seprinmodd , Open a test case, right click into the empty area,
B pose Web/Web Senvices , select ‘add step > Custom Extensions > Execute
Java/R2EE » .
S A script’ from context menu to add a Custom
o i Script step select.
External/SubProcess »
IMS Messaging »
BEA »
Sun JCAPS »
Oracle »
TIBCO »
Sonic »
webMethods »
BM »
sap 4 e
Sdakin A Use the {7 toobar button t
Virtual Service Environment » Use the () toobar button t
cAl »
Custom Extensions 1A, Custom Test Step Execution Step
Mobile A, JavaScript Step (deprecated)
\ g«mutnptusk-lli)
This step 15 used to run & script written in any scripting
Language that implements JSR-223. Commen exsmples are
JavaScript, Groovy, JRuby and Python.

P 34 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

v Execute script (J5R-223) - Execute script (JSR-223) 7 = || * ‘Ifenvironment error’ setting specifies the
‘ IF i s abort the Test < Saript | : :Be A ?;T:’rr;to execute in case of a test step
Copy properties into scope:'Test state properties 29 e language — determines the scripting

language of the scripted assertion
e ‘Copy properties into scope’
e Test state and system properties: all
properties for the test case and system
e Test state properties: properties that
provide information about the test
case
e TestExec and logger only: only the
TestExec and logger properties
(recommended)
e ‘Run Assertion’ —to open a window with the
result of the script execution or a description
of the errors that occurred.

| At the bottom of the editor is a ‘Test’ button to
test the script.
=Y,

1:13 |Ins |

Test

Sample

This code sample takes a date, a date format and calculates a new date with a difference of a given
amount of days. The difference of days can be positive or negative, and the new date must not be on a
weekend. If it is on a weekend Monday after it is returned as the new date.

Input properties of this ‘Execute Script (JSR-223)’ test step are:

e ‘myStartDate’ (optional) — defines the date to start calculation from. Default value: today

e ‘myOffset’ (optional) — defines the number of days to add/subtract from start date. Default
value: -8

e ‘myFormat (optional)’ — defines the date format to return the new date. Default value:
‘M/d/yyyy’, sample output: ‘2/9/2015" = Feb 2", 2015.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 35 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions
——

Output properties of this test step are:

e ‘LASTRESPONSE’ — contains a test step response by default
o ‘lisa.<step name>.rsp — also contains a test step response by default
o ‘myNewDate’ — contains output of this script, as it was set explicitly by the script code.

15 import java.text.SimpleDateFormat; o #15: import of java class needed for
1: calculation
e e #19 - #21: retrieve input properties with
19 int daysToAdd = testExec.getStatelInt ("myOffset”, default values
20 String strDateFormat = testExec.getStateString ("myE rvy") : e #23:if no start date is given take today’s
21| Date myDate = testExec.getStateString("myStartDate date
22 tart at t e #24: create a SimpleDateFormat object
23| if(myDate == null) myDate = new Date(): to format Date objects correctly
24 ple X T f > .

. :
25 SimpleDateFormat SDFformat = new SimpleDateFormat (strDateFormat):; #29: set the ne:w Date Objea to the old
26| _logger.debug("Start date = ("+SDFformat.format (myDate)+")."); one plus the difference of days
27 it e #33: Specify the date format that returns
28 Date newDate = new Date(): the day of the week as number
29 newDate.setDate (myDate.getDate () +daysToAdd) ; e #36: convert the return string to an
30| _logger.debug("Calculated date = ("+SDFformat.format (newDate)+")."); integer
2: i i S B soeeE o #38,#39: check for Saturdays and
33| SimpleDateFormat whichDay = new SimpleDateFormat ("u"): Sundays, and add additional days toend
34 .) £ ite K 1 ek 14 — up on Monday
35 Tt) respect t .) . e #42: format the new date according to
36 Integer dayOfWeek = Integer.parselnt (whichDay.format (newDate)): the requested format
37| _logger.debug("Next day of the week is ("+whichDay.format (newDate)+")."); e #44: set property ‘myNewDate’ to the
38 if (dayOfWeek == 6) newDate.setDate (newDate.getDate()+ 2); new date

39 if (dayOfWeek == 7) newDate.setDate (newDate.getDate()+ 1)
40 _logger.debug("Non-WE day of the week is ("+whichDay.format (newDate)+").");
41 f 1 = f

42 String formattedDate = SDFformat.format (newDate);

43 ! :

44 testExec.setStateValue ("myNewDate", formattedDate):;

45 _logger.debug("New date ("+formattedDate+").");

46 ; . - . .

47 return formattedDate;

48 t 7

49

e #47: return the new date as the test
step’s response.

P 36 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X . . . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

Scripted Assertion

The Scripted Assertion lets you write and run scripts to verify the expected outcome of a test step. The
script’s result must be a Boolean. Otherwise, false is returned.

DevTest Product Documentation

e [1] - DevTest Solutions: Using the Workstation and Console with CA Application Test — Scripted
Assertion

Input Parameters

Other than the selected injected variables and properties the script does not have any specific input
variables. Input data are retrieved from properties, usually.

Output Parameters
The script must return a Boolean value. Otherwise, false is returned.

Logging output
The Scripted Assertion logs data to the same log file as the test case and its test steps do.

e Pressing the ‘Test’ button in the Script Editor: *_logger’ output is in workstation.log
e Starting the test case in ITR: “_logger’ output is in workstation.log
e Submitting the test case to ‘Stage a Quick Test’
o Stage Local (No Coordinator Server): ‘_logger’ output is in workstation.log
o Coordinator@Default: ‘_logger’ output is in simulator.log
e Submitting the test case to ‘Stage Test”: *_logger’ output is in simulator.log

Editor
The script editor for a scripted assertion opens in context of a test step.
>, Exeate saipt ()5R-223) In the Test case, select a test step, expand the
:‘3“""’""’ ‘Assertions’ on LHP and click the “+'-sign to open
G the context menus for the various assertions
» L Fiters available out of the box.
» % DatasSets
» [1 Properties Referenced
» 1= Properties Set
[Documentation
HTML 5 From context menu select
Database » ‘Other > Scripted Assertion’, which opens the
Bed XML y editor
JSON »
> Virtual Service Environment »
Highlight Text Content for Comparison Other »
Ensure Non-Empty Result Custom »
Ensure Result Contains String + 11 x
Ensure Result Contains Expression Fiters
Ensure Property Matches Expression Data Sets
Ensure Step Response Time Properties Referenced
Scrigted Assertion Properties Set
Ensure Properties Are Equal Doasmentation,
Assert on Invocation Exception
File Watcher Assertion
Check Content of Collection Object
WS- Basic Profile 1.1 Assertion
Messaging VSE Workflow Assertion
Validate SWIFT Message
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 37 Of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://wiki.ca.com/display/DTS802/Scripted+Assertion
https://wiki.ca.com/display/DTS802/Scripted+Assertion

