
 Date: 10-2009

Version 8.2

CA Wily Introscope®

.NET Agent Guide

6000 Shoreline Court, Suite 300
South San Francisco, CA 94080

Copyright © 2009, CA. All rights reserved.

Wily Technology, the Wily Technology Logo, Introscope, and All Systems Green are registered
trademarks of CA.

Blame, Blame Game, ChangeDetector, Get Wily, Introscope BRT Adapter, Introscope
ChangeDetector, Introscope Environment Performance Agent, Introscope ErrorDetector, Introscope
LeakHunter, Introscope PowerPack, Introscope SNMP Adapter, Introscope SQL Agent, Introscope
Transaction Tracer, SmartStor, Web Services Manager, Whole Application, Wily Customer Experience
Manager, Wily Manager for CA SiteMinder, and Wily Portal Manager are trademarks of CA. Java is a
trademark of Sun Microsystems in the U.S. and other countries. All other names are the property of
their respective holders.

For help with Introscope or any other product from CA Wily Technology, contact Wily Technical
Support at 1-888-GET-WILY ext. 1 or support@wilytech.com.

If you are the registered support contact for your company, you can access the support Web site
directly at www.ca.com/wily/support.

We value your feedback

Please take this short online survey to help us improve the information we provide you. Link to the
survey at: http://tinyurl.com/6j6ugb

If you have other comments or suggestions about Wily documentation, please send us an e-mail at
wily-techpubs@ca.com.

US Toll Free 888 GET WILY ext. 1
US +1 630 505 6966
Fax +1 650 534 9340
Europe +44 (0)870 351 6752
Asia-Pacific +81 3 6868 2300
Japan Toll Free 0120 974 580
Latin America +55 11 5503 6167

www.ca.com/apm

mailto:support@wilytech.com
http://www.ca.com/wily/support
http://tinyurl.com/6j6ugb
mailto:wily-techpubs@ca.com
http://www.ca.com/apm

Contents  iii

CONTENTS

Table of Contents

SECTION I Installation Requirements and Options 7

Chapter 1 The .NET Agent Overview 9

.NET Agent overview 10

The .NET Agent operating environment 11

Chapter 2 .NET Agent Implementation 17

The .NET Agent implementation overview 18

Implementing the .NET Agent. 20

.NET Agent configuration options 21

Chapter 3 Installing the .NET Agent 25

Before you start 26

Installing the .NET Agent 29

User permissions for .NET Agent directory 37

Connecting to the Enterprise Manager 39

Configuring instrumentation 40

.NET Agent name options 41

Performance monitoring (PerfMon) metric collection 42

.NET Agent profile location 44

Uninstalling the .NET Agent 45

Chapter 4 ProbeBuilder Directives 47

ProbeBuilder Directives overview 48

Applying ProbeBuilder Directives. 52

Creating custom tracers. 53

Creating advanced custom tracers 58

iv  Contents

CA Wily Introscope .NET Agent

SECTION II Operation and Management 65

Chapter 5 Monitoring and Logging 67

Configuring .NET Agent connection metrics 68

Turning off socket metrics in the .NET Agent profile 69

Configuring .NET Agent logging options 69

Managing ProbeBuilder logs 71

Chapter 6 Virtual Agents . 73

Understanding Virtual Agents 74

Virtual Agent requirements 74

Configuring Virtual Agents 75

Chapter 7 .NET Agent Failover 77

Understand .NET Agent failover 78

Define backup Enterprise Managers. 78

Define failover connection order 79

Configure failback to primary Enterprise Manager 79

Failover and domain\user configuration 79

SECTION III Tailoring and Extending Data Collection 81

Chapter 8 Configuring Boundary Blame 83

Understanding Boundary Blame 84

Using URL Groups 84

Using Blame tracers to mark Blame points 90

Disabling Boundary Blame 91

Chapter 9 Transaction Tracer Options 93

Controlling transaction trace sampling. 94

Transaction Tracer options 95

Enable collection of filter parameters 95

Disable the capture of stalls as events. 98

Chapter 10 Configure the Introscope SQL Agent 99

The SQL Agent overview 100

The SQL Agent files 101

SQL statement normalization 101

Turning off statement metrics. 108

Contents  v

.NET Agent Guide

Turning off Blame metrics 109

SQL metrics . 109

Appendix A .NET Agent Properties 111

.NET Agent to Enterprise Manager connection 112

.NET Agent failover 112

.NET Agent metric clamp 113

.NET Agent naming 113

Agent metric aging 115

Agent thread priority 118

AutoProbe . 118

ChangeDetector configuration. 119

Default domain configuration 121

Error Detector . 122

Extensions . 123

LeakHunter configuration 123

Logging . 125

Performance monitoring configuration 125

Process name . 126

Restricting instrumentation configuration. 127

Socket metrics . 128

SQL Agent . 128

Stall metrics . 130

Transaction tracing 131

URL grouping . 133

Appendix B Additional Configuration of Application Parameters 135

Index . 137

vi  Contents

CA Wily Introscope .NET Agent

Installation Requirements and Options  7

SECTION I

Installation Requirements and Options

The chapters in this section have information to help you understand, plan, and
perform the process of setting up an Introscope .NET Agent and instrumenting
your applications.

The .NET Agent Overview 9

Implementing the .NET Agent 20

Installing the .NET Agent 19

ProbeBuilder Directives 47

8  Installation Requirements and Options

CA Wily Introscope .NET Agent

The .NET Agent Overview  9

CHAPTER 1

The .NET Agent Overview

This chapter is an introduction to the Introscope .NET Agent.

.NET Agent overview 10

The .NET Agent operating environment 11

10  The .NET Agent Overview

CA Wily Introscope .NET Agent

.NET Agent overview
The .NET Agent is an application management solution for Managed Enterprise
.NET applications. The .NET Agent monitors mission critical .NET applications
running in Microsoft’s Common Language Runtime (CLR) environment, providing
visibility to the component level.

In an Introscope deployment, an agent collects application and environment
metrics and relays them to the Enterprise Manager. An application that reports
metrics to an Introscope agent is referred to as instrumented. After you install
and configure the .NET Agent on a system, the applications that run there are
automatically instrumented at start up.

This illustration shows a simple Introscope deployment. Larger more complex
deployments can have more agents and multiple Enterprise Managers.

By default, only IIS ASP.NET applications active on a system are instrumented.
It is possible to instrument any .NET application, including IIS ASP.NET
applications as well as stand alone .NET executables. It is also possible to only
instrument a subset of, or specific, applications. For more information on
instrumenting specific applications, see Configuring instrumentation on page 34.

The instrumentation process is performed using ProbeBuilding technology, in
which tracers, defined in ProbeBuilder Directive (PBD) files, identify the metrics
an agent gathers from applications and the CLR at run-time.

The .NET Agent operating environment  11

.NET Agent Guide

The Enterprise Manager stores the metrics reported by multiple agents. End users
access metric data using the Introscope Workstation client or the WebView
application. The Introscope Workstation client or the WebView application allow
users to monitor applications, determine the likely source of performance and
availability issues, and diagnose problems.

The .NET Agent operating environment
In your Introscope deployment, you install the .NET Agent on each system that
runs an application you wish to monitor.

The lifecycle of the .NET Agent and AutoProbe

The lifecycle of an ASP.NET application is managed by the Internet Information
Server (IIS). The lifecycle of a .NET Agent is also controlled by IIS.

The startup process for the .NET Agent and AutoProbe components starts when
the managed application code (.aspx, .asmx, etc.) is first exercised.

Until a user request for an application is received by IIS, the .NET Agent is not
active, and does not appear in the Introscope client views in the Workstation or
WebView. Similarly, if an instrumented application stops experiencing user
activity, IIS stops the application process and the .NET Agent. As a result, the
node for the .NET Agent in the Introscope Investigator will be grayed out.

The idle time for the .NET Agent can be configured in the IIS Manager. This allows
you to set the amount of time an application is idle before being “timed out” and
appearing grayed out in the Introscope Investigator.

To configure application idle time:

1 Open the IIS Manager.

2 Right click the application you wish to configure and select Properties.

3 Navigate to the Home Directories tab.

4 Click the Configuration button at the bottom of the tab.

5 Navigate to the Options tab.

6 Make sure the check box for Enable Session State is selected and set the idle
time in minutes.

7 Click OK.

12  The .NET Agent Overview

CA Wily Introscope .NET Agent

How the .NET Agent works with your applications

These are the key steps that occur when a managed .NET application, monitored
by Introscope, starts up.

» Note Stand alone (non-ASP.NET) applications are bootstrapped by Windows,
skipping step one and two below.

Step 1 IIS receives a user request for an application.

Step 2 IIS starts the .NET worker process.

Step 3 The Managed .NET application starts up.

Step 4 The CLR starts the AutoProbe Connector.

Step 5 The AutoProbe Connector looks up AutoProbe in the Windows registry and
invokes AutoProbe.

Step 6 AutoProbe loads the .NET Agent from the Global Assembly Cache.

Step 7 AutoProbe instruments the managed .NET application.

Step 8 The instrumented application starts reporting metrics to the .NET Agent.

The numbered arrows in this illustration correspond to these steps.

The .NET Agent operating environment  13

.NET Agent Guide

.NET Agent instantiation

You install a .NET Agent on each system that hosts the managed .NET
applications you wish to monitor. At the time of the .NET Agent startup, one agent
instance is created for the CLR’s default domain. In addition, one .NET Agent
instance is created for each application running in the CLR as illustrated in the
illustration below.

This illustration shows a managed ASP.NET application that has one IIS worker
process:

14  The .NET Agent Overview

CA Wily Introscope .NET Agent

If multiple .NET applications are grouped together in an IIS application pool that
share a single worker process, there is one .NET Agent for the default domain,
and still one .NET Agent for each of the applications in the application pool, as
the following illustration shows:

For scalability reasons, some companies may assign multiple worker processes to
a single application, in which case one .NET Agent instance is created for the
default domain, and one for each of the worker processes associated with the
application, as shown in the following illustration.

» Note This is the most commonly used configuration.

The .NET Agent operating environment  15

.NET Agent Guide

If there are multiple worker processes, and hence multiple .NET Agents
associated with a single managed application, you can configure those agents as
a Virtual Agent, which enables metrics from multiple physical .NET Agents to be
aggregated. For more information, see Virtual Agents on page 73.

.NET Agent instance in the default domain

As described in .NET Agent instantiation on page 13, a .NET Agent is always
created for the CLR’s default domain. By default, the .NET Agent for the default
domain does not connect to the Enterprise Manager, or appear as a node in the
Investigator tree in Workstation or WebView. However, you can configure the
.NET Agent for the default domain to connect to the Enterprise Manager if
necessary. For more information, see the agent property in Default domain
configuration on page 121.

16  The .NET Agent Overview

CA Wily Introscope .NET Agent

.NET Agent Implementation  17

CHAPTER 2

.NET Agent Implementation

This chapter is an introduction to the .NET Agent implementation process.

The .NET Agent implementation overview 18

Implementing the .NET Agent 20

.NET Agent configuration options 21

18  .NET Agent Implementation

CA Wily Introscope .NET Agent

The .NET Agent implementation overview
Developing the right .NET Agent configuration for your application and the
environments in which it runs is an iterative process. The figure below illustrates
the key processes in the .NET Agent implementation lifecycle; the sections that
follow describe the steps in the implementation process.

Demonstrate Introscope functionality

The first step in developing an Introscope implementation involves “test driving”
the default Introscope .NET Agent configuration. A default .NET Agent
configuration demonstrates data collection functionality and is key to
understanding and evaluating the out-of-the box features of the .NET Agent and
Introscope as a whole. When you install Introscope, a default .NET Agent
configuration is included.

The .NET Agent provides a variety of data collection options out-of-the box and
can be customized to collect more environment-specific data. However, the more
metrics a .NET Agent collects, the more system resources it consumes.

When evaluating the environment, the primary goal is to understand the depth
and breadth of Introscope’s data collection and application management
features. As you refine your .NET Agent configuration, you will streamline data
collection to balance the depth of data collection against overhead constraints
and configure .NET Agent features that help manage and limit resource
consumption.

The .NET Agent implementation overview  19

.NET Agent Guide

Determine configuration requirements

Before introducing Introscope into your environment, whether pre-production or
live, you should determine your data collection requirements. This information
will help you tailor the data collection behaviors of the .NET Agent, and evaluate
the impact on overhead through alternative configurations of the .NET Agent.

Since Introscope is employed across an application lifecycle—in development,
test, and production—your monitoring goals, environmental constraints, and
service level requirements will change over time. You will need to configure .NET
Agents differently in each phase or environment.

.NET Agent configuration is a trade-off between visibility vs. overhead. The goal
is to obtain optimal visibility at a reasonable cost.

In pre-production environments, such as development and QA, you typically
configure a higher level of data collection to provide deeper visibility into the
performance characteristics of the application.

In production or production-like environments, you reduce the level of metric
reporting to control .NET Agent overhead, and when appropriate, implement
optional configurations, such as Virtual Agents or agent failover.

If you intend to collect data from multiple environments, you will need to develop
an appropriate .NET Agent configurations for each.

Define .NET Agent configuration

Having defined configuration requirements based on the characteristics of your
application and its operating environment, you create a candidate .NET Agent
configuration. Most agent behaviors are configured in the Introscope .NET Agent
profile. Some features may also require some configuration in your application
server, or other configuration steps.

Depending on the complexity of your configuration and the target environment,
you may choose to build up the .NET Agent configuration in stages, so that you
can evaluate the impact of each add-on components in isolation.

Evaluate .NET Agent performance overhead

When evaluating a .NET Agent configuration, verify that the metrics collected
provide sufficient visibility into application performance and availability, and that
the volume of metrics do not impose an unacceptable load on the operating
environment. The .NET Agent should not report more metrics than are necessary
to identify and localize performance and availability problems.

20  .NET Agent Implementation

CA Wily Introscope .NET Agent

To effectively understand and evaluate .NET Agent overhead, you must
understand the performance characteristics of the application prior to Introscope-
enabling it.

For example, you can load test your application before and after implementing
out-of-the-box monitoring to verify impact. Similarly, a conservative approach is
to extend data collection in a controlled fashion and evaluate the impact of each
add-on individually.

Validate and deploy .NET Agent configuration

After you have verified that a candidate .NET Agent configuration provides the
visibility required for the target environment without imposing unacceptable
overhead, you deploy the validated configuration to that environment.

In practice, the process of deploying a validated configuration includes installing
the validated configuration artifacts—specifically the IntroscopeAgent.profile
and modified or custom PBD files—to the target environment.

Implementing the .NET Agent
The following sections describe the implementation steps for data collection, and
the .NET Agent directory structure and configuration artifacts.

Basic implementation

The .NET Agent implementation process is as follows:

Step 1 Install the .NET Agent.

Step 2 Configure user permissions for the .NET Agent installation directory and its
subdirectories.

Step 3 Configure the .NET Agent properties that specify which applications should be
monitored and the Enterprise Manager to which the .NET Agent reports.

.NET Agent configuration options  21

.NET Agent Guide

.NET Agent configuration options
The following is an overview of configurable .NET Agent behaviors.

Communications with Enterprise Manager

You must explicitly configure the location of the Enterprise Manager to which the
.NET Agent reports. If you do not, by default the .NET Agent will try to connect
with the Enterprise Manager on localhost port 5001. If the .NET Agent will
connect to an Enterprise Manager cluster, you must configure it to connect to a
Collector Enterprise Manager, rather than to the Manager of Managers (MOM). To
enable an .NET Agent to failover to a secondary Enterprise Manager, you must
define connection properties and connection order as well. For more information,
see Connecting to the Enterprise Manager on page 33.

.NET Agent naming

By default, .NET Agents are automatically assigned a name, based on the
application’s context path or domain name. Wily recommends using this default
autonaming capability. If your requirements dictate, you can explicitly assign
.NET Agent names. For more information, see .NET Agent name options on
page 35.

Virtual Agents

If you have multiple .NET Agents that monitor a single application that is
allocated to multiple worker process, as described in .NET Agent instantiation on
page 13, configuring those .NET Agent as a Virtual Agent allows you to aggregate
metrics at the application level. For more information, see Virtual Agents on
page 73.

Logging

By default, the .NET Agent writes information log messages to console windows
and log files. You can configure the .NET Agent for more detailed logging. For
more information, see Configuring .NET Agent logging options on page 69.

Introscope domains and permissions

Unless you assign an .NET Agent to a custom Introscope Domain, it is part of the
SuperDomain by default. For information about Domains and their use in
configuring user permissions, see the Introscope Configuration and Administration
Guide.

22  .NET Agent Implementation

CA Wily Introscope .NET Agent

ProbeBuilder Directives (PBDs)

The PBDs used during the ProbeBuilding process determine the metrics that the
.NET Agent reports. You configure a list of the desired PBDs or PBLs in the .NET
Agent profile. The default configuration specified in the profile results in the “full”
level of ProbeBuilding for the CLR, your applications, including Web Services, and
the SQL Agent. The “full” PBDs are appropriate in development or QA
environments.

In production environments where overhead is a concern, configure the less
exhaustive “typical” level of ProbeBuilding to obtain fewer metrics and reduce
overhead. You can further control the ProbeBuilding process by customizing
.pbds to skip classes or packages, or to instrument custom classes and methods
that the default .pbds do not specify. For more information, see ProbeBuilder
Directives on page 47.

Data collection and reporting

Most optional data collection behaviors are controlled by agent properties:

 Socket metrics—By default, the .NET Agent reports input and output
bandwidth rate metrics for individual sockets. For more information, see
Turning off socket metrics in the .NET Agent profile on page 69.

 URL Groups for Blame Reporting—To control the way that metrics for front-
ends are aggregated and presented in the Investigator in WebView and the
Workstation, you must configure URL groups. The agent profile contains
properties for specifying URL groups. For more information, see Using URL
Groups on page 84.

 Stall Event Reporting—By default, the agent reports stalls as Events, and
stores them in the Transaction Event Database. You can disable this behavior,
or tailor the stall reporting behavior. For more information, see Disable the
capture of stalls as events on page 98.

 Transaction Tracing Behavior—You can tailor the behavior of the automatic
transaction tracing the Agent performs, and configure the collection of User
IDs for Servlet and JSP invocations. For more information, see Transaction
Tracer Options on page 93.

 PerfMon metrics—By default, the .NET Agent is configured to obtain PerfMon
metrics from the Windows system. You can tailor the configuration to obtain
more, fewer, or custom PerfMon metrics. You can also filter the PerfMon
metrics by Agent. For more information, see Performance monitoring
(PerfMon) metric collection on page 36

 SQL Agent—The Introscope SQL Agent is installed automatically with the .NET
Agent installation. This agent extension provides visibility into the performance
of individual SQL statements running under SQL Server. By default, AutoProbe

.NET Agent configuration options  23

.NET Agent Guide

will instruments your database access components. To disable the SQL Agent,
remove the SQL Agent .pbd from the agent property that specifies .pbds to use
in the ProbeBuilding process. For more information, see Configure the
Introscope SQL Agent on page 99.

24  .NET Agent Implementation

CA Wily Introscope .NET Agent

Installing the .NET Agent  25

CHAPTER 3

Installing the .NET Agent

This chapter contains instructions for installing a .NET Agent. For information
about installing the Introscope Enterprise Manager, Introscope Workstation, and
the Introscope WebView application, see the Introscope Configuration and
Administration Guide.

Before you start 26

Installing the .NET Agent 29

User permissions for .NET Agent directory 37

Connecting to the Enterprise Manager 39

Configuring instrumentation 40

.NET Agent name options 41

Performance monitoring (PerfMon) metric collection 42

.NET Agent profile location 44

Uninstalling the .NET Agent 45

26  Installing the .NET Agent

CA Wily Introscope .NET Agent

Before you start
This section lists key information, decisions, and resources you should identify or
obtain before you start installing your .NET Agent.

Agent implementation planning

If you are new to Introscope or the .NET Agent, review the information in the .NET
Agent Implementation on page 17.

Software requirements

The .NET Agent supports the following versions of .NET:

 .NET 1.1 Framework, v1.1.4322

 .NET 2.0 Framework, v2.0.50727

 .NET 3.0 Framework, v3.0.4506

 .NET 3.5 Framework, v3.5.21022

The .NET Agent supports the following versions of Windows and IIS:

 Windows XP Professional 2002 – SP2 / IIS Version 5.1

 Windows 2000 5.000.2195 – SP4 / IIS Version 5.00.2195.6620

 Windows Server 2003 Enterprise Edition – SP1 / IIS Version 6.0

 Windows Server 2003 Enterprise Edition – SP2 / IIS Version 6.0

 Windows 2008 Server Enterprise SP1 32-bit / IIS Version 7.0.6000.16386

 Windows 2008 Server Enterprise SP1 64-bit / IIS Version 7.0

The .NET Agent supports the following versions of SQL Server:

 SQL Server 2000 Version 8.00.2039 SP4

 SQL Server 2005 Version 9.00.1399.06

» Important To install the .NET Agent on any of the above platforms, sufficient
disk space is required. CA Wily recommends disk space equal to
three times the size of the installer .exe file.

.NET Agent support of x64

The .NET Agent supports 64-bit Windows DLL files under x64 (also known as
AMD64 or Intel64). As x64 is backward compatible with x86, in Windows Server
2003 Enterprise Edition – SP2, x86 binaries run as expected.

If you intend to monitor 32-bit applications running under 64-bit environment,
you must use the 32-bit .NET Agent DLL files. If you intend to monitor 64-bit
applications, you must install the new 64-bit DLL files.

Before you start  27

.NET Agent Guide

» Note Managed code must be compiled under .NET Framework 2.0 or later.
.NET Framework 1.1.4 does not support the 64-bit platform.

Previous agents

If a previous version of the .NET Agent has been installed on a machine in your
environment, CA Wily recommends the previous version of the agent be
uninstalled before you install a new version of the .NET Agent.

» Note If you wish to use an older version of the .NET Agent rather than the
current version, you must uninstall the current version of the agent first
before installing the older version.

Enterprise Manager connection information

The .NET Agent runs on the same system as the applications you wish to monitor,
and connects to the Introscope Enterprise Manager, which runs on a separate
system. During the .NET Agent configuration process, you specify the location of
the Enterprise Manager host system. In preparation, determine the hostname of
the Enterprise Manager.

If your .NET Agent reports to a clustered Enterprise Manager, you must configure
it to connect to a Collector Enterprise Manager, rather than the Manager of
Managers (MOM) Enterprise Manager. If you have a cluster of Enterprise
Managers, determine the hostname of the collector.

If you have multiple Enterprise Managers, clustered or not, you can configure
your .NET Agent to failover to an alternate Enterprise Manager if it disconnects
from its primary Enterprise Manager. If you plan to configure .NET Agent failover,
determine the hostname of each Enterprise Manager that is a failover target for
the .NET Agent.

» Note When viewing metrics in the Introscope Investigator, the .NET Agent
reports the host name only in lower case, regardless of the host name
case. For example:

 If the host/machine name is HOST_1X2Y3Z (all upper case), the .NET
Agent converts it to lower case and reports it as host_1x2y3z in the
Investigator.

 If the host/machine name is Host_1X2y3Z (mixed case), the .NET
Agent converts it to lower case and reports it as host_1x2y3z in the
Investigator.

28  Installing the .NET Agent

CA Wily Introscope .NET Agent

Verify IIS application operations

Before installing the .NET Agent, make sure that your application runs and
behaves as expected, and verify your .NET application can run as a worker
process.

The .NET Agent monitors .NET applications that IIS runs in a worker process. To
verify that IIS is using a worker process, load a page from the application and
then look in the task manager for aspnet_wp.exe (for IIS 5.0, 5.1 or 6.0 running
in 5.0 compatibility mode) or w3wp.exe (for IIS 6.0). If you do not see the worker
process, enable IIS to handle managed components using this command:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_regiis.exe -i

» Note In Windows 2000 environments, the default Windows directory is
C:\WINNT. The above command when used in a Windows 2000
environment would be:
C:\WINNT\Microsoft.NET\Framework\v1.1.4322\aspnet_regiis.exe -i

Reducing startup time

The .NET Agent version 8.0 includes performance enhancements that reduce the
startup time of .NET applications by 25-50%. To take advantage of these
enhancements, the following configurations are required:

 Do not turn on Introscope LeakHunter.

 Do not use the webservices.pbd.

 Do not have any active IdentifyAllClassesAs directives in any custom PBD
files.

Installing the .NET Agent  29

.NET Agent Guide

Installing the .NET Agent
The .NET Agent installer can be run interactively (in GUI mode) or in silent mode.
GUI mode is described in the following section. For information on silent mode,
see Installing the .NET Agent in silent mode, below.

Installing the .NET Agent in GUI mode

The .NET Agent can install an x64 or x86 agent, but not both. Refer to the table
below to see the instances when the .NET Agent will install an x64 agent or an
x86 agent.

To start the .NET Agent installer in GUI mode:

1 Double-click the introscope8.0windowsAgent_dotNET.exe file.

The Introduction page displays.

» Note If you do not run one of the versions of .NET listed in Software
requirements on page 26, the installer will not start.

2 Click Next.

If your system is both x86 and x64 compatible, the installer will ask you to choose
the mode here. Refer to the table above for more information. If you can only run
one type of Framework, you go directly to the Select Installation Folder page.

The Select Installation Folder page is displayed, and prompts you to accept the
default installation directory, or select another directory. The installation
directory is referred to through this guide as the <Agent_Home> directory.

3 Enter the desired directory path, or accept the default, and click Install.

The .NET Agent is installed and the Installation Complete page is displayed. For
information about the directory structure created by the installation process, see
.NET Agent installation directories and files on page 31.

If your OS is... And this Framework is
present...

The installer will:

x86 x86 only install an x86 agent. No other
choice is available.

x64 x86 only install an x86 agent. No other
choice is available.

x64 x86 and x64 offer a choice to install either an
x86 agent or x64 agent.

x64 x64 only install an x64 agent. No other
choice is available.

30  Installing the .NET Agent

CA Wily Introscope .NET Agent

Once the .NET Agent has been installed, you must set the permissions for the
<Agent_Home> directory. See User permissions for .NET Agent directory on
page 37 for more information.

Installing the .NET Agent in silent mode

In silent mode, you invoke the .NET Agent installer from a command line and
specify a response file that supplies installation selections to the installer. This
eases the process of installing multiple .NET Agents.

You can use an automatically generated response file or edit a sample response
file provided with your installation.

Using an automatically generated response file

When you run the .NET Agent installer in GUI mode, it creates a response file with
the installation options you selected in the <Agent_Home>\install directory. You
can use this response file for subsequent silent mode installations. The file name
indicates the date and time that the installer created the response file:

autogenerated.responsefile.<year>.<month>.<day>.<hour>.<minutes>.<seconds>

For example, an installation done April 30, 2005 at 7:10:05 a.m. would have a
response file with this name:

autogenerated.responsefile.2005.4.30.7.10.05

» Note The silent installer responsefile has a new property, bitMode. The default
of this property is 32. The installer will honor an entry of 64 if it detects
both an x64 OS and an x64 framework present on the system.

Using a manually configured sample response file

The <Agent_Home>\wily\install directory contains a sample response file you
can edit for use in silent mode installation. The file name is:

SampleResponseFile.AgentForDotNet.txt

The response file can have any name, and can be located in any directory, as long
as you specify the name and location in the command line when invoking silent
mode.

Keep in mind these issues when entering values for the properties in the response
file:

 Backslashes need to be “escaped”; for example: C:\\myagent

 Any directory supplied needs to be preceded by a slash and followed by a
backslash. These backslashes must also be “escaped”. For example:

C:\\Wily1\\IntroscopeDir\\

Installing the .NET Agent  31

.NET Agent Guide

» Note The silent installer responsefile has a new property, bitMode. The default
of this property is 32. The installer will honor an entry of 64 if it detects
both an x64 OS and an x64 framework present on the system.

Launching the silent mode installer

To run the installer in silent mode, specify the path to the installer and the
absolute path to the response file:

<path to installer> -f <absolute path to responsefile>

For example:

D:\IntroscopeDotNet> introscope8.0windowsAgent_dotNET.exe -f /tmp/
myResponseFile.txt

» Note If the response file specified does not exist or the path is invalid, the
installer starts up in GUI mode.

Silent mode installer for your version of .NET

If you do not run one of the versions of .NET listed in Software requirements on
page 26, add a line to your silent response file that specifies your version of .NET:

dotNet11Version=VersionNum
dotNet20Version=VersionNum

Where VersionNum is the version of your .NET Framework.

.NET Agent installation directories and files

An agent’s operating and data collection behaviors are controlled by configuration
properties stored in the agent profile, and the PBDs it references.

Once the .NET Agent is installed, the following directory structure is created in
your <Agent_Home> directory:

install
UninstallerData
wily

bin
ext
hotdeploy
logs

Contents of the install directory

The install directory contains a log of the installation process, and files for use
in performing silent mode installation of the .NET Agent and uninstalling the .NET
Agent.

32  Installing the .NET Agent

CA Wily Introscope .NET Agent

Contents of the UninstallerData directory

The UninstallerData directory contains an executable file and associated
resources for uninstalling the .NET Agent.

This directory also contains the wilyregtool.exe executable utility. This custom
utility is used to clean up Introscope .NET Agent related registry entries
(registering and unregistering .dlls in the GAC). Use this tool instead of gacutil.

» Note There are two versions of the wilyregtool. 32-bit users get a version
that is compiled with .NET 1.1. 64-bit users get a version that is compiled
with .NET 2.0.

Contents of the wily directory

The wily directory contains:

 IntroscopeAgent.profile—The .NET Agent profile contains properties that
control the behavior of the .NET Agent and AutoProbe. Defaults are supplied
for many properties. Typically, each .NET Agent running in a CLR uses the
same IntroscopeAgent.profile and a shared set of configurations, such as
.pbds and .pbls.

 ProbeBuilder Directives (PBDs)—Contains the standard ProbeBuilder Directives
(PBDs) provided with the .NET Agent, which vary depending on the application
server your .NET Agent installation supports. AutoProbe looks for the PBDs you
configure for use during the ProbeBuilding process.

The following are the default PBD files contained in this directory:

 dotnet.pbd

 errors.pbd—used with CA Wily ErrorDetector

 nativeskip.pbd

 sqlagent.pbd

 toggles-full.pbd

 toggles-typical.pbd

 webservices.pbd

Each .NET Agent running in a CLR uses the same set of PBDs and PBLs. Each
.NET Agent also outputs a distinct log file so differences in performance can be
distinguished.

 ProbeBuilder Lists (PBLs)—Contains the default-full.pbl and default-
typical.pbl files.

 logging.config.xml—Configures logging options.

 Sample.exe.config—A sample application configuration file, for optional
configuration settings.

Installing the .NET Agent  33

.NET Agent Guide

Contents of the wily\bin directory

This directory contains:

 wily.Agent.dll—Contains the core .NET Agent libraries.

 wily.AutoProbe.dll—Contains the AutoProbe bridge.

 wily.AutoProbeConnector.dll—Contains CLR profiler information.

 wily.Agent.pdb—Used to help debug the .NET Agent.

 wily.AutoProbe.pdb—Used to help debug AutoProbe.

 wily.AutoProbeConnector.pdb—Used to help debug AutoProbe Connector.

Contents of the wily\ext directory

This directory contains:

 wily.LeakHunter.ext.dll—This component appears when you install CA Wily
LeakHunter.

 wily.ProbeBuilder.ext.dll—Contains the engine that instruments your
applications.

 wily.SQLAgent.ext.dll—This component is the .NET SQL Agent, which
enables reporting of SQL Server metrics.

 wily.LeakHunter.ext.pdb—Used to help debug LeakHunter.

 wily.ProbeBuilder.ext.pdb—Used to help debug ProbeBuilder.

 wily.SQLAgent.ext.pdb—Used to help debug the SQL Agent.

Contents of the wily\hotdeploy directory

ProbeBuilder Directives placed in this directory will be automatically deployed to
the .NET Agent. When you create custom PBDs, save them to this directory. When
PBDs are placed in this directory, you do not have to edit the
IntroscopeAgent.profile to pick up new or changed PBDs.

For more information about creating custom PBDs, see ProbeBuilder Directives
on page 47 and Creating custom tracers on page 53.

» Note Any ProbeBuilder Lists (PBLs) placed in this directory will be ignored by
the .NET Agent.

34  Installing the .NET Agent

CA Wily Introscope .NET Agent

The hotdeploy directory allows Introscope administrators to deploy new
directives more quickly and easily, without editing the IntroscopeAgent.profile,
and potentially without restarting applications. This ability heightens the need for
caution. If your custom PBDs contain invalid syntax, or are configured to collect
too many metrics, the impact will be felt more quickly. Invalid PBDs will cause
AutoProbe to shut off and PBDs that collect too many metrics can affect
application performance.

To address this, CA Wily recommends:

 testing and validating all directives in QA and performance environments
before pushing them out to production environments.

 ensuring that your server environment's change control process is updated to
reflect the new option for deploying PBDs.

Additionally, you can decide not to use the hotdeploy directory.

To unconfigure the hotdeploy directory:

1 Move any of the custom PBDs stored in the hotdeploy directory to the main
<Agent_Home>\wily directory.

2 Open the IntroscopeAgent.profile.

3 Remove hotdeploy from the introscope.autoprobe.directivesFile property.

4 Add the PBDs you want use to the introscope.autoprobe.directivesFile, for
example:

introscope.autoprobe.directivesFile=default-
typical.pbl,custom1.pbd,custom2.pbd,custom3.pbd

5 Save the IntroscopeAgent.profile and restart the agent.

Contents of the wily\logs directory

.NET Agent log files are stored here.

Installing agent extensions

Periodically, the .NET Agent installer does not install extensions (such as DLLs)
correctly if the version number of the extension differs from the version number
of the .NET Agent. To avoid this situation, you can:

 configure individual applications to accept different version numbers.

OR

 configure globally all applications to accept different version numbers.

» Important Choose only one option; do not perform both options.

Installing the .NET Agent  35

.NET Agent Guide

To configure individual applications to avoid extension installation errors:

1 If the extension you are installing is a regular .exe, create a file called
<Extension_Name>.exe.config and place this file in the same directory as the
original .exe.

2 If the extension is an IIS application, create a file called w3wp.exe.config and
place it in the same directory as w3wp.exe. This is for the default domain.

3 If the extension is an IIS application, also add the following to web.config for
each individual application:

assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="..." .../>
<bindingRedirect oldVersion="0.0.0.0 - 65535.65535.65535.65535"

newVersion="<AGENT.VERSION.NUMBER>"/>
</dependentAssembly>

</assemblyBinding>

Enter an assemblyIdentity name and replace the agent version number with your
.NET Agent version number. For example, if you installed the 7.2 version of the
.NET Agent, you would add the following:

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="wily.Agent"
publicKeyToken="2B41FDFB6CD662A5"/>

<bindingRedirect oldVersion="0.0.0.0 - 65535.65535.65535.65535"
newVersion="7.2.0.1" />

</dependentAssembly>
</assemblyBinding>

» Note If the files above already exist, add the <assemblyBinding> node under
<runtime>.

To configure all applications globally:

 Add the following to machine.config:

assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="..." .../>
<bindingRedirect oldVersion="0.0.0.0 - 65535.65535.65535.65535"

newVersion="<AGENT.VERSION.NUMBER>"/>
</dependentAssembly>

</assemblyBinding>

Enter an assemblyIdentity name and replace the agent version number with your
.NET Agent version number. For example, if you installed the 7.2 version of the
.NET Agent, you would add the following:

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

36  Installing the .NET Agent

CA Wily Introscope .NET Agent

<assemblyIdentity name="wily.Agent"
publicKeyToken="2B41FDFB6CD662A5"/>

<bindingRedirect oldVersion="0.0.0.0 - 65535.65535.65535.65535"
newVersion="7.2.0.1" />

</dependentAssembly>
</assemblyBinding>

» Note Adding the code snippet to machine.config globally affects all
applications.

User permissions for .NET Agent directory  37

.NET Agent Guide

User permissions for .NET Agent directory
When you install the .NET Agent, the installation directory (typically
<Agent_Home>\install) is created with permissions in accordance with the system
policy.

For the .NET Agent and AutoProbe to run, the user authorization token executing
the worker process must have permissions for the .NET Agent home directory,
the bin, ext, and log subdirectories.

The wilypermissions utility

When you install the .NET Agent, the installer automatically checks for x86
Framework 2.0 or later. If the installer detects this Framework, it installs the
wilypermissions.exe file, a utility provided by CA Wily to allow you to grant the
user performing the installation permissions to the <Agent_Home> directory, and
access to performance monitoring (PerfMon) counters.

If no user is specified, the utility will detect the default IIS user for the application
platform and grant permissions to that user.

To use the wilypermissions utility:

1 Navigate to <Agent_Home>\wily.

2 Run wilypermissions.exe from command line as:

wilypermissions.exe path_to_wily_dir [process name].

» Note The process name must include the file extension. If the process name
is not specified, the IIS worker process name will be used by default.

The utility executes, granting permission to the <Agent_Home> directory to the
user performing the installation, and giving access to performance monitoring
(PerfMon) counters.

If the installer does not detect an x86 Framework 2.0 or later, the utility file is
not installed and the permission for the <Agent_Home> directory is set to
Everyone—full control is given to Everyone. To change the permissions for this
directory, see Determine the user running the application on page 37, and Verify
minimum user permissions on page 38 for more information.

Determine the user running the application

Typically applications to be monitored run in an IIS worker process. To determine
the user name for the process, open the Windows Task Manager, select the
Processes tab, and locate the entry for w3wp.exe (on IIS 6) or aspnet_wp.exe (on
IIS 5.)

38  Installing the .NET Agent

CA Wily Introscope .NET Agent

Typically the user for the IIS worker process is “NETWORK SERVICE”, as shown
below:

» Note The application must be running to appear in the Windows Task Manager.
If you do not see the application in the Windows Task Manager, close the
Task Manager, access the application, then open the Task Manager
again.

Verify minimum user permissions

To verify minimum user permissions:

1 In Windows Explorer, right-click on the root .NET Agent folder and select
Properties.

The Properties window for the folder is displayed.

2 Click on the Security tab from the Properties window.

3 Verify that the Administrator and Create Owner user names have Special
Permissions.

4 Click the Add button.

The Select Users or Groups dialogue box is displayed.