DevTest 8.0 — Custom Extensions

¥ Scripted Assertion - Scripted Assertion 7=
Name: |Scripted Assertion If [True | then [Fail the Test =
Log:
Language: Beanshel « | Copy propertiesinto scope: Test state and system properties v Run assertion
(Test state and system properties |
Test state and system properties k

Groovy

JavaScript
Velodty

e Name — specifies the name of the assertion
occurring in the list of assertions

o ‘If’ clause specifies the condition of the
script’s return value when the assertion will
trigger

e ‘Then’ defines the action to execute when
the condition is met

e Log — specifies the event text to print to the
event log when the assertion triggers

e Language — see Configuration Area ‘Copy
properties into scope’ — see Configuration
Area and Object Selector

e ‘Run Assertion’ — to open a window with the
result of the script execution or a description
of the errors that occurred.

Sample

These samples show how to return Boolean expressions in Scripted Assertions for the different scripting
languages. The Scripted Assertions samples are contained the ‘scripting.tst’ test case, which is part of

the examples project of DevTest 8.0.

return "G

shell"” .equals (LASTRESPONSE) ;

This BeanShell sample is quite straight forward.
It checks if property LASTRESPONSE equals the
given static string. Return value is the result of

this evaluation.

// you can do anything with Groovy here.
// as a quick demo let's use the 'tr'
// exclusive to Groovy..

String function which is

return LASTRESPONSE.txr ("I", "i").equals("i'm flying!"):

This Groovy script similarly returns the result of
the equality check of strings, leveraging the ‘tr’
method, which is special to Groovy.

‘tr’ translates characters from source set (“I”) to

characters from replacement set (“i”), similar to
the Unix ‘tr’ command’.

ger.info ("JavaScript assertion")

"6".equals (LASTRESPONSE)

JavaScript does not have a concept of a ‘return’
statement outside of functions.

The return value of a JavaScript based Scripted
Assertion is the value of the expression
evaluated last.

Page 38 of 57

vary.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

DevTest 8.0 — Custom Extensions

Virtual Service Router Step

DevTest Service Virtualization supports multiple modes to execute a virtual service. Please see VSE
Console Request Events Details Tab for details.

Within a Virtual Service Model this protocol-independent step routes a client request from a protocol-
specific virtual service listen step to the protocol-specific response selector step or to the live invocation
step, or to both. The decision is made based on the current execution mode for the running model.

Only when running in DYNAMIC mode, the actual mode is determined by a sub-process or a by a script.
The return value of either one determines the actual mode virtual service model is running in. By
default, a script is run. The default script evaluates to EFFECTIVE mode.

Currently, the step supports the BeanShell scripting engine only.

DevTest Product Documentation

e [1] - DevTest Solutions: Using Service Virtualization — Virtual Service Router Step

Input Parameters

Other than the selected injected variables and properties the script does not have any specific input
variables. Input data are retrieved from properties, usually.

Output Parameters

This script must return either an ‘enum’ entry from class ‘com.itko.lisa.vse.ExecutionMode’ or a string
that is the name of an enum entry. The DYNAMIC entry may not be returned. The script will be
executed for DYNAMIC execution mode only.

Possible return values are:

Model Behavior | String Enum

Most Efficient "EFFICIENT" ExecutionMode.EFFICIENT

Tracking “TRACK"” ExecutionMode. TRACK

Live Invocation “LIVE” ExecutionMode.LIVE

Learning “LEARNING” ExecutionMode.LEARNING

Fail Over “FAILOVER” ExecutionMode.FAILOVER

Image Validation | “VALIDATION” ExecutionMode.VALIDATION

Dynamic “DYNANMHC? ExecutionMode-DYNAMIC
Logging output

The ‘Virtual Service Router’ step script support the ‘_logger’ variable. During replay logging output is
part of VSE logging output and this is directed to vse.log.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 39 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

https://wiki.ca.com/display/DTS802/VSE+Console+Request+Events+Details+Tab
https://wiki.ca.com/display/DTS802/VSE+Console+Request+Events+Details+Tab
https://wiki.ca.com/display/DTS802/Virtual+Service+Router+Step

DevTest 8.0 — Custom Extensions

Editor

This editor has not changed (yet) from previous versions. Currently it does not support a visual script
language selector. However, the scripting language can be determined by a language specifier (e.g.
%groovy%). The only object and property scope currently supported is ‘test state and system
properties’.

Setting scripting language
At the beginning of a script the scripting language can be configured by a language specifier
%<scripting_language>%.
For the scripting languages available in DevTest out of the box the following language specifiers are
defined

e BeanShell: %beanshell%, %bsh%

e Groovy: %groovy%, %Groovy%

e JavaScript: %js%, %javascript%, %JavaScript%, %ECMAScript%, %ecmascript%

o Velocity: %velocity%, %Velocity%
The language specifier must be the first statement in the script.

v[=|stepinformaten In the virtual service model, select the Virtual
foume: [Yonal Sarven Bmcion B Service Router Step.
Think time: 0 mils -
Tor Fe— In ‘Step information’ click

‘Virtual Service Router’ to open the associated
script editor.

This editor does not (yet) support language

Message |
> O L:,m \ selection nor variable scoping.
:i’::’m } It supports BeanShell as scripting language only.
Dfimm | All test states and system properties, plus
: %m”m""'g ; injected testExec and _logger variables are
[Documentation | available.

¥ Vrtual Seryice Router - Vrual Service Executon Router

There is a radio button to select whether the
execution mode should be determined by a
subprocess or by a script, which is the default

jon step: WTTP/S Uve Ivocaton

N ““"

* acenT_srower LRt Java.lang.Strng 1D/NOGLO1-W7:2009%dsemon... ~

:
- e et Dissbiemmibiigiorerts selection.
2 S ‘ .
[pespanuo e In the upper right corner a ‘Test’ button starts a
s n Exect nMode . EFFICIENT. 3 \SSWORD Java.leng. String. - .
securn Bt i P Sl & script test.
i 2
oo, -

The remainder of the editor is the same as
described in Editor.