5 Enter part of the name or the complete name of the user in the Enter the object
names to select field.

IIS worker process

Connecting to the Enterprise Manager  39

.NET Agent Guide

6 Click the Check Names button to validate the user. If the user is not validated
and underlined, check for spelling errors or spaces in the user name. If multiple
users are listed, select the correct user. Click OK after the user name is validated
and underlined.

The Permission Entry dialogue box is displayed.

7 Verify that the user has the following permissions:

 Full Control

 Modify

 Read & Execute

 List Folder Contents

 Read

 Write

8 Click the Advanced button.

The Advanced Security Settings for Wily dialogue box is displayed.

9 Select the Replace permission entries on all child objects with entries shown
here that apply to child Objects check box to propagate permissions to the child
directories, and click OK.

Connecting to the Enterprise Manager
The default communications settings in the .NET Agent profile enables a .NET
Agent to connect to a local Enterprise Manager.

In a recommended Introscope implementation, an agent and the Enterprise
Manager to which it reports do not reside on the same system—so you must
identify the remote Enterprise Manager in the IntroscopeAgent.profile.

The properties in the IntroscopeAgent.profile specify connection behavior for
the DEFAULT Enterprise Manager communication channel:

 introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Defines the host name or IP address of the target Enterprise Manager.

 introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Defines the Enterprise Manager’s listen port, which should be the same port
specified in the Enterprise Manager’s
introscope.enterprisemanager.port.DEFAULT property.

 introscope.agent.enterprisemanager.transport.tcp.socketfactory.

DEFAULT

Defines the socket factory used for connections to the Enterprise Manager.

40  Installing the .NET Agent

CA Wily Introscope .NET Agent

To specify an alternative Enterprise Manager channel, define its connection
properties by adding the following properties to the agent profile:

 introscope.agent.enterprisemanager.transport.tcp.host.NAME

 introscope.agent.enterprisemanager.transport.tcp.port.NAME

 Introscope.agent.enterprisemanager.transport.tcp.socketfactory.NAME

Replace NAME with an identifier for the new Enterprise Manager channel, and
specify the Enterprise Manager’s connection details.

For more information about connection properties, see .NET Agent to Enterprise
Manager connection on page 112.

Configuring instrumentation
As your environment becomes more complex, you may want to prevent specific
processes or applications from being instrumented by Introscope. By default, all
IIS 5 and IIS 6 ASP.NET applications are instrumented, as well as all application
pools in IIS. Stand alone applications (non-IIS applications) are not instrumented
by default. You must configure the .NET Agent to instrument non-IIS
applications.

When you disable instrumentation for an application, the CLR profiler for that
application is still active. For applications that are no longer instrumented:

 AutoProbe is turned off. This shuts down all automatic instrumentation.

 The .NET Agent associated with the application never connects to the
Enterprise Manager and no metrics are reported. The overhead of a socket
connection is also prevented.

For applications that have instrumentation enabled, the .NET Agent reports
metrics as usual and AutoProbe is active.

Instrumenting specific processes and applications

If you monitor only applications running in IIS, you do not have to configure the
following property. If the applications to be instrumented are only running in IIS,
see Instrumenting application pools on page 41 to configure instrumentation of
application pools.

To enable or disable instrumentation of processes or applications:

1 Stop IIS.

2 Open the IntroscopeAgent.profile and locate the Restricted Instrumentation
section.

3 Add application names or fully qualified paths to the following property:

.NET Agent name options  41

.NET Agent Guide

introscope.agent.dotnet.monitorApplications=

By default, w3wp.exe and aspnet_wp.exe are already listed in this property. Add
other applications in a comma delineated list. For example:

introscope.agent.dotnet.monitorApplications=w3wp.exe,aspnet_wp.exe,
RandomApp.exe,testapp.exe,readloop.exe,C:\windows\winmerge.exe,
S:\sw\prvciew.exe

» Important The property list is case sensative. Relative paths and wildcards
are not supported.

4 Restart IIS.

Instrumenting application pools

By default, all application pools are instrumented. However, if you want to limit
which application pools are instrumented, there by limiting which IIS applications
are instrumented, you must specify which application pools to instrument.

To instrument specific application pools:

1 Stop IIS.

2 Open the IntroscopeAgent.profile and locate the Restricted Instrumentation
section.

3 Uncomment the following property:

introscope.agent.dotnet.monitorAppPools=

4 Add the application pools to be instrumented in a comma deliniated list. For
example:

introscope.agent.dotnet.monitorAppPools="NULL","DefaultAppPool",
"AppPool1","AppPool2"

» Note IIS 5 can run without application pools. Use the “Null” value if you are
instrumenting applications running in IIS 5.

5 Restart IIS.

.NET Agent name options
There are two methods for naming .NET Agents: automatic and manual.

A .NET Agent obtains its name automatically, by default. An agent monitoring an
ASP.NET application obtains its name based on the name of the virtual directory
(or context path) of the application. An agent monitoring non-web-based
applications determines its name from the application domain name.

No configuration is required to enable automatic agent naming.

42  Installing the .NET Agent

CA Wily Introscope .NET Agent

You can explicitly assign a name to an agent, if you prefer not to use autonaming.
The following sections have instructions for manual agent naming.

Create profiles for each application

If you wish to explicitly assign a name to an agent monitoring ASP.NET
applications, you must create a separate IntroscopeAgent.profile for each
application. This process is more labor-intensive, but provides greater control
over the agent name. Using a separate profile for each agent also allows you to
control the agent’s process name.

Define an agent name

Specify the agent naming properties in IntroscopeAgent.profile:

introscope.agent.agentAutoNamingEnabled=false
introscope.agent.customProcessName=<CustomProcessName>
introscope.agent.agentName=<CustomAgentName>

Performance monitoring (PerfMon) metric collection
By default, the .NET Agent is configured to obtain system performance metrics
(performance monitoring or PerfMon) from a Windows system. The property that
enables performance monitoring is introscope.agent.perfmon.enable, which is
set to true in the IntroscopeAgent.profile file.

IIS permissions

To view PerfMon metrics in the Introscope Investigator, the user running IIS must
first have the correct permissions set.

» Important This configuration was performed for you automatically if you
used the wilypermissions utility. See The wilypermissions utility
on page 37 for more information.

To set IIS user permissions on Windows 2003 and XP:

1 Navigate to Start > Settings > Control Panel > Administrative Tools > Local
Security Policy > Local Policies > User Rights Assignment.

2 Right click Profile Single Process, select Properties, and add the user running
IIS to the list of permissioned users.

3 Right click Profile System Performance, select Properties, and add the user
running IIS to the list of permissioned users.

4 Close the window.

Performance monitoring (PerfMon) metric collection  43

.NET Agent Guide

To set IIS user permissions on Windows 2000:

 To enable IIS users on Windows 2000, see the following Microsoft knowledge
base article:

http://support.microsoft.com/kb/555129

Tailoring PerfMon metric collection

A .NET Agent property, perfmon.metric.filterPattern, specifies the PerfMon
keys the .NET Agent reads. The default setting is:

introscope.agent.perfmon.metric.filterPattern=|Processor|*|*,|.NET Data
Provider*|*|*,|.NET CLR*|{osprocessname}|*,|.NET CLR
Data|*|*,|Process|{osprocessname}|*,|ASP.NET|*

The filter follows the format |Category|Instance|Counter or |Category|Counter
(if there is no instance) where:

 Category identifies a performance monitor category, such as Memory,
Processor, or Process.

 Instance identifies a specific instance of the specified category. Some
categories, such as Memory, do not have instances.

 Counter identifies metrics for the Category|Instance to be collected. For
example, the .NET CLR Memory performance counter category has
performance counters such as # Bytes in all heaps, Gen 0 heap size, # GC
handles, and % time in GC.

You can tailor the PerfMon data the .NET Agent collects by modifying the value of
the introscope.agent.perfmon.metric.filterPattern property. You can expand
or decrease the data reported, and include custom PerfMon counters if you have
defined them for your applications.

» Note At times Windows 2003 users may not be able to see .NET CLR PerfMon
metrics, like .NET CLR Exceptions or .NET CLR Interop. To avoid this, add
the user running the monitored .NET application to the Administrators
group.

Some PerfMon metrics have been reserved for future implementation by
Microsoft. These metrics are tagged “NotDisplayed” when seen in PerfMon. When
these metrics are viewed in the Introscope Investigator, the place holder tag is
displayed.

Filtering PerfMon metrics by .NET Agent and process

By default, the .NET Agent will report PerfMon data for all agent instances and
processes.

http://support.microsoft.com/kb/555129

44  Installing the .NET Agent

CA Wily Introscope .NET Agent

You can limit the PerfMon data by CustomerProcessName and AgentName, using
the perfmon.agentExpression property setting in the IntroscopeAgent.profile.

The filtering format is: ProcessName|AgentName

For example:

perfmon.agentExpression=*|RGSTR

restricts the PerfMon statistics to agents whose AgentName is RGSTR.

To reduce the overhead of PerfMon reporting, you can limit the metric volume and
the frequency of reporting with the following properties:

 perfmon.metric.limit—Sets an upper limit to the number of PerfMon metrics
reported.

 perfmon.metric.pollIntervalInMinutes—Frequency with which the .NET
Agent obtains metric values.

 perfmon.metric.browseIntervalInMinutes—Frequency with which the .NET
Agent checks for new categories of counters.

In the Windows 2000 environments, if a user tries to access metrics they do not
have permissions to view, the PerfMon metrics may not display correctly in the
Introscope Investigator. To circumvent this problem, either add the ASPNET user
to the MSSQLSERVER2005 group to correctly view PerfMon metrics or limit the
data to be displayed using the above properties.

.NET Agent profile location
By default the .NET Agent profile, IntroscopeAgent.profile, is installed in the
.NET Agent home directory, typically <Agent_Home>/wily. If you move the profile,
you must update the environment variable that specifies the location of the .NET
Agent profile.

To update the location of the .NET Agent profile location:

1 Navigate to the Windows System Properties page: Start > Settings > Control
Panel > System.

2 Navigate to the Advanced tab and click the Environment Variables button.

3 Under the System Variables portion of the Environment Variables dialogue box,
click New.

4 In the New System Variable dialogue box:

 Enter the Variable Name: com.wily.introscope.agentProfile

 Enter the Variable Value as the full path to the .NET Agent profile, including
the .NET Agent profile name. For example:
c:\<Agent_Home>\IntroscopeAgent.profile

Uninstalling the .NET Agent  45

.NET Agent Guide

Click OK.

5 Restart the Internet Information Services (IIS).

» Note If the IIS server was running before the .NET Agent installation, the IIS
server must be restarted through the IIS Administration Service.

6 Start the Enterprise Manager and the Workstation if they are not already running.

Uninstalling the .NET Agent
The .NET Agent is active whenever an instrumented application is running. To
delete or modify any agent DLL files, such as during an unistall, all instrumented
applications must be stopped.

To uninstall the Introscope .NET Agent:

1 Restart the IIS service.

2 Double-click Uninstall Introscope Agent for .NET.exe in the
<Agent_Home>\UninstallerData\dotnet directory.

The uninstall dialogue box is displayed.

3 Click Next.

A confirmation dialogue box is displayed.

4 Click Continue to uninstall the .NET Agent.

The .NET Agent DLLs are unregistered, related environment variables are
removed, and installed files that have not been modified since installation are
removed.

5 Reboot your system to complete the uninstall process.

» Important Rebooting your system is the only way to inform the IIS process
that the system environment variables have changed. You must
reboot your system to instruct IIS to turn off the .NET Agent.

46  Installing the .NET Agent

CA Wily Introscope .NET Agent

ProbeBuilder Directives  47

CHAPTER 4

ProbeBuilder Directives

This chapter describes how to create and modify ProbeBuilder Directive files.

ProbeBuilder Directives overview 48

Applying ProbeBuilder Directives 52

Creating custom tracers 53

Creating advanced custom tracers 58

48  ProbeBuilder Directives

CA Wily Introscope .NET Agent

ProbeBuilder Directives overview
ProbeBuilder Directive (PBD) files tell the Introscope ProbeBuilder how to add
probes, such as timers and counters, in order to instrument an application. PBD
files govern what metrics your agents report to the Introscope Enterprise
Manager.

» Note All metrics are calculated using the time set by your system clock. If the
system clock is reset during a transaction, the elapsed time reported for
that transaction may be misleading.

Introscope includes a set of default PBD files. You can also create custom
Introscope PBD files to track any classes or methods to obtain specific
information about your applications. See Creating custom tracers on page 53 and
Creating advanced custom tracers on page 58.

There are two kinds of files used to specify ProbeBuilder Directives:

 ProbeBuilder Directive (PBD) files

A ProbeBuilder Directive (PBD) file contains directives used by ProbeBuilder to
instrument your applications. This determines which metrics the agents report
to the Enterprise Manager.

 ProbeBuilder List (PBL) files

A ProbeBuilder List (PBL) file contains a list of multiple PBD filenames. Different
PBL files can refer to the same PBD files.

Components traced by default PBDs

The default Introscope PBD files implement tracing of the following .NET
components:

 ADO.NET  Network Sockets

 ASP.NET  Enterprise Services

 .NET Remoting  Web Services

 .NET Directory Services  SMTP Mail

 .NET Messaging

ProbeBuilder Directives overview  49

.NET Agent Guide

Default ProbeBuilder Directive (PBD) files

The .NET Agent has the following default PBD files:

PBD File Name Description

dotnet.pbd This file provides directives to support the .NET Framework
Class Libraries.

errors.pbd This file configures ErrorDetector by specifying what code-level
events constitute serious errors. By default, only front- and
back-end errors are considered serious. That is, only errors
that will be manifest as a user-facing error page or that indicate
a problem with a backend system (ADO.NET, Messaging, etc.).

nativeskip.pbd This file lists native Namespace skips. Skipping native
Namespaces helps to avoids extra CPU overhead by not
instrumenting certain classes.

You can select Namespaces to instrument by commenting out
lines. You can also add native skips to other Namespaces,
classes, or assemblies

sqlagent.pbd This is the SQL Agent configuration file. You use this file to
instrument your ADO.NET vendor's library (.dll). In most cases
you will not need to edit this file.

toggles-full.pbd This file provides on/off switches in the form of "TurnOn"
directives for the tracing provided in other directives files. Most
tracer groups are turned on.

For more information about turning tracers on or off, see
Default tracer groups and toggles files on page 50 and Turning
tracer groups on or off on page 51.

toggles-typical.pbd This file provides on/off switches in the form of "TurnOn"
directives for the tracing provided in other directives files. Only
a small section of tracer groups are turned on.

For more information about turning tracers on or off, see
Default tracer groups and toggles files on page 50 and Turning
tracer groups on or off on page 51.

webservices.pbd This file provides directives to support .NET web services.

50  ProbeBuilder Directives

CA Wily Introscope .NET Agent

Default ProbeBuilder List (PBL) files

There are two sets of PBL files available with each agent:

Tracer groups are found in PBD files, and referred to in PBL files. They cause the
reporting of information about a set of classes. In PBD files, tracer group
information is referred to by the term “flag”. For example,
TraceOneMethodIfFlagged or SetFlag are defining tracer group information.

Default tracer groups and toggles files

A tracer group consists of a set of tracers that is applied to a set of classes. For
example, there are tracer groups which report the response times and rates for
all system messaging classes.

You can refine the gathering of metrics on your systems by turning on or off
certain tracer groups. This affects overhead usage, either increasing or
decreasing it, depending on how you configure the tracer groups.

Tracer groups are modified in the toggles-full.pbd and the toggles-
typical.pbd files, which are referred to by the default-full.pbl and default-

typical.pbl files. This table lists the default tracer groups and their default
configurations:

PBL File Name Description

default-full.pbl
(default)

References PBD files in which most tracer groups are
turned on. Introscope uses this set by default to
demonstrate full Introscope functionality.

default-typical.pbl A subset of tracer groups in the referenced PBD files are
turned on. The typical set includes common settings, and
is the set you can customize for a particular environment.

Tracer group Definition Default
Full

Setting

Default
Typical
Setting

ASPNETTracing ASP Tracing Configuration On On

SocketTracing Network Configuration On Off

WebServicesProducerTracing Web Services Configuration On On

WebServicesClientTracing Web Services Configuration On On

ServicedComponentTracing Enterprise Services Tracing On On

ContextUtilTracing Transaction Utilities Tracing On Off

RemotingClientProxyTracing Runtime Remoting Tracing On On

ProbeBuilder Directives overview  51

.NET Agent Guide

Generally, the default toggles PBD files should not be edited. However, you can
refine the gathering of metrics by turning on or off certain tracer groups. Tracer
groups can be modified in the toggles files by:

 Turning on/off tracer groups to save on system overhead

 Adding classes to a tracer group

Tracer groups report information only when turned on (uncommented) and are
activated with the keyword TurnOn.

Turning tracer groups on or off

You can refine the gathering of metrics on your systems by turning on or off
certain tracer groups.

To turn tracer groups on or off:

1 Locate and open the toggles-full.pbd or toggles-typical.pbd file (depending
on which file type is in use as defined by: default-full.pbl or default-
typical.pbl). These files are found within the <Agent_Home>\wily directory.

2 Locate the tracer group you wish to turn on or off.

3 To turn a tracer group on or off, comment or uncomment the line by adding or
removing the pound sign (#) from the beginning of the line. The directives in the
following example illustrate a turned on and a turned off tracer group:

TurnOn: SocketTracing

RemotingWebServiceTracing Runtime Remoting Tracing On Off

DirectoryServicesTracing Directory Services Tracing On On

MessagingTracing System Messaging Tracing On On

MessagingTransactionTracing System Messaging Tracing On On

WebMailTracing System Web Mail Tracing On Off

SQLAgentConnections SQL Agent connection
configuration

On On

SQLAgentCommands SQL Agent command
configuration

On On

SQLAgentDataReaders SQL Agent datareader
configuration

On On

SQLAgentTransactions SQL Agent transaction
configuration

On On

Tracer group Definition Default
Full

Setting

Default
Typical
Setting

52  ProbeBuilder Directives

CA Wily Introscope .NET Agent

This tracer group is turned on. The line is uncommented.

#TurnOn: SocketTracing

This tracer group is turned off. The line is commented.

» Note Any uncommented (turned on) directive for a tracer group causes the
tracer group to be used.

4 Save the toggles-full.pbd or toggles-typical.pbd file.

Adding classes to an existing tracer group

You can turn on tracing for a particular class by adding the class to an existing
tracer group. To identify a class as being part of a tracer group, use one of the
identify keywords.

For example, to add the class System.EnterpriseServices.
ServicedComponent to the tracer group ServicedComponentTracing:

IdentifyClassAs:
System.EnterpriseServices.ServicedComponent ServicedComponent
Tracing

For a list of identify keywords, see Supplementary information on directives and
tracers on page 63.

Applying ProbeBuilder Directives
When you are ready to implement a ProbeBuilder Directive file, add it to the PBD
directory. AutoProbe looks for PBD files in the directory that contains the
IntroscopeAgent.profile file (by default, this is the <Agent_Home>\wily
directory), and resolves filenames relative to this directory. If you have moved
the location of your wily directory, be sure to map the file path to the correct
directory.

To apply PBDs using the hotdeploy directory:

 Copy custom or modified files (PBDs and PBLs) into the
<Agent_Home>\wily\hotdeploy directory.

For more information on the hotdeploy directory, see Contents of the
wily\hotdeploy directory on page 27.

To apply PBDs without the hotdeploy directory:

1 Copy custom or modified files (PBDs and PBLs) into the <Agent_Home>\wily
directory.

Creating custom tracers  53

.NET Agent Guide

2 Update the introscope.autoprobe.directivesFile property, in the
IntroscopeAgent.profile file to include the names of any new files, separated
by commas.

In the following example, a directives file named petstore.pbd has been added:

introscope.autoprobe.directivesFile=default-full.pbl,petstore.pbd

» Note Do not remove any ProbeBuilder List files already in the property, just
add your custom PBD to the end of the list.

3 Save the IntroscopeAgent.profile.

4 Restart the application (for ASP.NET, restart IIS)

Custom locations and permissions

In addition to using the hotdeply directory or the wily directory as explained
above, you can place PBDs in a custom location of your choosing that is not in
either of these directories.

If you place PBD files in a custom location, you must specify the location of the
PBD files in the IntrosocopeAgent.profile. For example, if you placed the
leakhunter.pbd in a custom location on the C: drive, you would update the
introscope.autoprobe.directivesFile property in the following way:

introscope.autoprobe.directivesFile=default-
full.pbl,C:\\sw\\leakhunter.pbd

When placing PBDs in a custom location, the user starting the IIS process should
have appropriate permissions to that custom location (C:\\sw in the above
example). If the user starting the IIS process does not have permissions to this
location, an error message is reported in the default domain logs, and the PBDs
in the custom location do not take effect.

» Important CA Wily highly recommends you place PBDs in the hotdeploy
directory.

Creating custom tracers
You can further refine your metric collection by creating custom PBD files.
Creating custom directives, by creating tracers to track application specific
measurements, require the use of specific syntax and keywords.

To write custom tracers, you must define:

 The directive type (indicating generically how many class(es) or method(s) to
trace)

 The specific class(es) or method(s) to trace

54  ProbeBuilder Directives

CA Wily Introscope .NET Agent

 The type of information to trace in the class(es) or method(s) (for example, a
time, a rate, or a count)

 The fully-qualified metric name (including the resource path) under which to
present this information

Once a custom PBD is created, Introscope treats it as if it was an out-of-the-box
PBD. You can set alerts on the metrics created, save them to SmartStor, or use
them in the creation of custom dashboards in the Introscope Workstation.

» Note Be sure to choose methods to trace carefully, as more methods traced
means more overhead.

Common custom tracer example

A BlamePointTracer is the most commonly used tracer. This tracer generates five
separate metrics for associated methods or classes:

 Average Response Time (ms)

 Concurrent Invocations

 Errors Per Interval

 Responses Per Interval

 Stall Count

The following is an example of a BlamePointTracer. A BlamePointTracer has been
set for a method called “search” in class “petshop.catalog.Catalog”.
“MSPetShop|Catalog|search” is the name of the node in the Introscope
Investigator that the BlamePoint metrics will be displayed under:

TraceOneMethodOfClass: petshop.catalog.Catalog search BlamePointTracer
"MSPetShop|Catalog|search"

Creating custom tracers  55

.NET Agent Guide

Tracer syntax

In addition to simple keywords that associate tracers into groups or enable/
disable groups, PBD files contain tracer definitions. For Introscope to recognize
and process your tracers, you must use a specific syntax when constructing
custom tracers. A tracer is composed of a directive and information about the
method or class to trace, in the following format:

<directive>: [arguments]

where [arguments] is a list, and is directive-specific. Arguments used in trace
directives include <Tracer-Group>, <class>, <method>, <Tracer-name>, and
<metric-name>.

» Note Depending on the directive used, only a subset of these parameters are
required.

Tracer arguments Definition

<directive> There are six main directives available for custom tracing:
 TraceOneMethodOfClass—traces a specified method in

the specified class.
 TraceAllMethodsOfClass—traces all methods in the

specified class.
 TraceOneMethodIfInherits—traces one method in all

direct subclasses or direct interface implementations of the
specified class or interface.

 TraceAllMethodsIfInherits—traces all methods in all
direct subclasses or direct interface implementations of the
specified class or interface.

Note: Only concrete, implemented methods can be traced
and report metric data while running. An abstract
method specified in a custom tracer results in no
metric data being reported.

 TraceOneMethodIfFlagged—traces one method if the
specified class is included in a tracer group that has been
enabled with the TurnOn keyword.

 TraceAllMethodsIfFlagged—traces all methods if the
specified class is included in a tracer group that has been
enabled with the TurnOn keyword.

<Tracer-Group> The group to which the tracer is associated.

<class> A fully qualified class or interface name to trace. Fully
qualified classes include the full assembly name of the class
as well as the name, for example:
[MyAssembly]com.mycompany.myassembly.MyClass

Note: The assembly name must be enclosed in [] brackets.

56  ProbeBuilder Directives

CA Wily Introscope .NET Agent

This table describes tracer names and what they trace:

<method> The method name (e.g. MyMethod)

OR

the full method signature with return type and parameters
(e.g. myMethod;[mscorlib]System.Void([mscorlib]
System.Int32). For more information on method signatures,
see Signature differentiation on page 58.)

<Tracer-name> Specifies the tracer type to be used. For example,
BlamePointTracer. See the Tracer name table below for
descriptions of tracer names.

<metric-name> Controls how the collected data is displayed in the Introscope
Workstation.

The following examples describe three ways to specify the
name and location of a metric at different levels of the metrics
tree.
 metric-name—the metric appears immediately inside the

agent node.
 resource:metric-name—the metric appears inside one

resource (folder) below the agent node.
 resource|sub-resource|sub-sub-resource:metric-

name—the metric appears more than one resource (folder)
level deep below the agent node. Use pipe characters (|) to
separate the resources.

Tracer name What it traces

BlamePointTracer Provides a standard set of metrics including
average response time, per interval counts,
concurrency, stalls, and errors for a blamed
component.

ConcurrentInvocationCounter Reports the number of times a method has
started but not yet finished. The result is
reported under the metric name specified in
the tracer, <metric-name>, in the Investigator
tree. An example use of this tracer would be
counting the number of simultaneous database
queries.

Tracer arguments Definition

Creating custom tracers  57

.NET Agent Guide

Custom method tracer examples

The following are examples of method tracers. In the following example, quotes

("") are used around the metric names because there are spaces in the metric

names.

Average tracer example

This tracer tracks the average execution time of the given method in milliseconds.

TraceOneMethodOfClass: petshop.catalog.Catalog search BlamedMethodTimer
"MSPetShop|Catalog|search:Average Method Invocation Time (ms)"

Rate tracer example

This tracer counts the number of times the method is called per second, and
reports this rate under the specified metric name.

TraceOneMethodOfClass: petshop.catalog.Catalog search
BlamedMethodRateTracer "MSPetShop|Catalog|search:Method Invocations Per
Second"

DumpStackTraceTracer Dumps a stack trace to the instrumented
application's standard error for methods to
which it is applied. The exception stack trace
thrown by the Dump Stack Tracer is not a true
exception—it is a mechanism for printing the
method stack trace.

This feature is useful for determining callpaths
to a method.

» WARNING This feature imposes heavy
system overhead. It is
strongly recommended that
this tracer only be used in a
diagnostic context where a
sharp increase in overhead is
acceptable.

MethodTimer Average method execution time in milliseconds
and reports it under the metric name specified
in the tracer, <metric-name>, in the metrics
tree.

PerIntervalCounter Number of invocations per interval. This
interval will change based on the view period of
the consumer of the data (for example, the
View pane in the Investigator). It is reported
under the metric name specified in the tracer,
<metric-name>, in the Investigator tree.

Tracer name What it traces

58  ProbeBuilder Directives

CA Wily Introscope .NET Agent

Per interval counter tracer example

This method tracer counts the number of times the method is called per interval,
and reports the per-interval count under the specified metric name.

TraceOneMethodOfClass: petshop.catalog.Catalog search PerIntervalCounter
"MSPetShop|Catalog|search:Method Invocations Per Interval"

The interval is determined by the monitoring logic in the Enterprise Manager,
such as the Graph frequency.

The preview pane in the Introscope Investigator defaults to 15-second intervals.

Counter tracer example

This tracer counts the total number of times the method is called.

TraceOneMethodOfClass: petshop.cart.ShoppingCart placeOrder
BlamedMethodTraceIncrementor "MSPetShop|ShoppingCart|placeOrder:Total
Order Count"

Combined counter tracer example

These tracers combine incrementor and decrementor tracers to keep a running
count.

TraceOneMethodOfClass: petshop.account.LoginComponent login
MethodTraceIncrementor "MSPetShop|Account:Logged In Users"

TraceOneMethodOfClass: petshop.account.LogoutComponent logout
MethodTraceDecrementor "MSPetShop |Account:Logged In Users"

Creating advanced custom tracers
The following sections detail creating advanced customs tracers, such as single-
metric tracers, skips, and combined custom tracers.

Advanced single-metric tracers

Directives and tracers track methods, classes, and sets of classes. A single-metric
tracer reports a specific metric for a specific method, which is the smallest unit
that Introscope can track. Single-metric tracers can be created in several ways:
through the method signature, by substituting keywords, or by manipulating the
metric name parameters.

Signature differentiation

Tracers can be applied to a method based on the method signature.

Creating advanced custom tracers  59

.NET Agent Guide

To trace a single instance of a method with a specific signature, append the
signature to the method name (including return type) specified using the internal
method descriptor format.

For example, myMethod;[mscorlib]System.Void([mscorlib]System.Int32)
traces the instance of the method with an int argument and a void return type.

Metric name keyword-based substitution

Keyword-based substitution allows runtime substitution of values into the metric
name.

The parameters in the metric name in the tracer are substituted at runtime for
the actual values into the metric name. This feature can be used with any

directive.

» Note If Introscope processes a class which does not have a namespace, it will
replace {namespacename} with the string “<Unnamed Namespace>”.

Keyword-based substitution: Example 1

If the metric name for a tracer in the PBD file is:

"{namespacename}|{classname}|{method}:Response Time (ms)"

and a tracer is applied to the method myMethod with a runtime class of myClass
that is in myNamespace, the resulting metric name would be:

"myNamespace|myClass|myMethod:Response Time (ms)"

Keyword-based substitution: Example 2

If a tracer with a metric name in the PBD file of

"{namespaceandclassname}|{method}:Response Time (ms)"

Parameter Runtime substitution

{method} Name of the method being traced

{classname} Runtime class name of the class being traced

{namespacename} Runtime namespace name of the class being traced

{namespaceandclassname} Runtime name space and class name of the class
being traced

{assemblyname} Name of the assembly being traced.

{fullclassname} Reports the full class name including the assembly
name.

60  ProbeBuilder Directives

CA Wily Introscope .NET Agent

was applied to the same method in example 1, the resulting metric name would
be:

"myNamespace.myClass|myMethod:Response Time(ms)"

» Note In this example, a . (period) is used between the namespace and class
instead of the | (pipe symbol) in the first example.

Metric-name-based parameters

You can create a single-method tracer that creates a metric name based on
parameters passed to a method using the
TraceOneMethodWithParametersofClass keyword, using this format:

TraceOneMethodWithParametersOfClass: <class> <method> <Tracer-name>
<metric-name>

Parameters can be used in the metric name. This is accomplished by substituting
the value of parameters for placeholder strings in the metric name. Use the
following string as a place holder:“{#}”, where # is the index of the parameter
to substitute. The indices start counting at zero. Any number of parameter
substitutions can be used in any order. All parameters are converted to strings
before substitution into the metric name. Object parameters other than strings
should be used with caution because they are converted using the ToString()
method.

» WARNING If you are unclear about what string the parameter will be
converted to, do not use it in the metric name.

Metric-name-based example

A Web site uses a class named order, with a method named process. The method
has parameters for different kinds of orders, either book or music.

You can create a tracer like this:

TraceOneMethodWithParametersOfClass: order process;
[mscorlib]System.Void([mscorlib]System.Int32) MethodTimer
"Order|{0}Order:Average Response Time (ms)"

This tracer produces metrics like these:

Order
BookOrder

Average Response Time (ms)
MusicOrder

Average Response Time (ms)

You can also use the TraceOneMethodWithParametersIfInherits keyword. For
more information on both keywords, see Supplementary information on
directives and tracers on page 63.

Creating advanced custom tracers  61

.NET Agent Guide

Skip directives

Certain packages, classes, or methods can be skipped by AutoProbe or
ProbeBuilder by using skip directives. Skip directives cause ProbeBuilder to skip
over a namespace, class, or assembly.

When the .NET Agent is installed, a nativeskip.pbd file is installed in the
<Agent_Home>\wily directory. This PBD file contains pre-defined classes to be
skipped (not instrumented), improving agent startup time. You can modify which
classes, namespaces, or assemblies are natively skipped by modifying the
nativeskip.pbd file.

For a complete list of skip directives used with the .NET Agent, see the Directive
& Tracer Type Definitions guide. See Supplementary information on directives and
tracers on page 63 for more information about this guide.

Combining custom tracers

You can use multiple tracers that affect the same metric, in effect combining
them. This is most commonly used with incrementors and decrementors.

This example creates a metric named Logged-in Users. With a class user and
methods login and logout, create the following tracers:

TraceOneMethodOfClass user login MethodTraceIncrementor "Logged-in Users"
TraceOneMethodOfClass user logout MethodTraceDecrementor "Logged-in Users"

This increments the metric Logged-in Users when someone logs in, and
decrements Logged-in Users when someone logs out.

Notes about specific tracers

The following identifier and tracer have actions specific to a .NET environment:

 IdentifyAnnotatedClassAs: <attribute-class-name> <Tracer-group>

Associates all classes annotated with the specified attribute class to the
specified tracer group.

Some classes can be annotated with an attribute class to provide extra
functionality to the class. In the example below, an attribute class called
System.EnterpriseServices.Transaction is attached to the class
ServicedComponent:

[Transaction]
Public class ServicedComponent {
}

In a PBD you would write the following:

62  ProbeBuilder Directives

CA Wily Introscope .NET Agent

IdentifyAnnotatedClassAs: System.EnterpriseServices.Transaction
MyTracerGroup

This identifies all classes that have the [Transaction] annotation, including
ServicedComponent.

» Note The Introscope .NET Agent does not trace inherited attributes when
using this identifier, but does trace attributes applied to the base class.

 TraceAnnotatedMethodsIfFlagged: <Tracer-group> <attribute-class-
name> <Tracer-name> <metric-name>

Traces all methods which are annotated by the specified class for classes
associated with the specified tracer group.

Explicit interface implementation

The .NET Agent uses explicit interface implementation in PBD files. If you are
tracing a method of a class that has the identical name as another method used
in another class, you must explicitly name the method and the interface to which
it belongs. For example, if InterfaceA and InterfaceB both have a method
named MethodX, when calling MethodX for InterfaceA, you must name both the
interface and the method: InterfaceA.MethodX.

The following is an example of tracing a method of a class with an explicit
interface implementation:

SetFlag: customInterfaceTracing
TurnOn: customInterfaceTracing
IdentifyInheritedAs: EdgeCaseInterface customInterfaceTracing
TraceOneMethodIfFlagged: customInterfaceTracing EdgeCaseInterface.method2

BlamePointTracer "Interface|{namespaceandclassname}|{method}"

Instrumenting and inheritance

Introscope does not automatically instrument classes in the deeper levels of a
class hierarchy. For example, assume a class hierarchy in which ClassB extends
ClassA, and ClassC extends ClassB, like so:

Interface\ClassA
ClassB

ClassC

When you instrument ClassA, ClassB is also instrumented because it explicitly
extends ClassA. However, Introscope does not instrument ClassC because ClassC
does not explicitly extend ClassA. To instrument ClassC you must explicitly
identify ClassC.

Creating advanced custom tracers  63

.NET Agent Guide

Supplementary information on directives and tracers

For a complete list of the tracers and directives used with the Introscope.NET
Agent, see the Directive & Tracer Type Definitions guide, available on the Wily
Technology Community site, here: https://community.wilytech.com/
kbclick.jspa?categoryID=414&externalID=1927

To access the Wily Technology Community site, you first need to register for an
account using your corporate email address, here:
https://community.wilytech.com/account!default.jspa

Once you have completed the account information, CA Wily will contact you
within 3-5 business days to confirm your registration. If you do not register with
a corporate email address, your request for access will be denied.

https://community.wilytech.com/kbclick.jspa?categoryID=414&externalID=1927
https://community.wilytech.com/kbclick.jspa?categoryID=414&externalID=1927
https://community.wilytech.com/account!default.jspa

64  ProbeBuilder Directives

CA Wily Introscope .NET Agent

Operation and Management  65

SECTION II

Operation and Management

The chapters in this section have information to help you operate and manage
your .NET Agents.

Monitoring and Logging 67

Virtual Agents 73

.NET Agent Failover 77

66  Operation and Management

CA Wily Introscope .NET Agent

Monitoring and Logging  67

CHAPTER 5

Monitoring and Logging

This chapter details .NET Agent configuration options that relate to agent
operations and monitoring.

Configuring .NET Agent connection metrics. 68

Turning off socket metrics in the .NET Agent profile 69

Configuring .NET Agent logging options 69

Managing ProbeBuilder logs 71

68  Monitoring and Logging

CA Wily Introscope .NET Agent

Configuring .NET Agent connection metrics
By default, Introscope generates metrics on the connect/disconnect status of an
agent connected to an Enterprise Manager. You can monitor .NET Agent
connection metrics to determine the current state of the connection between a
.NET Agent and the Enterprise Manager.

The .NET Agent connection metrics appear in the Introscope Investigator, under
the custom metric host:

Custom Metric Host (Virtual) \ Custom Metric Process(Virtual) \ Custom
Metric Agent (Virtual) (*SuperDomain*) \ Agents \ <HostName> \ <Agent
Process Name> \ <Agent Name> \ ConnectionStatus

The ConnectionStatus metric can have these values:

 0—No data is available

 1—.NET Agent is connected

 2—.NET Agent is slow to report

 3—.NET Agent is disconnected

A .NET Agent disconnect also generates a “What’s Interesting” event. As with
other events, users can query for .NET Agent disconnects using the historical
query interface. .NET Agent disconnect events form a portion of the data used in
assessing application health in the Overview tab for agents and applications in
the Introscope Workstation Console.

Once an agent disconnects, Introscope continues to generate “not connected”
state metrics until the agent is timed out, as specified by this property:

introscope.enterprisemanager.agentconnection.metrics.agentTimeoutInMinutes

After the .NET Agent has timed out, no additional connection metrics are
generated. For information about Enterprise Manager properties, see the
Introscope Configuration and Administration Guide.

Turning off socket metrics in the .NET Agent profile  69

.NET Agent Guide

Turning off socket metrics in the .NET Agent profile
Metrics that trace per-socket bandwidth have a potential for high overhead, and
can be turned off if you notice that collecting network metrics is consuming a lot
of processor or I/O time.