Sample

This sample script returns the value of a test state property, which contains the intended VSE execution
mode for this virtual service model.

For demo purposes a project property
Type ‘AA_VSM_Eexec_Mode’ is added with the value
of ‘LIVE’.

java.lang.String

P 40 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X . . . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

2 ' The script imports the ‘ExecutionMode’ java
| Live invocation step: [HTTP/S Live Invocation class and returns EFFICIENT as the current mode
to execute the virtual service in.

I When in dynamic mode, determine real mode using: () Subprocess @ Saript

= It attempts to store property
R]S s

‘AA_VSM_Exec_mode’ in variable ‘mode’.
1 Th pt m

2 is £ y y If the property exists and contains a value this
3 It will ted for I - ~ition mode value is stored. Otherwise, the default string
4 only. ‘EFFICIENT’ is stored in the variable.
: import com.itko.lisa.vse.ExecutionMode; Running the script by the ‘Test’ button verifies
7| mode = testExec.getStateString("AA VSM Exec Mode", "EFFICIENT"): that the property is avallable_and set, and used
e as the return value of the script.
9| return mode;

10

11 _ ti

124

@ Virtual Service BxecutionRouter |

The script executed and returned an execution mode of Live System (LIVE).

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 41 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

Match Script in Virtual Service Images

Match Scripts are used in VSE to identify a transaction in VSI that matches an incoming request. A Match
Script is the mean to implement a custom matching algorithm that is not covered by the built-in
matching algorithms, which come with DevTest 8.0 out of the box.

DevTest Product Documentation

e [1] - DevTest Solutions: Using Service Virtualization - Match Script Editor

Input Parameters
A Match Script has following injected variables
® com.itko.lisa.vse.stateful.model.Request sourceRequest: contains the recorded request object from VSI
to compare against
® com.itko.lisa.vse.stateful.model.Request incomingRequest: contains the live request object received
from service client.
® com.itko.lisa.vse.RequestMatcher defaultMatcher(): executes the default matching logic.

Please see VSE Transaction Request for available methods of objects ‘incomingRequest’ and
‘sourceRequest’.

Access to arguments, attributes and metadata of transaction requests is handled by class
‘ParameterlList’. For available methods of this class please see ParameterList.

Output Parameters

A Match Script must return a Boolean value to determine outcome of the matching calculation. A return
value of ‘true’ means a matching transaction was found.

Instead of returning a Boolean value explicitly, the Match Script can call ‘defaultMatcher.matches()'to
fall back to the default matching logic for further evaluation (see sample).

If there is an error evaluating the script, VSE deliberately ignores the error and defaults to the regular
matching logic.

Logging Output

It is recommended to add logging and tracing into match script and to embed calls to the VSE matching
logger. The VSE matching logger produces the messages in the vse_xxx.log file, where xxx is the service
image name. For example, the log file of a virtual service ‘kioskV6’ appears as in the respective directory:

"™ N1 N1 14.00 T

__| vse_matches.log 27.01.2015 14:09 Text Document 1.581 KB
.| VS_kioskV6.log 27.01.2015 13:40 Text Document 44 KB

The log level of INFO value typically reports every failure to match. If messages are logged at INFO level,
later when the production settings are applied to the logging.properties file, the log level is set to WARN
and log messages appear as a DevTest test event (a "Log Message" event), but do not appear in the log
file.

To simplify debugging, keep a separate log for VSE transaction match/no-match events. For production
systems change INFO to WARN in following line of ‘logging.properties’:

Keep a separate log for VSE transaction match/no-match events, this makes debugging much easier.
Change INFO below to WARN for production systems, the logging is expensive and will slow down

systems with high transaction rates. Do not simply comment out the following line; explicitly

set the log level to OFF or WARN instead of INFO

|1094j.logger.VSE=INFO, VSEAPP |

If you want to disable VSE logging, do not comment out this line, but set the property value to OFF.

P 42 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

https://wiki.ca.com/display/DTS802/Match+Script+Editor

DevTest 8.0 — Custom Extensions

Match Script Editor

The Match Script editor is integrated into the virtual service image (VSI) editor. To open the Match Script

Editor, open a virtual service image.

2 Koskve + X

" sl L

Transactions

Conversaton 1 rEel |-~ OBR|QES
(getliewToken)
DemoFirst, pass

1313094687566 196,...
s
1313094687566138 -33f690b: 1315269
1313094687566 196,...
s

With the VSI Editor select the ‘Transaction’ tab.
Pick and select a transaction,

getTransactions

accountld: 1313094687566198
rom: 2011-08-04T20:35:18.446Z
0: 2011-08-11T20:35:18.446Z

In the bottom part of the LHP select the
response of the transaction that will host the
Match Script. Each transaction response can
have a different Match Script.

| ¥ Transaction Basics

Navigation: WM
Match style: smaue
Operation: |getTransactions
[7] Allow duplicate specific transactions
[7] Never become the current transaction

| h.feguestData

'mm

®QeSE) x|

1/// Right-click to insert a sample match script
2|

In the RHP expand the ‘Match Script’ node of
the selected transaction response

Like any other of the script editors right click on
the border of the editor and select any option to
add a tool bar, line numbers and a status bar

21 NS

[7] Do not use the seript

\b.Responee, 1o£2

Ridann IFﬂ:ve'odty

Apart from well-known information the status
area of the editor includes the drop-down list to
select the scripting engine.

There is also a check box to deactivate the
script. If deactivated the script is not called to
identify the matching request, but the regular
match algorithm is used instead.

There is no button to run a local test of the script. Thus, scripts cannot be tested within context.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

Page 43 of 57

DevTest 8.0 — Custom Extensions

Sample 1

The editor includes an option to add a sample Match Script.

Havigation: [LOOSE
Match style: | Sgnaure

o

Operation: |deleteToken
Alom dupkcate spedfc tranactons

Mever become the curent transaction

Pt
| e]
NIEETE S EE]
1 // Right-click to insert a sample match script
2
Cut CarsX N
Copy CtrlsInsert

§ Remove whitespace
Paste eV

With the VSI Editor select the ‘Transaction’ tab.
Pick and select a transaction, expand the ‘Match
Script’ node.

Right click into the editor area and select the
‘Insert sample match script’ menu

13)//
147/
15 //
16///
17|

This script only checks the operation name for a match, and to see if the
first 3 characters of "SomeParameterName" match.

Note that it pays no attention to match style / tolerance or comparison
operators.

18 if (!incomingRequest.getOperation.equals("SampleRequest”)) {
return defaultMatcher.matches();

19
20}

21 boolean operationsMatch = incomingRequest.getOperation().equals(sourceRequest.getOperation()):

22 if (operationsMactch) {
String incomingValue = incomingRequest.getArguments().get ("SomeParameterName"):
String sourceValue = sourceRequest.getArguments().get ("SomeParameterName");

29}

if (incomingValue.substring (0, 3).equalsIgnoreCase (sourceValue.substring(0, 3))) {

// true means these arguments match

return true;

}

30 // false means no match
31 return false;

#18: This scripts first checks (#18) if the
incoming live request from client includes an
operation ‘SampleRequest’.

#19: If it does not the default matching logic
is executed by calling
‘defaultMatcher.matches() .

#21: If it includes an operation
‘SampleRequest’ then the operation name
and the first three chars of parameter
‘SomeParameterName’ are compared from
the live request and the recorded request.
#25: If both match true is returned to
indicate the matched recorded request has
been identified.

#31: if there is no match between live and
recorded request false is returned.

Sample 2

The second sample uses the kioskV6 virtual service that is part of the examples project in DevTest
workstation. The ‘kioskV6.vsi’ is extended by a Match Script that adds logging information to the
recorded transactions to visualize the execution order.

b 4
||

10
11
12

Script

2

+

1
2
3
4
S|import com.itko.lisa.VSE;
6
7
-]
9

+
+
+

Qe SE) Sy

// This script logs the operation of the incoming client request
// and the recorded (source) request to VS_<xxx>.log.
// Then the default matching logic is executed.

VSE.error (testExec, "getNewTIoken - META", "Incoming request = ("

incomingRequest.getOperation()
ny o= (m
sourceRequest.getOperation()

e 0 2

13 return defaultMatcher.matches():

#7: the call logs the operation of the
incoming client request (live) and the source
(recorded) request.

This sample code identifies the META
response of the ‘getNewToken’ transaction

Page 44 of 57

vary.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

DevTest 8.0 — Custom Extensions

2 Hoskve + X
Service Image | Transactons

Transactions
Conversation 1 -| @
F e ——
1313094687566198, ... 1313094687566198,... 1313094687566 158 1313094687566 1
0 o o o
T

(getAccount |

1313094687566 198
os

1313094687566198
8

(deleteToken |
-33f69000: 131b269...
o

|131m4GE7566198 -33f69d0b: 131b869... 1313094687566 195, .. |x3|3094ss7566x98,,..
8 o o 8

1313094687566 198
o

-33f69d00: 131b269...
o

1094687566 138,...

(getAccount]

1313094687566198
o

sername: DemoFirst
assword: pass

The match script is added to each of the
transactions META and specific definition.

Virtual Service Environment: VSE@Default

Services Recordings Metrics

gOLHEAOOOIN & ~AlGroups—- ~

Name Resource / Type Status Up-Time Txn Count Model Behavior Group Errors
Kiosk\VE 8001 : http : : ftkoExamples & Running 0:02:08 0 Most Efficient seripting

Once the Match Scripts are completed the VS
needs to be deployed and the transactions with
Match Scripts in the service called.

Sound financial fd

for the

getNewToken - META Incoming regues

(getNewToken)

tNewToken) .

depositMoney - MEIA Incoming request = (deleteloken) = (depositMoney).

withDrawMoney - META Incoming request = (deleteToken) = (withdrawMoney).

getAccount - META Incoming request = (deleteToken) = (getAccount].

getTransactions - META Incoming request = (deleteToken) = (getTransactions)
¥ deleteToken getNewToken) .

[VS_kioskvb_Run)/1] ERROR
[VS_kioskVé_Run]~1] ERROR
[VS_kioskV6_Run]~/1] ERROR
[VS_kioskVé_Run]~1] ERROR
VS_kioskV6_Run]/1] ERROR - getMewToken - META Incoming I

Logging into the ‘kiosk’ sample application and
logging out again produces the following log file
content

The first two logs show the execution of the
META and the specific match scripts for
‘getNewToken’, which is called upon log in.
These log show that the operation match.

The remaining five logs are logs of the match
scripts of the META definitions for all the
transactions showing that the operations do not
match.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any

Page 45 of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

DevTest 8.0 — Custom Extensions

Scriptable Data Protocol

A data protocol defines the payload of a transport protocol. The Data Protocol Handler (DPH) is
responsible for parsing and translating requests from live service client or responses from live or virtual
services, or both of them.

The Scriptable Data Protocol is available for situations where you need a small amount of processing on
the live request, the live or virtual response, or both when recording or playing back a Virtual Service.

DPHs can be ‘daisy-chained’, meaning the output of one DPH is passed as input to the next one.

Note: It needs to be verified if Scriptable DPHs support ‘daisy-chaining’. Current assumption is that
Scriptable DPDHs do not, but are always executed first.

DevTest Product Documentation

e [1] - DevTest Solutions: Using Service Virtualization - Scriptable Data Protocol

Scripts
The Scriptable Data Protocol comprises of three scripts:
e Request script — to make data from client requests available for processing by DevTest
e Live Response script — to make data from live service responses available to DevTest processing

e Playback/Virtual Response script — to format the response from Virtual Service to suit the
client’s response requirements.

Request Script

This script is to parse the incoming request and generate the entries DevTest needs to identify the
incoming client request. At minimum, it will need to define the name of the operation and add
parameters for DevTest to match against. This script is used during recording and playback.

Response Script for generation of Virtual Service

DevTest can use text response payloads, binary ones, JSON ones or XML ones. The most human-
readable of these is often XML, and it is most integrated with DevTest auto-correlation and time-shifting
facilities (magic dates and magic strings) so the purpose of the generation response script is to parse the
response from live service and store it as a set of XML values that can be viewed by testers and
developers in DevTest Workstation.

Response Script for playback of Virtual Service

The response will need to be parsed from how DevTest Workstation has displayed it above. This script is
to take the mashed response and reformat it back to the format that the client application requires.

Input Parameters

The request script has access to injected variable ‘lisa_vse_request’. This variable gives access to
elements of the client request. Please see VSE Transaction Request for available methods.

The response scripts have access to injected variable ‘lisa_vse_response’. This variable gives access to
elements of the live or the virtual response. Please see VSE Transaction Response for available methods.

Access to arguments, attributes and metadata of requests and responses is handled by class
‘ParameterlList’. For available methods of this class please see ParameterList.

Output Parameters
There is no specific output parameter required.