To turn off socket metrics:

1 Open the IntroscopeAgent.profile.

2 Under the Agent Socket Rate Metrics heading, enter a value of false for the
following property. The default value is true.

introscope.agent.sockets.reportRateMetrics=false

3 Save the IntroscopeAgent.profile.

Configuring .NET Agent logging options
The following section describes how to run the .NET Agent in verbose mode and
set logfile details for the agent. The .NET Agent for Introscope uses Log4net
functionality for these functions. If you want to use other Log4net functionality,
see Log4net documentation at http://logging.apache.org/log4net/release/
features.html.

Running the .NET Agent in verbose mode

Running the .NET Agent in verbose mode records many details to the log file,
which is helpful in debugging.

To run the .NET Agent in verbose mode:

1 Stop the .NET Agent.

2 Open the logging.config.xml file.

3 Change the level value attribute to VERBOSE. The default is INFO.

<root>
<level value="VERBOSE" />

<appender-ref ref="logfile" />
<appender-ref ref="console" />
</root>

4 Save the logging.config.xml file and restart the .NET Agent.

70  Monitoring and Logging

CA Wily Introscope .NET Agent

Changing the .NET Agent log file location

Log files are written to the <Agent_Home>\wily\logs directory by default, usually:
C:\Program Files\CA Wily\IntroscopeX.Y\wily\logs, where X.Y is your version
of Introscope. To facilitate ease of use, you may want to change the location of
the .NET Agent logfile.

To change the location of the .NET Agent logfile:

1 Stop the .NET Agent.

2 Open the logging.config.xml file.

3 Change the file value attribute to the desired location of the log file, for example:

<file value="c:\introscope_logs\IntroscopeAgent.log" />

4 Save the logging.config.xml file.

5 Restart the .NET Agent.

If you have configured a name for your agent, as described in .NET Agent name
options on page 35, the named agent logs are written to the logs directory, either
the default location or the new location you have just designated.

.NET Agent log files and automatic agent naming

By default, the .NET Agent obtains its name automatically. When the .NET Agent
name is found automatically, the log files associated with that agent are named
automatically using that same information.

The following examples show how the .NET Agent log files are named. The
examples use an agent name of MyDomain//MyStuff (where MyDomain is the
domain, and MyStuff is the instance). When a .NET Agent log file is created (by
default, named AutoProbe.log), if the agent name is not yet available, a
timestamp will be included in the filename:

AutoProbe20060928-175024.log

Once the .NET Agent name becomes available, the logfile will be renamed:

AutoProbeMyDomain_MyStuff.log

To disable automatic naming and specify individual names for .NET Agents, see
.NET Agent name options on page 35.

When using .NET Agent log file automatic naming, if the original name of the
agent logfile does not end in .log, a period is appended, and log is added. All
characters that are not letters or digits will be replaced by underscores. Also, if
advanced Log4Net functionality is used, the automatic naming capability might
not work.

Managing ProbeBuilder logs  71

.NET Agent Guide

» Note If you have log files with the time stamp name as opposed to the actual
name of the log, the process may have timed out before the .NET Agent
name could be obtained.

Default domain logs

The default domain does not connect to an Enterprise Manager to report metrics,
and does not run any applications itself. However, the .NET Agent that resides on
the default domain still generates log files, as it handles all byte code
instrumentation for all application domains hosted by the default domain. One of
these files, AutoProbe.DefaultDomain.log, contains information about the byte
code instrumentation that occurs in the default domain. As all byte code
instrumentation occurs in the default domain, these log files contain critical
information regarding the instrumentation.

The default domain also generates the IntroscopeAgent.DefaultDomain.log file
for the .NET Agent.

Managing ProbeBuilder logs
Introscope ProbeBuilder logs the PBDs it used and the probes it added during the
instrumentation process.

AutoProbe log name and location

By default, the AutoProbe log file is named AutoProbe.log. To change the name,
change the introscope.autoprobe.logfile property in the .NET Agent profile.

The AutoProbe.log file is generated relative to the location of the
IntroscopeAgent.profile file.

» Note When loading the .NET Agent profile from a resource on a classpath,
AutoProbe will be unable to write to the AutoProbe log file, because the
IntroscopeAgent.profile file is located within a resource.

72  Monitoring and Logging

CA Wily Introscope .NET Agent

Virtual Agents  73

CHAPTER 6

Virtual Agents

This chapter has information about configuring Virtual Agents.

Understanding Virtual Agents 74

Virtual Agent requirements. 74

Configuring Virtual Agents 75

74  Virtual Agents

CA Wily Introscope .NET Agent

Understanding Virtual Agents
You can configure multiple physical .NET Agents into a single Virtual Agent. A
Virtual Agent enables an aggregated, logical view of the metrics reported by
multiple .NET Agents.

A Virtual Agent is useful if you manage clustered applications with Introscope—a
Virtual Agent is comprised of the agents that monitor different instances of the
same clustered application. The Virtual Agent appears in the Introscope
Workstation as a single agent. This allows metrics from multiple instances of a
clustered application to be presented at a logical, application level, as opposed to
separately for each application instance.

You can view performance and availability data for a specific application instance,
by scoping your views and interactions in terms of a single Agent.

Virtual Agent requirements
If you have multiple stand-alone Enterprise Managers, a Virtual Agent can contain
only agents that report to the same Enterprise Manager.

In an Enterprise Manager cluster, described in the Introscope Configuration and
Administration Guide, agents that report to Enterprise Managers within a single
cluster can belong to the same Virtual Agent, regardless of the Collector
Enterprise Manager to which they report.

An agent can be assigned to multiple Virtual Agents.

Virtual Agents cannot include other Virtual Agents.

If you define multiple Virtual Agents, they must be uniquely named.

Configuring Virtual Agents  75

.NET Agent Guide

Configuring Virtual Agents
Configure Virtual Agents in the agentclusters.xml file, in the
<Introscope_Home>\config directory of the Enterprise Manager to which the
agents report. If you run multiple Enterprise Managers that are clustered, define
Virtual Agents in the agentclusters.xml file in the config directory of the
cluster’s Manager of Managers (MOM).

The sample agentclusters.xml below defines a Virtual Agent named
BuyNowAppCluster, in the Introscope SuperDomain. The Virtual Agent includes all
agents, on any host, whose agent name starts with BuyNow.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<agent-clusters xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="agentclusters0.1.xsd" version="0.1" >
<agent-cluster name="BuyNowAppCluster" domain="SuperDomain" >

<agent-specifier>.*\|.*\|BuyNow.*</agent-specifier>
<metric-specifier>Frontends\|.*</metric-specifier>

</agent-cluster>
</agent-clusters>

The root element, <agent-clusters>, is required. The <agent-cluster> element
defines a Virtual Agent, and has two required attributes:

 name—If you define multiple Virtual Agents, each must have a unique name.

 domain—Assigns the Virtual Agent to an Introscope domain.

If you define multiple Virtual Agents, you define an <agent-cluster> element for
each. The <agent-cluster> element requires two child elements:

 <agent-specifier>—Contains a regular expression that specifies the Agents in
the Virtual Agent, using the standard fully qualified agent name:

<host> | <process> | <agentName>

 <metric-specifier>—Contains a prefix that specifies the metrics to collect
from the agents in the Virtual Agent, in terms of resource type, or subsets of
the instances of a resource type. Recommended prefixes are:

 Frontends

 Backends

 PerfMon

 GC Heap

 LeakHunter

 ASP.NET

 Thread Pool

» Note While the above are the recommended prefixes, any resource can be
used as a metric specifier.

76  Virtual Agents

CA Wily Introscope .NET Agent

The <agent-cluster> element can contain multiple <metric-specifier> stanzas.
Note that a higher volume of matching metrics imposes high overhead on the
Enterprise Manager, and can ultimately have an effect on Enterprise Manager
capacity.

» Important Regular expressions and wildcard metric specifiers such as ".*"
and "(.*)" are allowed, but should be used with caution, if at all.
Use of wildcards can result in a high volume of metrics and a
performance impact.

A sample agentclusters.xml is available in your <Introscope_Home>\config
directory.

.NET Agent Failover  77

CHAPTER 7

.NET Agent Failover

This chapter has information about .NET Agent failover.

Understand .NET Agent failover 78

Define backup Enterprise Managers 78

Define failover connection order 79

Configure failback to primary Enterprise Manager. 79

Failover and domain\user configuration 79

78  .NET Agent Failover

CA Wily Introscope .NET Agent

Understand .NET Agent failover
An agent that cannot connect to its primary Enterprise Manager, or loses its
connection with the Enterprise Manager, can failover to an alternative Enterprise
Manager. To enable failover, you specify a list of alternative Enterprise Managers
in the agent profile.

When a .NET Agent configured for failover cannot connect to its default Enterprise
Manager, it tries to connect to the next Enterprise Manager on its list of failover
hosts. If the agent does not connect with a failover host, it cycles through the
Enterprise Managers on the list until it succeeds in connecting. If the .NET Agent
goes through the list without connecting to an Enterprise Manager, it waits ten
seconds before cycling through the list again.

In a basic Introscope configuration, you define the host and port settings for one
Enterprise Manager. To enable agent failover, you define connection properties
for one or more backup Enterprise Managers, and a list that specifies the failover
order.

Define backup Enterprise Managers
For each backup Enterprise Manager, create an alternate communication channel,
as described in Connecting to the Enterprise Manager on page 33. Assign each
additional Enterprise Manager communication channel a unique name—do not
use the name DEFAULT or the name of an existing channel when creating a new
channel.

Given a primary Enterprise Manager and two backups, your agent profile will
include property definitions similar to the following:

Default Enterprise Manager location and names
introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT=localhost
introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT=5001
introscope.agent.enterprisemanager.transport.tcp.socketfactory.DEFAULT=

com.wily.isengard.postofficehub.link.net.DefaultSocketFactory

Backup Enterprise Managers
introscope.agent.enterprisemanager.transport.tcp.host.BackupEM1=voyager
introscope.agent.enterprisemanager.transport.tcp.port.BackupEM1=5002
introscope.agent.enterprisemanager.transport.tcp.socketfactory.BackupEM1=

com.wily.isengard.postofficehub.link.net.DefaultSocketFactory
introscope.agent.enterprisemanager.transport.tcp.host.BackupEM2=space9
introscope.agent.enterprisemanager.transport.tcp.port.BackupEM2=5003
introscope.agent.enterprisemanager.transport.tcp.socketfactory.BackupEM2=

com.wily.isengard.postofficehub.link.net.DefaultSocketFactory

Define failover connection order  79

.NET Agent Guide

Define failover connection order
After specifying the connection properties for your backup Enterprise Managers,
define the order in which the .NET Agent will attempt to failover when it loses
connection to its primary Enterprise Manager

Use the property introscope.agent.enterprisemanager.connectionorder,
described on page 112, to list the primary communication channels and backups
for the Enterprise Manager. Put the primary Enterprise Manager first in the list.
For the Enterprise Manager communication channels specified on the previous
page, the connection order could be specified as follows:

introscope.agent.enterprisemanager.connectionorder=DEFAULT,BackupEM1,
BackupEM2

Configure failback to primary Enterprise Manager
In the default .NET Agent failover scenario, if the .NET Agent loses the connection
to its primary Enterprise Manager (the first one defined in the Enterprise
Connection Order list), the agent tries to connect to the next Enterprise Manager
defined in the agent profile. You can specify the interval by which the .NET Agent
tries to reconnect to the primary Enterprise Manager.

To configure the .NET Agent failback interval to the primary Enterprise
Manager:

1 In the agent profile, IntroscopeAgent.profile, locate the Enterprise Manager
Failback Retry Interval section.

2 Specify the interval in seconds the .NET Agent should use to retry connecting to
the Enterprise Manager. The default is set to 120 seconds (two minutes):

introscope.agent.enterprisemanager.failbackRetryIntervalInSeconds=120

3 Save your changes.

4 Restart the application.

Failover and domain\user configuration
To use the agent failover feature and also have users, domains, and
authentication settings defined, you must synchronize this information across the
specified failover Enterprise Managers. For more information on domains and
user permissions, see the Introscope Configuration and Administration Guide.

80  .NET Agent Failover

CA Wily Introscope .NET Agent

Tailoring and Extending Data Collection  81

SECTION III

Tailoring and Extending Data Collection

The chapters in this section have information about tailoring and extending .NET
Agent data collection.

Configuring Boundary Blame 83

Transaction Tracer options 95

Configure the Introscope SQL Agent 99

82  Tailoring and Extending Data Collection

CA Wily Introscope .NET Agent

Configuring Boundary Blame  83

CHAPTER 8

Configuring Boundary Blame

This chapter describes default .NET Agent blame reporting behaviors, and related
configuration options.

Understanding Boundary Blame 84

Using URL Groups 84

Using Blame tracers to mark Blame points 90

Disabling Boundary Blame 91

84  Configuring Boundary Blame

CA Wily Introscope .NET Agent

Understanding Boundary Blame
Introscope’s Blame Technology enables you to view metrics at the application
tiers in managed .NET applications: the front and backends of your application.
This capability, referred to as Boundary Blame, allows users to triage problems
to the application frontend or backend.

This section describes configuration options for Introscope’s Boundary Blame
feature.

Introscope takes advantage of the SQL statement monitoring functionality of the
SQL Agent to detect back-ends automatically. If the SQL Agent is unavailable,
Introscope will automatically detect socket calls as backends, such as client/
server databases, or LDAP servers accessed through a socket.

For information about how Boundary Blame is presented in the Introscope
Investigator, see the Introscope Workstation User Guide.

Using URL Groups
URL Groups are named groupings of transactions that you define in terms of a
URL path prefix. Introscope aggregates metrics for each URL Group and presents
those metrics under the Frontends|Apps|<ApplicationName>|URLs node of the
Introscope Investigator.

A path prefix is the portion of the URL that follows the hostname. For example,
in this URL:

http://burger1.com/TestWar/burgerServlet?ViewItem&category=
11776&item=5550662630&rd=1

the path prefix is:

/TestWar

You can define a URL Group for any useful category of requests that can be
derived from a URL’s path prefix. For example, depending on the form of your
application URLs, you could define URL Groups for each customer your application
supports, for each major application, or for sub-applications. This allows you to
monitor performance in the context of committed service levels, or for mission-
critical portions of your application.

By default, all URLs are assigned to a URL Group called Default. This prevents
the overhead that would be imposed if invalid URLs, for instance those that result
in a 404 error, do not create unique, one-time metrics. Configuring meaningful
URL Groups allows users to monitor performance at the sub-application level.

Using URL Groups  85

.NET Agent Guide

URL Group properties

Define URL Groups in the IntroscopeAgent.profile file, using these properties

 introscope.agent.urlgroup.keys

 introscope.agent.urlgroup.group.default.pathprefix

 introscope.agent.urlgroup.group.default.format

Sample URL Groups

The listing below is an excerpt from an agent profile that illustrates how URL
Groups are defined. The sections following the listing provide instructions for
configuring the required properties.

introscope.agent.urlgroup.keys=alpha,beta,gamma
introscope.agent.urlgroup.group.alpha.pathprefix=/testWar

introscope.agent.urlgroup.group.alpha.format=foo {host} bar {protocol}
baz {port} quux {query_param:foo} red {path_substring:2:5} yellow
{path_delimited:/:0:1} green{path_delimited:/:1:4} blue
{path_substring:0:0}

introscope.agent.urlgroup.group.beta.pathprefix=/nofilterWar
introscope.agent.urlgroup.group.beta.format=nofilter foo {host} bar
{protocol} baz {port} quux{query_param:foo} red {path_substring:2:5}
yellow{path_delimited:/:0:1} green {path_delimited:/:1:4}
blue{path_substring:0:0}

introscope.agent.urlgroup.group.gamma.pathprefix=/examplesWebApp
introscope.agent.urlgroup.group.gamma.format=Examples Web App

Defining URL Groups

The following sections provide information on the properties that configure URL
Groups.

Define keys for URL Groups

Use the introscope.agent.urlgroup.keys property to define a list of the IDs, or
keys, of all of your URL Groups. The key for a URL Group is referenced in other
property definitions that declare an attribute of the URL group. This example
defines the keys for three URL Groups:

introscope.agent.urlgroup.keys=alpha,beta,gamma

The order in which you specify keys for URL Groups is important. For more
information, see URL grouping on page 133.

86  Configuring Boundary Blame

CA Wily Introscope .NET Agent

Define membership of each URL Group

Use the introscope.agent.urlgroup.group.GroupKey.pathprefix to define
which requests fall within the URL Group, by specifying the pattern against which
the path prefix of a URL is matched.

 Example 1

This property definition assigns all requests in which the path portion of the
URL starts with /TestWar to the URL Group whose key is alpha:

introscope.agent.urlgroup.group.alpha.pathprefix=/TestWar

Requests that match the specified pathprefix include:

http://burger1.com/TestWar/
burgerServlet?ViewItem&category=11776&item=5550662630&rd=1

http://burger1.com/TestWar/
burgerServlet?Command=Order&item=5550662630

 Example 2

A company that provides call center services could monitor response time for
functional areas by setting up a URL Group for each application function. If
customers access services with this URL:

http://genesystems/us/application_function/

where application_function corresponds to applications such as
OrderEntry, AcctService, and Support, the pathprefix property for each URL
group would specify the appropriate application_function

» Note You can use the asterisk symbol (*) as a wildcard in pathprefix
properties.

Define name for a URL Group

Use the introscope.agent.urlgroup.group.GroupKey.format to determine the
names under which response time metrics for a URL Group, whose key is
GroupKey, will appear in the Workstation.

Typically, the format property is used to assign a text string as the name for a
URL. This example causes metrics for the URL Group with key alpha to appear in
the Workstation under the name Alpha Group:

introscope.agent.urlgroup.group.alpha.format=Alpha Group

Using URL Groups  87

.NET Agent Guide

Advanced naming techniques for URL Groups (optional)

If desired, you can derive a URL Group name from request elements, such as the
server port, the protocol, or from a substring of the request URL. This is useful if
your application modules are easily differentiated by inspection of the request.
The following sections describe advanced forms of the format property.

Using a host as a URL Group name

To organize metrics for a URL Group under names that reflect the hostname of
the HTTP server associated with requests, define the format parameter as
follows:

introscope.agent.urlgroup.group.alpha.format={host}

When format={host}, statistics for the following requests appear under the
metric names us.mybank.com and uk.mybank.com respectively:

https://us.mybank.com/mifi/loanApp...
https://uk.mybank.com/mifi/loanApp...

Using a protocol as a URL Group name

To organize statistics for a URL Group under names that reflect the protocol
associated with requests, define the format parameter as follows:

introscope.agent.urlgroup.group.alpha.format={protocol}

When format={protocol}, statistics will be grouped in the Investigator under
metric names that correspond to the protocol portion of request URLs. For
example, statistics for these requests would appear under the metric name
https:

https://us.mybank.com/cgi-bin/mifi/scripts......
https://uk.mybank.com/cgi-bin/mifi/scripts......

Using a port as a URL Group name

To organize statistics for a URL Group under names that reflect the port
associated with requests, define the format parameter as follows:

introscope.agent.urlgroup.group.alpha.format={port}

When format={port}, statistics will be grouped under names that correspond to
the port portion of request URLs. For example, statistics for these requests would
appear under the name 9001.

https://us.mybank.com:9001/cgi-bin/mifi/scripts......
https://uk.mybank.com:9001/cgi-bin/mifi/scripts......