P 46 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

https://wiki.ca.com/display/DTS802/Scriptable+Data+Protocol

DevTest 8.0 — Custom Extensions

Logging output
The DPH scripts support the ‘_logger’ variable. During recording logging output is part of the
workstation log.

When deployed to VSE logging output is directed to vse.log.

Editor

Scripted Data Protocol Handlers are created when configuring the Service recorder in DevTest
Workstation. Once the service recording is completed, data protocol handlers are configured for the
request, the live and the playback responses.

Note: Unless the recorder setup is saved at the very last step of the recorder wizard the code of scripted
DPH cannot be retrieved once the virtual service is created. Therefore it is strongly recommended to
save DPH script code in an external editor.

Clicking on the ‘+’ button adds a new row of
Data Protocols to each of the lists.

From dropdown list the ‘Scriptable Data
Protocol’ is available

Scriptable Data Protocol

PXML Data Protocol

=
| |Scriptable Data Protocol Write a custom script to transform requests and responses.

The next screen opens the script editor for the
request-side Scriptable DPH.

Write a script to process requests.

RS au
1 kbeansnells -
2
3 import java.text.SimpleDateFormat:
4
Sboolean runningAsVSE:
6var message = "";

7var args = "";
8
9 rawMessage = testExec.getStateValue ("flMessage®): 1=

The next screen opens the script editor for the
both response-side Scriptable DPHs.

Write a script to process responses

Response -Recordng | Response -Playback|
| |
1 tbeanshell%¥
2
3 import com.itko.util.ParameterList;
4 String theBody = lisa_vse_response.getBodyText():
S String thinkTime = lisa_vse_response.getThinkTimeSpec():
6 String asString = lisa_vse_response.toString():
7 long id = 1lisa_vse_response.getId():
8 Parameterlist metadata = lisa_vse_response.getMetaData():

Best Practices

Developing a DPH is cumbersome with regard to testing and debugging. First and foremost
recommendation for debugging scripts is always to set the log level for scripts to DEBUG or ALL (see
Logging). Second recommendation is then to take advantage it by making extensive use of

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 47 Of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

‘ logger.debug(“{}”; value) statements. Check ‘workstation.log’ for exceptions and logging output and
expand the DevTest System Message panel from the bottom of the Workstation window by double click

on ‘System Messages’
¥ “ KUN lUSer ILyoe.s1ig
- {&J Run 1User 1CydePF stg
{&) Run1User 1CydeShowAll.stg
=g) /S&borocesses -
System Messages

DevTest Workstation initialized....

INFO - Created queue connection for tcp://VOGULO1-W7:2011 ActiveMOConnection {id=ID:VOGULO1-W7-520
INFO - Created queue connection for tcp://VOGULO1-W7:2014 ActiveMQConnection {id=ID:VOGULO1l-W7-520
INFO - Created queue connection for tep://VOGULO1-W7:2013 ActiveMQConnection {id=ID:VOGULO1l-W7-520
INFO - JVM info: {java.vm.info=mixed mode, java.vm.name=Java HotSpot (IM) 6€4-Bit Server VM, java.vm.

Corporation, java.vm.version=24.72-b04}{java.version=1.7.0_72}
INFO - JVM process id: 4420

INFO - netbeans.home = D:\DevTest-801GA\lib\shared

INFO - Registry ping time: 1l ms

INFO - ickSearch$QuickSearchPainter.hideSearch
System Messages

DPH Test using ‘Execute Script (JSR-223)

A recommended approach is to test the DPH script code with an ‘Execute Script (JSR-223)’ test step if
possible. Sample 1 below demonstrates how code would look like that can be used in both DPH and in a
test case. Main difference is that when used in a test case the transaction request or response is read
from properties instead. VSE passes transaction request and responses in by injected variables.

DPH Test within VSE Recorder

Following recommendations might help when testing the DPH within the VSE recorder:

(@ Virtual Service Image Recorder =B8] ®

Please provide us with some basic information about what is to be recorded and select the appropriate
protocol(s) involved. Some transport protocols do not allow for a data protocol.

Basics | Notes |
w.-mmqeml((uSA_Ra.AnvE_PROJ_Roon)/vs«vxesnmm/mydm-a.vs v [Browse... I

in
Import uufﬁcl {{LISA_RELATIVE_PRO)_ROOT})/Tests/bank-traffic-6.xml - Iaw.vse |

Transport protocol: HTTP/S >]
Desensitize (transport layer)

Treat al transactions as stateless

Alow dupbcate spefic transactions

Defauit navigation: |WIDE v | Last: (LOOSE -
Export to: v | [Browse...

Mode fiel {(.15A_RELATIVE _PRO) ROOT))VServies/my-doh-4.vam - | eomse... |

VS Model style: © More flexible More effident

1.

Load the saved VSE recorder settings for
the next test cycle upon re-launch of the
recorder wizard.
Following parameters are not set when
loading a .vrs file

a. ‘Write image to’

b. ‘Import traffic’

c. ‘Model file’
Test with traffic that was recorded
beforehand.

a. Import the recorded traffic via ‘Import

traffic’ combo box.

P 48 f 5 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age of 57 . - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may

vary.

DevTest 8.0 — Custom Extensions

[0 Virual Service Image Recorder =@ = |

Please provide us with some basic information about what is to be recorded and select the appropriate
protocol(s) involved. Some transport protocols do not allow for a data protocol.

Write image to: |{{LISA_RELATIVE_PROJ_ROOT}}/VServices/Images/my-dph-4.vsi v
© Replace (7) Merge into
Import traffic: |{{LISA_RELATIVE_PROJ_ROOT})/Tests bank-traffic-6.xml v | [Browse v
Transport protocol: [HTTR/S v
[Desensitize (transport layer)
eat al transactions as stateless

Defauit navigation: = m =
Export v | somse.. |

Model file: {{LISA_RELATIVE_PRO)_ROOT}}/VServices/my-dph-4.vsm v Browse...
VS Model style: © More flexible () More efficent

4. For debugging purposes keep parameter
‘Treat all transactions as stateless’
unchecked. This will make sure to have an
intermediate wizard step available to check
for exceptions reported by the scripting
engine, and to return to the script editor.

5.Make sure not to override the existing raw
traffic file when re-launching the wizard for a
new test cycle. Otherwise the traffic file
might contain data modified by the DPHs.

a. Make sure list box ‘Export traffic’ is
empty or has a different file path than
‘Import traffic’

below to select
tokens. Click the Next button to continue.