88  Configuring Boundary Blame

CA Wily Introscope .NET Agent

Using a parameter as a URL Group name

To organize statistics for a URL Group in the Investigator under metric names that
reflect the value of a parameter associated with requests, define the format
parameter as follows:

introscope.agent.urlgroup.group.alpha.format={query_param:param}

When format={query_param:param}, statistics will be grouped in the Investigator
under metric names that correspond to value of the parameter specified.
Requests without parameters will be listed under <empty>. For example, using
this parameter definition:

introscope.agent.urlgroup.group.alpha.format={query_param:category}

statistics for these requests would appear under the metric name “734”.

http://ubuy.com/ws/shopping?ViewItem&category=734&item=3772&tc=photo
http://ubuy.com/ws/shopping?ViewItem&category=734&item=8574&tc=photo

Using a substring of the request path as a URL Group name

To organize statistics for a URL Group under names that reflect a substring of the
path portion of request URLs, define the format parameter as follows:

introscope.agent.urlgroup.group.alpha.format={path_substring:m:n}

where m is the index of the first character, and n is one greater than the index of
the last character. For example, using this setting:

introscope.agent.urlgroup.group.alpha.format={path_substring:0:3}

statistics for this request would appear under the metric node “/ht”

http://research.com/htmldocu/WebL-12.html

Using a delimited portion of the request path as a URL Group
name

To organize statistics for a URL Group under names that reflect a character-
delimited portion request URL path, define the format parameter as follows:

introscope.agent.urlgroup.group.alpha.format=
{path_delimited:delim_char:m:n}

where delim_char is the character that delimits the segments in the path, m is
the index of the first segment to select, and n is one greater than the index of
the last segment to select. For example, using this setting:

introscope.agent.urlgroup.group.alpha.format={path_delimited:/:2:4}

Using URL Groups  89

.NET Agent Guide

statistics for the requests of this form:

http://www.buyitall.com/userid,sessionid/pageid

would appear under the metric name /pageid.

Note that:

 a delimited character counts as a segment

 the segment count starts at 0

This table shows the above example’s segments as delimited by the slash
character:

You can specify multiple delimiters, as desired. For example, using this setting:

introscope.agent.urlgroup.group.alpha.format={path_delimited:/,:3:4}

Statistics for requests of the form shown above would appear under the metric
name sessionid.

This table shows the above example’s segments as delimited by the slash and the
comma character:

Using multiple naming methods for URL Groups

You can combine multiple naming methods in a single format string, as shown
below:

introscope.agent.urlgroup.group.alpha.format=red {host} orange {protocol}
yellow {port} green {query_param:foo} blue {path_substring:2:5} indigo
{path_delimited:/:0:1} violet {path_delimited:/:1:4} ultraviolet
{path_substring:0:0} friend computer

Segment Index 0 1 2 3

Segment String / userid,sessionid / pageid

Segment Index 0 1 2 3 4 5

Segment String / userid , sessionid / pageid

90  Configuring Boundary Blame

CA Wily Introscope .NET Agent

Using Blame tracers to mark Blame points
Introscope Blame technology tracks the performance of .NET applications to
enable you to view metrics at the front and backends of your applications. This
capability, referred to as Boundary Blame, allows users to triage problems in the
application frontend or backend.

The following sections describe how you can use tracers to explicitly mark the
frontends and backends in your application.

Blame tracers

Introscope provides tracers for capturing front and backend metrics:
FrontendTracer and BackendTracer. These tracers explicitly mark a frontend and
backend, respectively.

You can use FrontendTracer and BackendTracer to instrument your own code,
such as code that accesses a backend, to cause Introscope to capture and present
metrics for custom components.

If no FrontendTracer is configured, the first component in the blame stack will be
the default frontend. If no BackendTracer is configured, Introscope will infer a
backend—any component that opens a client socket will be a default backend if
none is explicitly marked.

It is useful to use a BackendTracer to assign a desired name to an item that
Introscope detects as a backend or to mark custom sockets that Introscope does
not instrument.

FrontendTracer and BackendTracer are instances of a BlamePointTracer, which
provides metrics such as average response time, per interval counts,
concurrency, and stalls. A BlamePointTracer can be applied to “middle”
components for a more granular Blame stack. A BlamePointTracer, however, does
not populate Errors Per Interval metrics in the Introscope Investigator.

Blame tracers in standard PBDs

Two of the standard PBDs provided with Introscope and the .NET Agent,
dotnet.pbd and sqlagent.pbd, implement Boundary Blame tracing:

 PageInfoTracer in the dotnet.pbd is an instance of a FrontendTracer.

 SQLBackendTracer in the sqlagent.pbd is an instance of a BackendTracer.

Disabling Boundary Blame  91

.NET Agent Guide

Disabling Boundary Blame
By default, Boundary Blame is enabled. To disable Boundary Blame in favor of the
component-level Blame implemented in Introscope versions prior to the 7.0
release:

1 Open the IntroscopeAgent.profile file.

2 Set the property introscope.agent.blame.type to standard to:

introscope.agent.blame.type=standard

3 Save the IntroscopeAgent.profile file.

92  Configuring Boundary Blame

CA Wily Introscope .NET Agent

Transaction Tracer Options  93

CHAPTER 9

Transaction Tracer Options

This chapter has information about default transaction tracing behaviors and
related configuration options.

Transaction Tracer options 95

Enable collection of filter parameters 95

Disable the capture of stalls as events 98

94  Transaction Tracer Options

CA Wily Introscope .NET Agent

Controlling transaction trace sampling
By default, Introscope agents trace each normalized unique URL in an application
once per hour, to provide a sampling of transaction behavior. This enables
historical analysis of potentially problematic transaction types without explicitly
running transaction traces.

Transaction trace sampling is enabled by default. You can disable the behavior by
uncommenting the following property in the agent profile,
IntroscopeAgent.profile:

 introscope.agent.transactiontracer.sampling.enabled—Uncomment and
set to false to disable transaction trace sampling.

You can configure the how many transactions are sampled per interval and how
long that interval is by uncommenting the following properties in the agent
profile.

» WARNING These configurations are usually performed in the Enterprise
Manager. Configuring the following properties in the agent profile
overrides any configuration made in the Enterprise Manager.

 introscope.agent.transactiontracer.sampling.perinterval.count—
Uncomment and set how many transactions are sampled per interval. The
default is 1.

 introscope.agent.transactiontracer.sampling.interval.seconds—
Uncomment and set how long the sample interval is in seconds. The default is
120 seconds.

Transaction Trace component clamp

Introscope now sets a clamp (set by default to 5,000 components) to limit the
size of traces. When this limit is reached, warnings appear in the log, and the
trace stops.

This allows you to clamp an infinitely expanding transaction—for example when
a component executes hundreds of object interactions and backend SQL calls.
Without the clamp, Transaction Tracer views this as one transaction, continuing
infinitely. Without a clamp in place, the CLR runs out of memory before the trace
can be completed.

The new property for clamping infinitely expanding transactions is in the
IntroscopeAgent.profile file:

 introscope.agent.transactiontrace.componentCountClamp=5000

Transaction Tracer options  95

.NET Agent Guide

For traces producing clamped components—those exceeding the CountClamp—
traces are marked with an asterisk and have a tool tip assiociated with them,
providing more information about the clamped metrics. For more information
about viewing these traces, see the Introscope Workstation User Guide.

» Important If the clamp is set too low, you may encounter Performance
Monitoring (PerfMon) or Leakhunter exceptions when your
applications start. If you encounter this, your managed .NET
applications must to be restarted

Transaction Tracer options
You can configure the Introscope Transaction Tracer to trace only the
transactions that meet criteria you specify. You can filter by user ID data or by
HTTP request and session properties.

» Important You can filter by user ID or by HTTP attributes, but not both. Do
not configure both types of filters—bad metrics can result from
this configuration.

To control which transactions are traced:

Step 1 Enable the .NET Agent to report filter parameters, as described in Enable
collection of filter parameters on page 95.

Step 2 Configure filtering either by user ID or HTTP request data:

 Filter transaction traces by user ID on page 96

 Filter transaction traces by HTTP request data on page 97.

Enable collection of filter parameters
By default, the .NET Agent reports only the URL for transactions it traces.
Reporting of individual HTTP properties is restricted to minimize the impact of
transaction tracing on system overhead. To enable filtering you must first enable
collection of HTTP properties, by adding the following line to the agent profile:

introscope.agent.asp.disableHttpProperties=false

This enables collection of:

 Application Name  Session ID

 Context Path  Server Name

 URL  Context Path

 Normalized URL

96  Transaction Tracer Options

CA Wily Introscope .NET Agent

You can enable collection of additional properties by adding this line to the agent
profile:

introscope.agent.asp.optionalProperties=true

This enables collection of:

 Scheme

 URL Referrer

 Method

Filter transaction traces by user ID

To configure the .NET Agent to filter transaction traces by user IDs in frontend
components, you must determine how your application specifies user IDs. The
application architect who developed the application can provide this information.

The Introscope Transaction Tracer can identify user IDs that are accessed
through one of these methods:

» WARNING Perform only the configuration process that applies to your
application’s method of specifying user IDs.

Filter by context identity

If the user ID is accessed through the HTTP Context identity, uncomment this
property in the agent profile:

introscope.agent.transactiontracer.userid.method=HttpContext.User.
Identity.Name

Filter by URL user

If the user ID is accessed through the URL user information, uncomment the
property in the agent profile:

introscope.agent.transactiontracer.userid.method=HttpContext.Request.
Uri.UserInfo

Filter by request header

If the user ID is determined from the HTTP request header, uncomment the
following pair of properties in the agent profile, and define a key string for the
second property:

introscope.agent.transactiontracer.userid.method=HttpRequest.Headers.Get

 HTTP Context identity  HTTP request header

 URL user information  an attribute of the HTTP session

Enable collection of filter parameters  97

.NET Agent Guide

introscope.agent.transactiontracer.userid.key=<application defined key
string>

Filter by session attribute

If the user ID is an attribute in the Http Session, uncomment the following pair
of properties in the Agent profile, and define a key string for the second property:

introscope.agent.transactiontracer.userid.method=HttpContext.Session.
Contents

introscope.agent.transactiontracer.userid.key=<application defined key
string>

Filter transaction traces by HTTP request data

This section has instructions for filtering transaction traces by HTTP request
properties, including:

 request headers

 request parameters

 session attributes

You can filter using multiple properties, for instance by request parameter and by
session attribute.

» WARNING Do not configure filtering by HTTP property if you have configured
filtering by user ID.

To filter by HTTP request data:

1 Open the IntroscopeAgent.profile file.

2 Locate the Transaction Tracer properties under the Transaction Tracer
Configuration heading.

3 To collect specific HTTP request headers, uncomment the following property and
specify the HTTP request header(s) to track, in a comma-separated list:

introscope.agent.transactiontracer.parameter.httprequest.
headers=User-Agent

4 To collect HTTP request parameters data, uncomment this property and specify
the HTTP request parameter(s) to track, in a comma-separated list:

introscope.agent.transactiontracer.parameter.httprequest.
parameters=parameter1,parameter2

5 To collect HTTP session attributes data, uncomment this property and specify the
HTTP session attribute(s) to track, in a comma-separated list, for example:

introscope.agent.transactiontracer.parameter.httpsession.
attributes=attribute1,attribute2

6 Save your changes to the IntroscopeAgent.profile file.

98  Transaction Tracer Options

CA Wily Introscope .NET Agent

7 Restart the application.

Disable the capture of stalls as events
By default, Introscope captures transaction stalls as events in the Transaction
Event database, and generates stall metrics from the detected events. Stall
metrics are generated for the first and last method in the transaction. Users can
view stall events and associated metrics in the Workstation Historical Event
Viewer.

» Note Generated stall metrics are always available, but stall events are only
visible if Introscope Error Detector is installed. Stalls are stored as
ordinary errors, and will be visible in the Errors Tab View, or in the
historical query viewer by querying for “type:errorsnapshot”.

You can disable the capture of stalls as events, change the stall threshold, or
change the frequency with which the .NET Agent checks for stalls using these
properties:

 introscope.agent.stalls.enable—controls whether the Agent checks for
stalls and creates events for detected stalls.

 introscope.agent.stalls.thresholdseconds—specifies the minimum
threshold response time at which time a transaction is considered stalled.

 introscope.agent.stalls.resolutionseconds—specifies the frequency that
the agent checks for stalls.

» Important Support for stall tracers in PBDs will be deprecated if you disable
the capture of stalls as events.

Configure the Introscope SQL Agent  99

CHAPTER 10

Configure the Introscope SQL Agent

This chapter has instructions for configuring Introscope SQL Agent.

The SQL Agent overview 100

The SQL Agent files 101

SQL statement normalization 101

Turning off statement metrics 108

Turning off Blame metrics 109

SQL metrics. 109

100  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

The SQL Agent overview
The Introscope SQL Agent reports detailed database performance data to the
Enterprise Manager. The SQL Agent provides visibility into the performance of
individual SQL statements in your application by tracking the interaction between
your managed application and your database.

In the same way that the .NET Agent monitors Java applications, the SQL Agent
monitors SQL statements. The SQL Agent is non-intrusive, monitoring the
application or database with very low overhead.

To provide meaningful performance measurements down to the individual SQL
statement level, the SQL Agent summarizes performance data by stripping out
transaction-specific data and converting the original SQL statements into
Introscope-specific normalized statements. Since normalized statements do not
include sensitive information, such as credit card numbers, this process also
protects the security of your data.

For example, the SQL Agent converts this SQL query:

SELECT * FROM BOOKS WHERE AUTHOR = 'Atwood'

to this normalized statement:

SELECT * FROM BOOKS WHERE AUTHOR = ?

Similarly, SQL Agent converts this SQL update statement:

INSERT INTO BOOKS (AUTHOR, TITLE) VALUES ('Atwood', 'The Robber Bride')

to this normalized statement:

INSERT INTO BOOKS (AUTHOR, TITLE) VALUES (?, ?)

» Note Only text within quotation marks ('xyz') is normalized.

Metrics for normalized statements are aggregated and can be viewed in the JDBC
node of the Workstation Investigator.

The SQL Agent files  101

.NET Agent Guide

The SQL Agent files
When you install an Introscope agent, the agent installer automatically installs
the SQL Agent. The following files are installed:

 wily/ext/wily.SQLAgent.ext.dll

 wily/sqlagent.pbd

» Note By default, agent extensions like the wily.SQLAgent.ext.dll file are
installed in the wily/ext directory. You can change the location of the
agent extension directory with the
introscope.agent.extensions.directory property in the agent profile.
If you change the location of the /ext directory, be sure to move the
contents of the /ext directory as well.

SQL statement normalization
Some applications may generate an extremely large number of unique SQL
statements. If technologies like Hibernate are in use, the likelihood of long unique
SQL statements increases. Long SQL statements can contribute to a metric
explosion in the agent, leading to poor performance as well as other system
problems.

» Note For more information about Hibernate, see http://www.hibernate.org/.

How poorly written SQL statements create metric explosions

If your SQL Agent is showing a large and increasing number of unique SQL
metrics even though your application uses a small set of SQL statements, the
problem could be in how the SQL statement was written.

In general, the number of SQL Agent metrics should approximate the number of
unique SQL statements. A common reason this becomes a problem is because of
how comments are used in SQL statements. For example, in this statement,

"/* John Doe, user ID=?, txn=? */ select * from table..."

the SQL Agent creates the following metric:

"/* John Doe, user ID=?, txn=? */ select * from table..."

Note that the comment is part of the metric name. While the comment is useful
for the database administrator to see who is executing what query, the SQL Agent
does not parse the comment in the SQL statement. Therefore, for each unique
user ID, the SQL Agent creates a unique metric, potentially causing a metric
explosion. The database that executes the SQL statements does not see these
metrics as unique because it ignores the comments.

http://www.hibernate.org/

102  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

This problem can be avoided is by putting the SQL comment in single quotes, as
shown:

"/*' John Doe, user ID=?, txn=? '*/ select * from table..."

The SQL Agent then creates the following metric where the comment no longer
causes a unique metric name:

"/* ? */ select * from table..."

Example 1

When looking at this path under an agent node in the Investigator
Backends|{backendName}|SQL|{sqlType}|sql you notice that temporary tables
are being accessed like this:

SELECT * FROM TMP_123981398210381920912 WHERE ROW_ID = ?

All the additional digits on the TMP_ table name are unique and steadily growing
causing a metric explosion.

Example 2

You have been alerted to a potential metric explosion and your investigation
brings you to a review of this SQL statement:

#1 INSERT INTO COMMENTS (COMMENT_ID, CARD_ID, CMMT_TYPE_ID,
CMMT_STATUS_ID,CMMT_CATEGORY_ID, LOCATION_ID, CMMT_LIST_ID,
COMMENTS_DSC, USER_ID,LAST_UPDATE_TS) VALUES (?, ?, ?, ?, ?, ?, ?, "CHANGE
CITY FROM CARROLTON,TO CAROLTON, _ ", ?, CURRENT)

In studying the code, you notice that "CHANGE CITY FROM CARROLTON, TOCAROLTON,
_ " recurs as a dizzying array of cities.

Example 3

You have been alerted to a potential metric explosion and your investigation
brings you to a review of this SQL statement:

CHANGE COUNTRY FROM US TO CA _ CHANGE EMAIL ADDRESS FROM TO BRIGGIN @ COM _ "

In studying the code, you notice CHANGE COUNTRY results in an endless list of
countries. In addition, the placement of the quotes for countries results in
people's e-mail addresses getting inserted into SQL statements. Here’s the
source of metric explosion as well as other negative consequences.

SQL statement normalization options

To address long SQL statements, the SQL Agent includes the following
normalizers for use:

SQL statement normalization  103

.NET Agent Guide

 Default SQL statement normalizer, below

 Custom SQL statement normalizer on page 103

 Regular expression SQL statement normalizer on page 105

 Command-line SQL statement normalizer on page 108

Default SQL statement normalizer

The standard SQL statement normalizer is on by default in the SQL Agent. It
normalizes text within single quotation marks ('xyz'). For example, the SQL Agent
converts this SQL query:

SELECT * FROM BOOKS WHERE AUTHOR = 'Atwood'

to this normalized statement:

SELECT * FROM BOOKS WHERE AUTHOR = ?

Metrics for normalized statements are aggregated and can be viewed in the
Workstation Investigator.

Custom SQL statement normalizer

The SQL Agent allows users to add extensions for performing custom
normalization. To do so, you create a DLL file containing a normalization scheme
that is implemented by the SQL Agent.

To apply a SQL statement normalizer extension:

1 Create an extension DLL file.

» Note The entry point class for the SQL normalizer extension file has to
implement com.wily.introscope.agent.trace.ISqlNormalizer interface.

Making a DLL extension file involves creating a manifest file that contains specific
keys for the SQL normalizer extension, which are detailed in step 2 below.
However, for your extension to work, other general keys are required. These keys
are the type you would use to construct any extension file. The extension file you
create relates to database SQL statement text normalization, for example metrics
under the Backends|{backendName}|SQL|{sqlType}|{actualSQLStatement} node.
The {actualSQLStatement} is normalized by the SQL normalizer.

2 Place the following keys in the manifest of the created extension:

 com-wily-Extension-Plugins-List:testNormalizer1

» Note The value of this key can be anything. In this instance, testNormalizer1
is used as an example. Whatever you specify as the value of this key,
use it in the following keys as well.

 com-wily-Extension-Plugin-testNormalizer1-Type: sqlnormalizer

104  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

 com-wily-Extension-Plugin-testNormalizer1-Version: 1

 com-wily-Extension-Plugin-testNormalizer1-Name: normalizer1

Should contain the unique name of your normalizer, for example normalizer1.

 com-wily-Extension-Plugin-testNormalizer1-Entry-Point-Class:
<Thefully-qualified classname of your implementation of
ISQLNormalizer>

3 Place the extension file you created in the <Agent_Home>/wily/ext directory.

4 In the IntroscopeAgent.profile, locate and set the following property:

introscope.agent.sqlagent.normalizer.extension

Set the property to the com-wily-Extension-Plugin-{plugin}-Name from your
created extension’s manifest file. The value of this property is case-insensitive.
For example:

introscope.agent.sqlagent.normalizer.extension=normalizer1

» Important This is a hot property. Changes to the extension name will result
in re-registration of the extension.

5 In the IntroscopeAgent.profile, you can optionally add the following property
to set the error throttle count:

introscope.agent.sqlagent.normalizer.extension.errorCount

For more information about errors and exceptions, see Exceptions, below.

» Note If the errors thrown by the custom normalizer extension exceeds the
error throttle count, the extension is disabled.

6 Save the IntroscopeAgent.profile.

7 Restart your application.

Exceptions

If the extension you created throws an exception for one query, the default SQL
statement normalizer uses the default normalization scheme for that query.
When this happens, an ERROR message is logged, saying an exception was
thrown by the extension, and a DEBUG message is logged with stack trace
information. However, after five such exceptions are thrown, the default SQL
statement normalizer disables the your created extension and stops attempting
to use the created extension for future queries until the normalizer is changed.

Null or empty strings

If the extension you created returns a null string or empty string for a query, the
StatementNormalizer uses the default normalization scheme for that query and
logs an INFO message saying the extension returned a null value. However, after
five such null or empty strings have been returned, the StatementNormalizer
stops logging messages, but will attempt to continue to use the extension.

SQL statement normalization  105

.NET Agent Guide

Regular expression SQL statement normalizer

The SQL Agent ships with an extension that normalizes SQL statements based on
configurable regular expressions (regex). This file,
wily.RegexSqlNormalizer.ext.dll, is located in the <Agent_Home>/wily/ext
directory. The normalizer extension uses Systems.Test.RegularExpressions
namespace classes.

For examples on how to use the regular expression SQL statement normalizer,
see Regular expression SQL statement normalizer examples on page 107.

To apply the regular expressions extension:

1 Open the IntroscopeAgent.profile.

2 Locate and set the following properties:

 introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer

Specifies the name of the SQL normalizer extension that will be used to
override the preconfigured normalization scheme. When enabling the regular
expressions extension, set this property to RegexSqlNormalizer.

 introscope.agent.sqlagent.normalizer.regex.keys=key1

This property specifies the regex group keys, which are evaluated in the order
they are listed. This property is required to enable the regular expressions
extension. There is no default value.

 introscope.agent.sqlagent.normalizer.regex.key1.pattern=A

This property specifies the regex pattern that is used to match against the SQL
statements. All valid regular expressions allowed by the
System.Test.RegularExpressions namespace classes can be used here. This
property is required to enable the regular expressions extension. There is no
default value.

 introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=B

This property specifies the replacement string format. All valid regex allowed
by the System.Test.RegularExpressions namespace classes can be used here.
This property is required to enable the regular expressions extension. There is
no default value.

 introscope.agent.sqlagent.normalizer.regex.matchFallThrough=false

If this property is set to true, SQL strings are evaluated against all the regex
key groups. The implementation is chained. Hence, if the SQL strings match
multiple key groups, the normalized SQL output from group1 is fed as input to
group2, and so on.

If the property is set to false, as soon as a key group matches the SQL string,
the normalized SQL output from that group is returned. The MatchFallThrough
property does not enable or disable the extension.

106  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

For example, if you had a SQL string like: Select * from A where B, you would
set the following properties:

introscope.agent.sqlagent.normalizer.regex.keys=key1,key2
introscope.agent.sqlagent.normalizer.regex.key1.pattern=A
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=X
introscope.agent.sqlagent.normalizer.regex.key2.pattern=B
introscope.agent.sqlagent.normalizer.regex.key2.replaceFormat=Y

If introscope.agent.sqlagent.normalizer.regex.matchFallThrough=false,
then the SQL is normalized against key1 regex. Output from that regex will be
Select * from X where B. This SQL will be returned.

If introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true,
then the SQL is normalized against key1 regex first. The output from that
regex is Select * from X where B. This output is then fed to key2 regex. The
output from key2 regex is Select * from X where Y. This will be the SQL
returned.

» Note This property is not required to enable the regular expressions
extension.

 introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false

This property specifies whether the pattern match is case sensitive. The default
value is false. This property is not required to enable the regular expressions
extension.

 introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false

If this property is set to false, it will replace the first occurrence of the
matching pattern in the SQL with the replacement string. If this property is set
to true, it will replace all occurrences of the matching pattern in the SQL with
the replacement string.

For example, if you have a SQL statement like Select * from A where A like Z,
you would set the properties as follows:

introscope.agent.sqlagent.normalizer.regex.key1.pattern=A
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=X

If introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false, it
will result in a normalized SQL statement: Select * from X where A like Z.

If introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=true, it
will result in a normalized SQL statement: Select * from X where X like Z.

The default value is false. This property is not required to enable the regular
expressions extension.

» Note If none of the regular expression patterns match the input SQL, the
RegexNormalizer will return a null string. The statement normalizer will
then use the default normalization scheme.

3 Save the IntroscopeAgent.profile.

SQL statement normalization  107

.NET Agent Guide

» Important All properties listed above are hot, meaning changes to these
properties take effect once you have saved the
IntroscopeAgent.profile. Changes to these properties do not
require IIS restart.

Regular expression SQL statement normalizer examples

The three examples below can help you understand how to implement the regular
expression SQL statement normalizer.

Example 1

Here is a SQL query before regular expression SQL statement normalization:

INSERT INTO COMMENTS (COMMENT_ID, CARD_ID, CMMT_TYPE_ID,CMMT_STATUS_ID,
CMMT_CATEGORY_ID, LOCATION_ID, CMMT_LIST_ID,COMMENTS_DSC, USER_ID,
LAST_UPDATE_TS) VALUES(?, ?, ?, ?, ?, ?,?, ‘’CHANGE CITY FROM CARROLTON,
TO CAROLTON, _ ", ?, CURRENT)

Here is the desired normalized SQL statement:

INSERT INTO COMMENTS (COMMENT_ID, ...) VALUES (?, ?, ?, ?, ?, ?,?, CHANGE
CITY FROM ()

Here is the configuration needed to the IntroscopeAgent.profile file to result in
the normalized SQL statement shown above:

introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer
introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=key1,key2
introscope.agent.sqlagent.normalizer.regex.key1.pattern=(INSERT INTO
COMMENTS \\(COMMENT_ID,)(.*)(VALUES.*)''(CHANGE CITY FROM \\().*(\\))
introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=$1 ...)

$3$4 $5
introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false
introscope.agent.sqlagent.normalizer.regex.key2.pattern='[a-zA-Z1-9]+'
introscope.agent.sqlagent.normalizer.regex.key2.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.key2.replaceFormat=?
introscope.agent.sqlagent.normalizer.regex.key2.caseSensitive=false

Example 2

Here is a SQL query before regular expression SQL statement normalization:

SELECT * FROM TMP_123981398210381920912 WHERE ROW_ID =

Here is the desired normalized SQL statement:

SELECT * FROM TMP_ WHERE ROW_ID =

108  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

Here is the configuration needed to the IntroscopeAgent.profile file to resultin
the normalized SQL statement shown above:

introscope.agent.sqlagent.normalizer.extension=RegexSqlNormalizer
introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=key1
introscope.agent.sqlagent.normalizer.regex.key1.pattern=(TMP_)[1-9]*
introscope.agent.sqlagent.normalizer.regex.key1.replaceAll=false
introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive=false

Example 3

If you want to normalize a SQL statement like: Select ResID1, CustID1
where ResID1=.. OR ResID2=.. n times OR CustID1=.. OR n times, you could
set the properties like this:

introscope.agent.sqlagent.normalizer.regex.matchFallThrough=true
introscope.agent.sqlagent.normalizer.regex.keys=default,def
introscope.agent.sqlagent.normalizer.regex.default.pattern=(ResID)[1-9]
introscope.agent.sqlagent.normalizer.regex.default.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.default.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.default.caseSensitive=true
introscope.agent.sqlagent.normalizer.regex.def.pattern=(CustID)[1-9]
introscope.agent.sqlagent.normalizer.regex.def.replaceAll=true
introscope.agent.sqlagent.normalizer.regex.def.replaceFormat=$1
introscope.agent.sqlagent.normalizer.regex.def.caseSensitive=true

Command-line SQL statement normalizer

If the regular expression SQL normalizer is not in use, and you have SQL
statements that enclose values in the where clause with double quotes (" "), use
the following command-line command to normalize your SQL statements:

-DSQLAgentNormalizeDoubleQuoteString=true

» Important You can use the regular expressions SQL normalizer instead of
this command to normalize SQL statements in double quotes. See
Regular expression SQL statement normalizer on page 105 for
more information.

Turning off statement metrics
Some applications may generate an extremely large number of unique SQL
statements, causing a metric explosion in the SQL Agent. You can turn off SQL
statement metrics in the SQL Agent.

Turning off Blame metrics  109

.NET Agent Guide

» Note You will not lose backend or top-level JDBC metrics if you turn off
statement metrics.

To turn off statement metrics:

1 Open the sqlagent.pbd file.

2 Remove {sql} from the trace directives you wish to turn off.

3 Save the sqlagent.pbd file.

Turning off Blame metrics
In a standard deployment of the SQL Agent, Blame metric data is collected by
default. However, to reduce data overhead and reduce the number of metrics
generated, you can turn Blame metric data off for the SQL Agent.

Note: If Blame metric generation is turned off, the SQL Agent data will not
appear in Transaction Tracer viewer.

To turn off Blame metric data generation:

1 Open the IntroscopeAgent.profile.

2 Locate the property, introscope.agent.sqlagent.useblame.

3 Change the value to false:

introscope.agent.sqlagent.useblame=false

4 Save your changes to the IntroscopeAgent.profile.

5 Restart the managed application.

SQL metrics
The SQL Agent metrics appear under the Backends node in the Introscope
Workstation Investigator. SQL statement metrics can be found under the
Backends|<backendName>|SQL node.

» Note Average Response Time (ms) will only display queries that return a data
reader, i.e. queries executed via the ExecuteReader() method. This
metric represents the average time spent in the data reader’s Close()
method.

Metric types specific to SQL data include:

 Connection Count—The number of live connection objects in memory.

A connection is opened when a driver’s Open() method is invoked, and closed
when the connection invocation is closed via the Close() method. The SQL
Agent maintains weak references to Connections in a Set. When the
Connection objects are garbage collected, the counts reflect the changes.

110  Configure the Introscope SQL Agent

CA Wily Introscope .NET Agent

 Average Result Processing Time (ms)—The average processing time of a
query.

This metric represents the average time spent processing a ResultSet from the
end of the executeQuery() call to the invocation of the ResultSet's close()
method.

» Note Instrumented XADataSources may not report commit or rollback
metrics. Other instrumented DataSources may not report commit or
rollback metrics unless those metrics contain data.

.NET Agent Properties  111

APPENDIX A

.NET Agent Properties

This appendix documents the properties in
<Agent_Home>wily\IntroscopeAgent.profile.

.NET Agent to Enterprise Manager connection 112

.NET Agent failover 112

.NET Agent naming 113

Agent metric aging 115

Agent thread priority 118

AutoProbe 118

ChangeDetector configuration 119

Default domain configuration 121

Error Detector 122

Extensions 123

LeakHunter configuration 123

Logging 125

Performance monitoring configuration 125

Process name 126

Restricting instrumentation configuration 127

Socket metrics. 128

SQL Agent 128

Stall metrics 130

Transaction tracing 131

URL grouping 133

112  .NET Agent Properties

CA Wily Introscope .NET Agent

.NET Agent to Enterprise Manager connection

.NET Agent failover
If the .NET Agent loses connection with its primary Enterprise Manager, these
properties specify which Enterprise Manager the agent will failover to, and how
often it will try to reconnect to its primary Enterprise Manager. For more
information on agent failover, see .NET Agent Failover on page 77.

introscope.agent.enterprisemanager.transport.tcp.host.DEFAULT

Usage The host name of machine running the Enterprise Manager.

Options

Default localhost

Example introscope.agent.enterprisemanager.transport.tcp.host.DEFA
ULT=localhost

Notes

introscope.agent.enterprisemanager.transport.tcp.port.DEFAULT

Usage The port on the Enterprise Manager machine that listens for the
agent.

Options

Default 5001

Example introscope.agent.enterprisemanager.transport.tcp.port.DEFA
ULT=5001

Notes

introscope.agent.enterprisemanager.transport.tcp.socketfactory.
DEFAULT

Usage Change this property to use a different client socket factory.

Options

Default com.wily.isengard.postofficehub.link.net.DefaultSocketFa
ctory

Example introscope.agent.enterprisemanager.transport.tcp.socketfac
tory.DEFAULT=com.wily.isengard.postofficehub.link.net.Def
aultSocketFactory

Notes

introscope.agent.enterprisemanager.connectionorder

Usage The connection order of backup Enterprise Managers the agent uses
if it is disconnected from its default Enterprise Manager.

Options Names of other Enterprise Managers the agent can connect to.

Default default

.NET Agent metric clamp  113

.NET Agent Guide

.NET Agent metric clamp
This property allows you to configure the .NET Agent to approximately clamp the
number of metrics sent to the Enterprise Manager. If the number of metrics pass
this metric clamp value then no new metrics will be created.

.NET Agent naming
The following properties are for .NET Agent naming. For more information on
.NET Agent naming, see .NET Agent name options on page 35.

Example introscope.agent.enterprisemanager.connectionorder=DEFAULT

Notes Use a comma separated list.

introscope.agent.enterprisemanager.failbackRetryIntervalInSeconds

Usage Number of seconds between attempts by the agent to reconnect to
its primary Enterprise Manager.

Options

Default Commented out; 120

Example #introscope.agent.enterprisemanager.failbackRetryIntervalI
nSeconds=120

Notes

introscope.agent.enterprisemanager.connectionorder

introscope.agent.metricClamp

Usage Configures the agent to approximately clamp the number of metrics
sent to the Enterprise Manager.

Options

Default 5000

Example introscope.agent.metricClamp=5000

Notes  If the property is not set then no metric clamping will occur. Old
metrics will still report values.

 Changes to this property take effect immediately and do not
require the managed application to be restarted.

introscope.agent.agentAutoNamingEnabled

Usage Specifies whether agent autonaming will be used to obtain the .NET
Agent name for supported application servers.

Options True or False

Default False

114  .NET Agent Properties

CA Wily Introscope .NET Agent

Example #introscope.agent.agentAutoNamingEnabled=false

Notes  You must restart the managed application before changes to this
property take effect.

 Requires the Startup Class to be specified for WebLogic; requires
Custom Service to be specified for WebSphere.

 Set to true, and not commented out in agent profiles shipped with
supported application servers

introscope.agent.agentAutoNamingMaximumConnectionDelayIn
Seconds

Usage Specifies the amount of time in seconds the agent waits for naming
information before connecting to the Enterprise Manager.

Options

Default 120

Example introscope.agent.agentAutoNamingMaximumConnectionDelayIn
Seconds=120

Notes

introscope.agent.agentAutoRenamingIntervalInMinutes

Usage Specifies the time interval in minutes during which the agent will
check to see if it has been renamed.

Options

Default 10

Example introscope.agent.agentAutoRenamingIntervalInMinutes=10

Notes

introscope.agent.disableLogFileAutoNaming

Usage Disables automatic naming of an agent’s log files—the default
behavior when an agent is configured for autonaming.

Options True or False

Default False

Example introscope.agent.disableLogFileAutoNaming=false

Notes

introscope.agent.agentName

Usage Name of Agent.

Options For any installation, if the value of this property is invalid or if this
property is deleted from the profile, the agent name will be Unknown
Agent.

Default

introscope.agent.agentAutoNamingEnabled

Agent metric aging  115

.NET Agent Guide

Agent metric aging
Agent metric aging periodically removes dead metrics from the agent memory
cache. A dead metric is a metric that has no new data reported in a given amount
of time. This helps the agent improve performance and avoid potential metric
explosions.

» Note A metric explosion happens when an agent is inadvertently set up to
report more metrics than the system can handle. In this case, Introscope
is bombarded with such a large number of metrics that performance gets
very slow or the system cannot function at all.

Metrics that are in a group are removed only if all metrics in the group are
considered candidates for removal. Currently, only BlamePointTracer group and
MetricRecordingAdministrator metrics are removed as a unit; other metrics are
removed individually.

The MetricRecordingAdministrator metric has APIs that can create a metric
group. These APIs are:

 getAgent().IAgent_getMetricRecordingAdministrator.addMetricGroup

String component, collection metrics. The component name is the metric
resource name of the metric group. The metrics must be under the same
metric node in order to qualify as a group. The metrics are a collection of
com.wily.introscope.spec.metric.AgentMetric data structures. You can only
add AgentMetric data structures to this Collection.

 getAgent().IAgent_getMetricRecordingAdministrator.getMetricGroup

Example #introscope.agent.agentName=AgentName

Notes  Uncomment this property to provide a default Agent name if other
Agent naming methods fail.

 In the agent profile provided with application server-specific agent
installers, the default reflects the application server, for instance
WebLogic Agent.

 In the agent profile provided with the default agent installer, the
property value is AgentName, and the line is commented out.

introscope.agent.clonedAgent

Usage

Options True or False

Default false

Example introscope.agent.clonedAgent=false

Notes Set to true when running identical copies of an application on the
same machine.

introscope.agent.agentName

116  .NET Agent Properties

CA Wily Introscope .NET Agent

String component. Based on the component name which is the metric resource
name, you can get the Collection of metrics.

 getAgent().IAgent_getMetricRecordingAdministrator.removeMetricGroup

String component. The metric group is removed based on the component
which is the metric resource name.

 getAgent().IAgent_getDataAccumulatorFactory.isRemoved

Checks if the metric is removed. You use this API if you keep an instance of an
accumulator in your extension. If the accumulator is removed because of
metric aging then you will be holding onto a dead reference.

» Important » Important If you create an extension that uses a
MetricRecordingAdministrator API (for example, for use with CA
Wily product), be sure to delete your own instance of an
accumulator. When a metric ages out because it has not been
invoked, and then after a time data does become available for
that metric, if you are using an old accumulator instance, the
accumulator will not create new metric data points for that metric.
To avoid this situation, do not delete your own instance of an
accumulator and use instead the getDataAccumulatorFactory
API.