Conversation Starter Transactions

~ kombinedValue: <null>

Conversation count: 1 Force stateless]

" Response: |~ | Lookin: "_.'.l

6. Prior to clicking ‘Next’ on the screen below
check for any exceptions in
workstation.log, particularly for exceptions
of scripting engines.

7. After pressing the ‘Next’ button there is
no way to return to the script editors

G Vil Senice Image Recorder o W e e far & e et

We are now post what ded. When
the Finish button to store everything.

8. Atthe end of the wizard save the recorder
settings in a .vrs file to save the latest DPH
script code.

9. Always have a backup copy of the latest
Scriptable DPH version in an external
editor.

10. In case the latest recorder settings are not
saved in a .vrs file there is no way to
retrieve a copy of the latest script source

I code
Processing complete. Click Finish when ready.
20f2 }n
e R
' y] Open the service image |
[] Open the generated virtual service model
=== J
Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 49 of 57

warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

DevTest 8.0 — Custom Extensions

Errata

Out of the box in DevTest 8 there is sample code added to each of the DPHs. However, with current
DevTest 8 versions and latest LISA versions method ‘addParameter(String key, String value)’ is not
supported.

// Adding parameters
p.addParameters("keyl=vall&key2=val2"); // many at once

p.addParameter("key3", "val3"); // one at a time

Javadocs ([5]) for class ‘ParameterList’ does not contain a method with this signature.
Please see Sample 2 below how to use ‘addParameter(String label, String key, String value)’ instead.

Sample 1
This DPH sample records the request sent from client and the live responses sent by the live services in a
file. The request-side DPH exchanges data with the response-side DPH using a ‘SharedModelMap’.

Recorded requests and responses are logged in individual files. File names comprise of the operation’s
name, the ID, a timestamp to make them unique, and an indicator whether the file contains a request or
response.

Request DPH

The following sample DPH logs requests from live client system. In order to test and debug main parts of
the Scriptable DPH in a test step, the script can either retrieve the client request from VSE or from a
property.

Request e #9: retrieval of message from property

R] 5@ S f o #10-#16: if retrieval from property fails it
1/sbeanshellt - means that the script is not run in a test step
2 but as part of a VSM in VSE. If retrieval fails
3/import java.text.SimpleDateFormat; message content and arguments of operation

4

are retrieved from current request in VSE
S boolean runningAsVSE:

e A property ‘runningAsVSE’ is set accordingly

6 var message = "";

7 var args = "";

g

9 rawMessage = testExec.getStateValue ("flMessage"):

10if (rawMessage == null) {

11 rawMessage = lisa_vse_request.getBodyBytes():
12 args = lisa_vse_request.getArguments();

13 runningAsVSE = true;

14} else {

15 runningAsVSE = false;

m

16}

1

P 50 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

18 String operation = "";
19 'String theBody = "";
20 String asString = "";

o #23ff: If running in VSE message properties
are retrieved such as

o Operation
21 long id;
5 o Payload as binary or text depending on
23 if (runningAsVSE) { content
24 import com.itko.util.ParameterList; o ID
25 o Request in String representation
26 operation = lisa_vse_request.getOperation(): o Operation’s arguments, attributes and
27 isBinary = lisa vse request.isBinary():
o e Meta data
29 byte([] b;
30 if (isBinary) {
31 b = lisa vse request.getBodyBytes():
32 } else {
33 theBody = lisa_vse_request.getBodyText():
34 }
35
36 asString = lisa_vse_request.toString():
37 id = lisa_vse_request.getId():
38
39 ParameterList args = lisa_vse_request.getArguments();
40
41 ParameterList attributes = lisa vse_request.getAttributes():
42
43 ParameterList metadata = lisa_vse_request.getMetaData():
44} else {
i o #44ff: If NOT running in VSE message
45 flMessage = testExec.getStateString("flMessage”, ""):; . .
e theBody = flMessage: o Operation is hard coded as
47 asString = flMessage; ‘myOperation’
48 operation = "myOperation"; o Payload is text
49 id = 0001; o ID is hardcoded as ‘0001’
S0
S1)}
| 52|operation = operation.replaceAll("/","_"): o #52ff: Web service requests and responses
<& can contain forward slashed (‘/’),w hich may
54 SimpleDateFormat timestampFormat = new SimpleDateFormat (. £ ith file path definitions. So the
S5 "yyyyMMdd HHmmssSSS") ; interfere wi P ’ ¥

56 Date currentTimestamp = new Date():

57 String myDate = timestampFormat.format (currentTimestamp)
58

59 proj_root = testExec.getStateValue ("LISA_PROJ_ROOTI"):

60 fileToSave = proj_root + "/data/" + operation + "_" + id + "_" + myDate;
61 com.itko.lisa.vse.SharedModelMap.put ("transactionName",
62 "currentOperation”, fileToSave):

63

64 File file = new File(fileToSave + "-req.txt"):;

65 BufferedWriter output = new BufferedWriter (new FileWriter(file)):
66 output.write ("\n=== The Operation ==\n"):;

67 output.write (operation);

68 output.write ("\n=== the ID ==\n");

69 output.write (Long.toString(id)):’

70 loutput.write ("\n=== the body ==\n"):;

71 output.write (theBody) ;

72 output.write ("\n=== the body parsed as a string ==\n");
73 loutput.write (asString):

74 output.write ("\n=====\n");

75 output.close();

76

m

o2 s

[i=1

are replaced by underscores (*_’)

#54ff: calculation of a timestamp

#59ff: calculation of the file path prefix,

comprising of the DevTest project path, its

‘/data/’ subdirectory, the operation’s name,

the message id, and the time stamp.

#61: The file path prefix is stored in Shared

Model Map.

#64: The file name is constructed based on

the file path prefix and the suffix that

determines whether it is a request or a

response. On the request side DPH the suffix

‘-req.txt’ is added.

o #65ff: retrieved message content is printed
to the file.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

Page 51 of 57

DevTest 8.0 — Custom Extensions

Response DPH
The following sample DPH logs responses from live service.
[Response - Recording Rcmﬁaybad(| e #4ff: retrieval of response content, including
‘ Q@ 5:| o1 24 | payload, meta data and — specific for the
1 $beanshells response — the think time, as required by the
2 live service.
3 import com.itko.util.ParamecerList; e #10: the file path prefix is get from
4|String theBody = lisa vse_response.getBodyText(): SharedModeIMap where it was stored by the
= Sbr*ng thinkTime = lisa_ vse_response.getThinkTimeSpec(): Request DPH.
6 String asString = lisa vse response.toString():
7 long id = lisa_vse_response.gecId(): e #13: For the response log file the file path
& Parameterlist metadata = lisa_vse_response.getMetaData(); name is completed yb the “-rsp.txt’ suffix
9 o #14ff: logging of the response data.

10/String fileToSave = com.itko.lisa.vse,SharedModelMap.get ("transactionName",
11 "currentOperaction") ;

12

13 File file = new File(fileToSave + "-rsp.txt®);

14 BufferedWriter output = new BufferedWriter (new FileWriter(file)):
15

16 output.write ("\n=== the ID ==\n");

17 loutput.write (Long.toString(id)):

18 output.write ("\n=== the body ==\n"):

19 output.write (theBody);

20 output.write ("\n=== the body parsed as a string ==\n"):

21 output.write (asString);

22 output.write("\n=== The think time ==\n");:

23 output.write (thinkTime) ;

24 output.write ("\n=====\n");

25 output.close()

26

81 ms] k=1

P 52 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X - R . S o . . .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions
Sample 2

The following Scriptable DPH example extends the list of arguments of an operation by an additional
argument:

%beanshel1%

import com.itko.util.ParameterList;
import com.itko.util.Parameter;

// Retrieve transaction operation and arguments
_logger.debug("{}", Tisa_vse_request.getOperation());
_logger.debug("A11 Arguments:");

ParameterList args = lisa_vse_request.getArguments();
_logger.debug("{}", args);

// Get the values of all parameters and concatenate all of them
String valueToAdd = "";
for(i=0;i<args.size(Q);i++) {

_Tlogger.debug("Argument {}", i);

Parameter thisParameter = args.get(i);

_Togger.debug("{}", thisparameter);

thisName = thisParameter.getName() ;

thisvalue = thispParameter.getvalue();

// Replace string separators

thisvalue = thisvalue.replaceAll(" ", "%20");
// Extend the new string value
valueToAdd = valueToAdd + thisName + ":" + thisvalue + "&";

}

ifGi > 0) {
if(valueToAdd.length() > 5) valueToAdd = valueToAdd.substring(0, valueToAdd.length(Q) - 1);
_Tlogger.debug("Argument {} being added", 1i);
// Add a new parameter with label and key ‘combinedvalue’ to the list of parameters
// of the operation and assign to it the previously created value
args.addparameter(new Parameter("combinedvalue"”, "combinedvalue", valueToAdd));
_Togger.debug("{}", valueToAdd);
// Update transaction request with the new set of arguments
lisa_vse_request.setArguments(args);
_Togger.debug("A11 Arguments now:");
_logger.debug("{}",lisa_vse_request.getArguments());

}

This script logs following information for a LisaBank transaction:

DEBUG com.itko.lisa.script.logger POST ~/lisabank/buttonclick.do

DEBUG com.itko.lisa.script.logger - All Arguments:

DEBUG com.itko.lisa.script.logger - accountid=77409560378userid=lisa_simpson&action=Withdraw
DEBUG com.itko.lisa.script.logger - Argument 0

DEBUG com.itko.lisa.script.logger - accountid=7740956037

DEBUG com.itko.lisa.script.logger - Argument 1

DEBUG com.itko.lisa.script.logger - userid=lisa_simpson

DEBUG com.itko.lisa.script.logger - Argument 2

DEBUG com.itko.lisa.script.logger - action=Withdraw

DEBUG com.itko.lisa.script.logger - Argqument 3 being added

DEBUG com.itko.lisa.script.logger - accountid:77409560378userid:lisa_simpsonfaction:Withdraw
DEBUG com.itko.lisa.script.logger - All Arguments now:

DEBUG com.itko.lisa.script.logger -
accountid=77409560378userid=lisa_simpsonfaction=Withdraw&combinedValue=accountid:77409560378userid:lisa_simpson&action:Withdraw

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 53 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

DevTest 8.0 — Custom Extensions

Scripted Dataset
With DevTest 8.0.2 the use of ‘Scripted DataSet’ is supported.

The Scripted Dataset enables creation and usage of test data by a script. The script maintains the current
'state’ of the dataset across calls using SharedModelMap or PersistentModelMap. It passes the map to
the test step for the test step to retrieve the value from the map.

DevTest Documentation
e [1] - DevTest Solutions: Using the Workstation and Console with CA Application Test — Data Sets

Input Parameters

Other than the selected injected variables and properties the script does not have any specific input
variables. Input data are retrieved from properties, usually.

Output Parameters
The script must return a SharedModelMap or PersistentModelMap map variable.

Editor
The script editor for a scripted dataset opens in context of a test step.

» =] Output Log Message ‘ In the Test case, select a test step, expand the
4 13 Log Message | ‘Data Sets’ node and click the ‘+’-sign to open
> © Assertions | the context menus for the various data sets

» . Fiers available out of the box.
¥ % DataSets

1t I ~ X
» 72 Properties Referenced
» 72 Properties Set
» [

Read Rows From a Delimted Data File
Create Your Own Data Shest

Create Your Own Set of Large Data
Read Rows from & JDBC Table
Creste a Numeric Counting Data Set
Read Rows From Excel File

Read DTOs from Excel File

Unique Code Generator

Random Code Generator
Message/Correlation ID Generator
Load a Set of File Names.

XML Data Set

Scrip 358

Common DataSets b

From context menu select ‘Common
DataSets > Scripted DataSet’, which opens the
editor

Use a script to generate data.

| Scripted DataSet - Scripted DataSet 5 =» || o Name - specifies the name of the data set
Name: [Scripted Dataset e On the use of ‘Local’ and ‘Random’ please
product documentation on data sets [1].
e On settings for ‘Start over’ and ‘Execute’

I~ Local | Random Max Records ToFetch; IEIQHJ

At end of data, (¢ Startover (Execute I LI please see product documentation on data
sets [1].
Language: |Beanshell v | Copy properties into scope: ITest and system propertiesLI Test and Keep I o Language — see Configuration Area

e ‘Copy properties into scope’ — see
Configuration Area and Object Selector

Groovy
JavaScript
Velodty

P 54 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

https://wiki.ca.com/display/DTS802/Data+Sets

DevTest 8.0 — Custom Extensions

» 4, Exeaute saipt (JSR-223)
» D) Log Message

¥ Assertions

» i Filters

» % DataSets

» {12 Properties Referenced
» %= Properties Set

¥ [boamentation

In the Test case, select a test step, expand the
‘Assertions’ on LHP and click the ‘+’-sign to open
the context menus for the various assertions
available out of the box.

HTML

Other

»
Database >

Exmo XML »
JSON »

[Virtual Service Environment »
»

»

Highlight Text Content for Comparison

Ensure Non-Empty Result Custom

Ensure Result Contains String * 1 x

Ensure Result Contains Expression Filters

Ensure Property Matches Expression Data Sets.

Ensure Step Response Time Properties Referenced

Scrigted Assertion Properties Set
Documentation

Ensure Properties Are Equal

Assert on Invocation Exception

File Watcher Assertion

Check Content of Collection Object
WS-1 Basic Profile 1.1 Assertion
Messaging VSE Workflow Assertion
Validate SWIFT Message

From context menu select
‘Other > Scripted Assertion’, which opens the
editor

' Scripted Assertion - Scripted Assertion
Name: Scripted Assertion If True w |then Fail the Test
Log:

Language: Beanshel « Copy properties into scope: Test state and system properties

Run assertion

Groovy
JavaScript
Velodty

ITest state properties
ITestExec and logger only

e Name — specifies the name of the assertion
occurring in the list of assertions

o ‘If clause specifies the condition of the
script’s return value when the assertion will
trigger

e ‘Then’ defines the action to execute when
the condition is met

e Log — specifies the event text to print to the
event log when the assertion triggers

e lLanguage — see Configuration Area ‘Copy
properties into scope’ — see Configuration
Area and Object Selector

e ‘Run Assertion’ —to open a window with the
result of the script execution or a description
of the errors that occurred.

Sample

This sample shows how to maintain the current status of a scripted data set in a Shared Model Map and
how to pass the data to the test step. This Scripted Data Set sample is part of test case
‘scriptedDataSet.tst’, which itself is part of the examples project in DevTest 8.0.2

This is an example data set which is able to save state across executions within the same test. This is a
common use case for custom data sets that read proprietary file formats, for example. All this sample
really does is to count from 1 to 10 and pass the current value by the Shared Model Map to the test
case. This approach can be used to save the current file position or cursor data or the last primary key
value used. The 'state’' of the dataset is saved across calls using SharedModelMap or
PersistentModelMap. Both of them save and retrieve String values only so we need to do some data

conversion.

\

var currentValue = c

if (currentValue === null) currentValue =

om.itko. lisa.vse.SharedModelMap.get ("myNa ", "myVal

This Javascript sample is quite straight forward.
Initially it checks if a Shared Model Map
‘myNameSpace’ exists and contains a value for
property ‘myValue’. If it does not variable
‘currentValue is initialized to 0.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual

product performance may vary.

Page 55 of 57

DevTest 8.0 — Custom Extensions

The next two steps increment and then save the
var newValue = (Number (currentValue) + 1).toString() current value in the Shared Model Map.

com, itko. lisa.vse.SharedMode 1Map . put (“mylar -e”, "myValue”, newValue)

Now the Shared Model Map is prepared for
var map = null passing to the test step. If the limit is reached
it (Numbe: (newValue) >= 10) { the current Shared Model Map is cleared.
_logger.info("Dart t V t =) . . .
com. itko. lisa.vse.Shareddode lMap.remove ("yl ", "royV) Otherwise the new value is stored in the map.
} else {

wap = new java.util.HashMap()
wap.put (" ", newValue)
map.put (" t ®y, ol :
)
In Javascript there is no explicit return value,
but the last evaluated expression is returned.
map

The Appendix section contains information that does not fit yet into other chapters or sections of this
document.

Performance considerations

e Some scripts can be compiled, others need interpretation
e inline {{=%javascript% doSomething()}} style scripts are NEVER compiled
e setup cost (variable injection)
e Some actual performance numbers
o Ona2014 Mac Book Pro 2.3Ghz i7,
o ‘Do nothing’ LISA step - 225k steps/second
o Trivial groovy scripting step - 90k steps/sec
o Trivial JavaScript step - 62k steps/sec
o Legacy BeanShell scripting step - 38k steps/sec

Sample Code

SampleCode.zip contains files with sample code used in the document:

File name Comment

Logger-Sample-1 Sample _logger statements representing different log levels

Logger-Sample-2 Sample _logger statements for different object types

Logger-Sample-3 Sample _logger statement to log complex objects

testExec-raiseEvent-Sample-1 Sample testExec.raiseEvent() statement for custom events

EmbdExpr-Sample-1 Samples for embedded expressions in different scripting languages
used in test step ‘Output Log Message’. This sample is taken from
test case ‘scripting-1.tst’, which is part of the examples project in
DevTest 8.

P 56 f 57 Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any warranties and
age o X .) . S o .) .
is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual product performance may
vary.

DevTest 8.0 — Custom Extensions

TestStep-Sample-1 Sample BeanShell script used in test step ‘Execute Script (JSR-223)".
This script returns a ‘work day’ (<> Sat, Sun) with an offset of days
to a given start date.

VSE-Router-Sample-1 Sample script returns a VSE execution mode based on a property if
virtual service is running in DYNAMIC mode

MS-Sample-1 Default Match Script sample, which is available out of the box upon
right mouse click. It demonstrates the usage of injected variables
‘incomingRequest’ and ‘sourceRequest’, and of invocation of the
default matching logic.

MS-Sample-2 Match Script sample that demonstrates specific VSE logging
capability in addition to usage of the injected variables and default
matching logic

DPH-Sample-1-req This Scriptable DPH sample showcases the usage of
ShardeModelMap in the request part of a DPH, injected variable
‘lisa_vse_request’ and usage of classes ‘ParameterList’ and
‘Parameter’

DPH-Sample-1-recrsp This Scriptable DPH sample showcases the usage of
SharedModelMap in the response part of a DPH, injected variable
‘lisa_vse_response’ and usage of class ‘ParameterList’.

DPH-Sample-2-req This DPH sample demonstrates how to add a single parameter to
an operation using ‘addParameter()’ correctly.

DPH-Default-req This is the demo DPH that is inserted out of the box if a Scriptable
DPH was selected for the transaction request. It gives an overview
on available methods for injected variable ‘lisa_vse_request’ and
classes ‘ParameterlList’ and ‘Parameter’.

DPH-Default-recrsp This is the demo DPH that is inserted out of the box if a Scriptable
DPH was selected for one of the transaction responses. It gives an
overview on available methods for injected variable
‘lisa_vse_response’ and classes ‘ParameterList’ and ‘Parameter’.

Copyright © 2015 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document does not contain any Page 57 Of 57
warranties and is provided for informational purposes only. Any functionality descriptions may be unique to the customers depicted herein and actual
product performance may vary.