Configuring agent metric aging

Agent metric aging is on by default. You can choose to turn off this capability
using the property introscope.agent.metricAging.turnOn on page 117. If you
remove this property from the IntroscopeAgent.profile, agent metric aging is
turned off by default.

Agent metric aging runs on a heartbeat in the agent. The heartbeat is configured
using the property introscope.agent.metricAging.heartbeatInterval on page 117.
Be sure to keep the frequency of the heartbeat low. A higher heartbeat will impact
the performance of the agent and Introscope.

During each heartbeat, a certain set of metrics are checked. This is configurable
using the property introscope.agent.metricAging.dataChunk on page 117. It is also
important to keep this value low, as a higher value will impact performance. The
default value is 500 metrics to be checked per heartbeat. Each of the 500 metrics
is checked to see if it is a candidate for removal. For example, if you set this
property to check chunks of 500 metrics per heartbeat, and you have a total of
10,000 metrics in the agent memory, then it will take longer with lower impact
on performance to check all 10,000 metrics. However, if you set this property to
a higher number, you would check all 10,000 metrics faster, but with possibly
high overhead.

Agent metric aging  117

.NET Agent Guide

A metric is a candidate for removal if the metric has not received new data after
certain period of time. You can configure this period of time using the property
introscope.agent.metricAging.numberTimeslices on page 117. This property is set
to 3000 by default. If a metric meets the condition for removal, then a check is
performed to see if all the metrics in its group are candidates for metric removal.
If this requirement has also been met then the metric is removed.

» Note For metrics that do not have a metric group then the rule does not apply.

Based on the rules outlined above, it may take a significant amount of time for
metrics to be removed.

Use the following properties to configure agent metric aging. In all of the
properties, if any unrecognised values are used, the default value will be used
instead.

introscope.agent.metricAging.turnOn

Usage Turns on or off agent metric aging.

Options True or False

Default True

Example introscope.agent.metricAging.turnOn=true

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.heartbeatInterval

Usage The time interval when metrics are checked for removal, in seconds.

Options

Default 1800

Example introscope.agent.metricAging.heartbeatInterval=1800

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.metricAging.dataChunk

Usage During each interval, the number of metrics that are checked.

Options

Default 500

Example introscope.agent.metricAging.dataChunk=500

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.numberTimeslices

Usage The number of intervals to check without any new data before
making it a candidate for removal.

Options

Default 3000

118  .NET Agent Properties

CA Wily Introscope .NET Agent

Agent thread priority
The following property controls the priority of agent threads.

AutoProbe
These properties are for configuring AutoProbe. For more information, see
ProbeBuilder Directives on page 47.

Example introscope.agent.metricAging.numberTimeslices=3000

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.metricExclude.ignore.0

Usage To exclude metrics from being removed. Add the metric name or
metric filter to the list.

Options comma seperated list; use the * wildcard

Default

Example introscope.agent.metricAging.metricExclude.ignore.0=Thread
s*

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.metricAging.numberTimeslices

introscope.agent.thread.all.priority

Usage Specifies the priority of agent threads.

Options Values vary from 0 (low) to 4 (high).

Default 2

Example introscope.agent.thread.all.priority=2

Notes

introscope.autoprobe.directivesFile

Usage Specifies directives files for AutoProbe. For more information, see
ProbeBuilder Directives on page 47.

Options

Default Varies by installer.

Example

Notes This is a required parameter. If the AutoProbe properties are not set,
or the values are invalid, Introscope will not function.

ChangeDetector configuration  119

.NET Agent Guide

ChangeDetector configuration
The following properties configure the Local Product Short interaction with
ChangeDetector.

introscope.autoprobe.enable

Usage When this property is set to false, it disables AutoProbe. The .NET
Agent does not connect to the Enterprise Manager, does not appear
in the Investigator, and does not report metrics.

Options True or False

Default true

Example introscope.autoprobe.enable=true

Notes

introscope.autoprobe.logfile

Usage Name and location of AutoProbe log file.

Options

Default logs\AutoProbe.log

Example introscope.autoprobe.logfile=logs\AutoProbe.log

Notes The location of the AutoProbe log file can be changed.

introscope.changeDetector.disable

Usage This boolean property gives you the ability to enable Introscope
ChangeDetector by settings the property value to true.

Options True or False

Default false

Example introscope.changeDetector.disable=false

Notes  Commented out by default.
 You must restart the managed application before changes to this

property take effect.

introscope.changeDetector.rootDir

Usage The root directory is the folder where ChangeDetector creates its
local cache files.

Options

Default

Example introscope.changeDetector.rootDir=c:\\sw\\AppServer\\wily\
\change_detector

Notes  Commented out by default.
 Use a backslash to escape the backslash character, as in the

example.

120  .NET Agent Properties

CA Wily Introscope .NET Agent

introscope.changeDetector.isengardStartupWaitTimeInSec

Usage Time to wait after the agent starts before trying to connect to the
Enterprise Manager.

Options

Default 15

Example introscope.changeDetector.isengardStartupWaitTimeInSec=15

Notes  Commented out by default.
 Second increments.

introscope.changeDetector.waitTimeBetweenReconnectInSec

Usage Specify the number of seconds to wait before retrying connection to
the Enterprise Manager.

Options

Default 10

Example introscope.changeDetector.waitTimeBetweenReconnectInSec=10

Notes  Commented out by default.
 Second increments.

introscope.changeDetector.disableEPA

Usage When ChangeDetector Local Product Short is enabled, an Local
Product Short plug-in can be used as a datasource for change data
in XML format.

Options True or False

Default true

Example introscope.changeDetector.disableEPA=true

Notes Commented out by default.

introscope.changeDetector.agentID

Usage A string used by ChangeDetector to identify the Local Product Short.

Options

Default

Example introscope.changeDetector.agentID=SampleApplicationName

Notes Commented out by default.

introscope.changeDetector.profile

Usage The absolute or relative path to the ChangeDetector datasources
configuration file.

Options

Default

Example introscope.changeDetector.profile=CDConfig\\changedetector
-config.xml

Notes  Commented out by default.
 Use a backslash to escape the backslash character, as in the

example.

Default domain configuration  121

.NET Agent Guide

Default domain configuration
The following property controls the default domain connection to the Enterprise
Manager.

introscope.changeDetector.profileDir

Usage The absolute or relative path to the directory where the datasources
configuration file lives.

Options

Default

Example introscope.changeDetector.profileDir=CDConfig

Notes  Commented out by default.
 Use a backslash to escape the backslash character, as in the

example.
 You can use this value in the
introscope.changeDetector.profile property, as shown in the
example for that property.

introscope.agent.dotnet.enableDefaultDomain

Usage This property determines if the agent connected to the default
domain connects to the Enterprise Manager.

Options True or False

Default False

Example introscope.agent.dotnet.enableDefaultDomain=false

Notes  You must add this property to the IntroscopeAgent.profile to
enable it.

 When this property is set to true, the agent monitoring the default
domain also gets reported in the Investigator.

122  .NET Agent Properties

CA Wily Introscope .NET Agent

Error Detector
These properties are for configuring the .NET Agent’s interactions with Introscope
ErrorDetector.

introscope.agent.errorsnapshots.enable

Usage Enable the agent to captures transaction details about serious
errors.

Options True or False

Default True

Example

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

introscope.agent.errorsnapshots.throttle

Usage The maximum number of error snapshots that the agent can send in
a 15-second period.

Options

Default 10

Example introscope.agent.errorsnapshots.throttle=10

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

introscope.agent.errorsnapshots.ignore.<index>

Usage This indexed property allows you to specify error messages to
ignore. Error snapshots will not be generated or sent for errors with
messages matching these filters. You may specify as many as you
like (using .0, .1, .2 ...). You may use wildcards (*).

Options

Default Example definitions are provided, and commented out, as shown
below. The following are examples only.

Example #introscope.agent.errorsnapshots.ignore.0=*com.company.Har
mlessException*

#introscope.agent.errorsnapshots.ignore.1=*HTTP Error Code:
404*

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 Requires Introscope Error Detector.

Extensions  123

.NET Agent Guide

Extensions
The following property is for .NET Agent extensions. For more information on
Agent extensions, see ProbeBuilder Directives on page 47.

LeakHunter configuration
These properties are for configuring the .NET Agent’s interactions with Introscope
LeakHunter.

introscope.agent.extensions.directory

Usage Specifies the location of all extensions to be loaded by the .NET
Agent. Non-absolute names are resolved relative to the location of
the IntroscopeAgent.properties file.

Options

Default ext

Example introscope.agent.extensions.directory=ext

Notes

introscope.agent.leakhunter.enable

Usage Controls whether the feature is enabled if the LeakHunter Add-on is
present. Set the value to true to enable LeakHunter.

Options True or False

Default false

Example introscope.agent.leakhunter.enable=false

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.leakhunter.logfile.location

Usage Controls the location for the LeakHunter log file. Filenames are
relative to the application working directory. Leave the value blank
if you do not want LeakHunter to record data to a log file.

Options

Default logs/LeakHunter.log

Example introscope.agent.leakhunter.logfile.location=logs/
LeakHunter.log

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.leakhunter.logfile.append

Usage Controls whether LeakHunter will append or overwrite the log file.
Set the value to true to append to the log file.

Options True or False

Default false

124  .NET Agent Properties

CA Wily Introscope .NET Agent

Example introscope.agent.leakhunter.logfile.append=false

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.leakhunter.leakSensitivity

Usage Controls the sensitivity of the leak detection algorithm. A higher
sensitivity setting will result in more potential leaks reported and a
lower sensitivity will result in fewer potential leaks reported.

Options The value should be an integer from 1-10.

Default 5

Example introscope.agent.leakhunter.leakSensitivity=5

Notes You must restart the managed application before changes to this
property take effect.

introscope.agent.leakhunter.timeoutInMinutes

Usage Controls the length of time LeakHunter spends looking for new
potential leaks. After the timeout, LeakHunter will stop looking for
new potential leaks and just continue tracking the previously
identified potential leaks.

Options

Default 120

Example introscope.agent.leakhunter.timeoutInMinutes=120

Notes  Set the value to zero if you want LeakHunter to always look for
new potential leaks.

 You must restart the managed application before changes to this
property take effect.

introscope.agent.leakhunter.collectAllocationStackTraces

Usage Controls whether LeakHunter generates allocation stack traces for
potential leaks. Turning this on gives you more precise data about
the potential leak's allocation, but requires additional memory and
CPU overhead. For this reason, the default setting is false.

Options True or False

Default false

Example introscope.agent.leakhunter.collectAllocationStackTraces=f
alse

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

#introscope.agent.leakhunter.ignore.0

Usage Ignore properties let the user specify particular collections that
should be ignored by LeakHunter. For Generic collections, use a
syntax that includes the generic type qualification, for example:
system.Collections.Generic.List`1

Options

introscope.agent.leakhunter.logfile.append

Logging  125

.NET Agent Guide

Logging
These properties are for configuring the logging properties. For more information,
see Monitoring and Logging on page 67.

Performance monitoring configuration
The following properties define the performance monitoring configurations. For
more information about performance monitoring, see Performance monitoring
(PerfMon) metric collection on page 36.

Default Commented out.

Example #introscope.agent.leakhunter.ignore.0=

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

#introscope.agent.leakhunter.ignore.0

introscope.agent.log.config.path

Usage This property points to the Log4Net configuration file.

Options

Default logging.config.xml

Example introscope.agent.log.config.path=logging.config.xml

Notes

introscope.agent.perfmon.enable

Usage When set to true, enables performance monitoring metric collection.

Options True of False

Default True

Example introscope.agent.perfmon.enable=true

Notes

introscope.agent.perfmon.metric.filterPattern

Usage The performance monitor counter expression.

Options See notes below.

Default |Processor|*|*,|.NET Data Provider*|*|*,|.NET
CLR*|{osprocessname}|*,|.NET CLR
Data|*|*,|Process|{osprocessname}|*,|ASP.NET|*

Example introscope.agent.perfmon.metric.filterPattern=|Processor|*
|*,|.NET Data Provider*|*|*,|.NET
CLR*|{osprocessname}|*,|.NET CLR
Data|*|*,|Process|{osprocessname}|*,|ASP.NET|*

Notes To add new counters, such as process specific thread metrics, add
the new expression to the end of the list, separated by a comma.
For example: ...,|Thread|{osprocessname}*|*

126  .NET Agent Properties

CA Wily Introscope .NET Agent

Process name
The following properties define the process name. For more information, please
see ProbeBuilder Directives on page 47.

introscope.agent.perfmon.metric.limit

Usage Specifies the metric ceiling.

Options

Default 1000

Example introscope.agent.perfmon.metric.limit=1000

Notes

introscope.agent.perfmon.metric.pollIntervalInSeconds

Usage Specifies the category polling interval in seconds.

Options

Default 15

Example introscope.agent.perfmon.metric.pollIntervalInSeconds=15

Notes All metric values are polled every 15 seconds.

introscope.agent.perfmon.category.browseIntervalInSeconds

Usage Intervals in which new PerfMon categories are discovered.

Options

Default 600 seconds (10 minutes)

Example introscope.agent.perfmon.category.browseIntervalInSeconds=
600

Notes

introscope.agent.perfmon.agentExpression

Usage Enables or disables performance monitoring reporting from specific
agent processes. Use this when more than one agent instance uses
the same agent profile.
AgentName|ProcessName

Options

Default *|*

Example introscope.agent.perfmon.agentExpression=*|*

Notes By default the Agent will report performance monitoring data for all
processes.

introscope.agent.customProcessName

Usage Specifies the process name as it appears in the Enterprise Manager
and Workstation. Uncomment this property and define the process
name to have the custom name appear in the Enterprise Manager
and Workstation.

Options

Restricting instrumentation configuration  127

.NET Agent Guide

Restricting instrumentation configuration
The following property allows you to enable or disable instrumentation for
targeted sets of processes or executables. For more information on restricting
instrumentation, see Configuring instrumentation on page 34.

Default CustomProcessName

Example introscope.agent.customProcessName=CustomProcessName

Notes This property is commented out by default.

introscope.agent.defaultProcessName

Usage The default process name will be used if no custom process name
has been defined and the Agent is unable to determine the name of
the main application class.

Options

Default UnknownProcess

Example introscope.agent.defaultProcessName=UnknownProcess

Notes

introscope.agent.customProcessName

introscope.agent.dotnet.monitorApplications

Usage Specifies processes and applications to instrument.

Options See notes.

Default w3wp.exe,aspnet_wp.exe

Example introscope.agent.dotnet.monitorApplications=w3wp.exe,aspne
t_wp.exe,dllhost.exe

Notes Both partial names and fully qualified paths are supported.

introscope.agent.dotnet.monitorAppPools

Usage Specifies application pools to be instrumented.

Options See notes.

Default w3wp.exe, aspnet_wp.exe

Example introscope.agent.dotnet.monitorAppPools=

Notes Leave commented to instrument all application pools, or uncomment
and list only the application pools you want instrumented.

128  .NET Agent Properties

CA Wily Introscope .NET Agent

Socket metrics
The following properties are for socket metrics. For more information on socket
metrics, see ProbeBuilder Directives on page 47.

SQL Agent
The following properties are for the SQL Agent. For more information on the SQL
Agent, see Configure the Introscope SQL Agent on page 99.

The following property is used to set the custom SQL Agent normalizer extension:

introscope.agent.sockets.reportRateMetrics

Usage Enables reporting of individual Socket's Input/Output Bandwidth
rate metrics.

Options True or False

Default True

Example introscope.agent.sockets.reportRateMetrics=true

Notes

introscope.agent.sqlagent.useblame

Usage Specifies whether SQL Agent will generate blame metric data.

Options True or False

Default True

Example introscope.agent.sqlagent.useblame=true

Notes

introscope.agent.sqlagent.sql.maxlength

Usage Limits how much of a SQL statement appears in the Investigator
tree for SQL Agent metrics, in bytes.

Options

Default 990

Example introscope.agent.sqlagent.sql.maxlength=990

Notes Does not appear in IntroscopeAgent.profile. To change the
value, add the property to the agent profile.

introscope.agent.sqlagent.normalizer.extension

Usage Limits how much of a SQL statement appears in the Investigator
tree for SQL Agent metrics, in bytes.

Options The name of the SQL normalizer extension that will be used to
override the preconfigured normalization scheme.

Default RegexSqlNormalizer

SQL Agent  129

.NET Agent Guide

The following properties are used to set the regular expressions SQL statement
normalizer:

Example introscope.agent.sqlagent.normalizer.extension=RegexSqlNor
malizer

Notes If you use the default setting, you also must configure the regular
expressions SQL statement normalizer properties below.

introscope.agent.sqlagent.normalizer.regex.matchFallThrough

Usage This property if set to true will make sql strings to be evaluated
against all the regex key groups.

Options True or False

Default false

Example introscope.agent.sqlagent.normalizer.regex.matchFallThroug
h=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.keys

Usage This property specifies the regex group keys.

Options

Default key1

Example introscope.agent.sqlagent.normalizer.regex.keys=key1

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.pattern

Usage This property specifies the regex pattern that will be used to match
against the SQL.

Options All valid regex allowed by System.Test.RegularExpressions
namespace classes package can be used here.

Default .*call(.*\)\.FOO(.*\)

Example introscope.agent.sqlagent.normalizer.regex.key1.pattern=.*
call(.*\)\.FOO(.*\)

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.replaceAll

Usage This property if set to 'false' will replace the first occurrence of the
matching pattern in the sql with the replacement string. If set to
'true' it will replace all occurrences of the matching pattern in the sql
with replacement string.

Options True or False

Default false

introscope.agent.sqlagent.normalizer.extension

130  .NET Agent Properties

CA Wily Introscope .NET Agent

Stall metrics
The following sections define the properties related to the stall metrics. For more
information on the stall metrics, see Disable the capture of stalls as events on
page 98.

Example introscope.agent.sqlagent.normalizer.regex.key1.replaceAll
=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.replaceFormat

Usage This property specifies the replacement string format.

Options All valid regex allowed by System.Test.RegularExpressions
namespace classes can be used here.

Default $1

Example introscope.agent.sqlagent.normalizer.regex.key1.replaceFor
mat=$1

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.caseSensitive

Usage This property specifies whether the pattern match is sensitive to
case.

Options true or false

Default false

Example introscope.agent.sqlagent.normalizer.regex.key1.caseSensit
ive=false

Notes Changes to this property take effect immediately and do not require
the managed application to be restarted.

introscope.agent.sqlagent.normalizer.regex.key1.replaceAll

introscope.agent.stalls.thresholdseconds

Usage Specifies the minimum threshold in seconds for stall event duration.

Options

Default 30

Example introscope.agent.stalls.thresholdseconds=30

Notes This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

introscope.agent.stalls.resolutionseconds

Usage Specifies the frequency that the agent checks for stalls.

Options

Transaction tracing  131

.NET Agent Guide

Transaction tracing
The following properties are for Transaction Tracing. For more information on
Transaction Tracing, see Transaction Tracer Options on page 93.

Default 10

Example introscope.agent.stalls.resolutionseconds=10

Notes This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

introscope.agent.stalls.resolutionseconds

introscope.agent.transactiontracer.parameter.httprequest.headers

Usage Specifies HTTP request header data to capture. Use a comma
separated list.

Options

Default Commented out; User-Agent

Example #introscope.agent.transactiontracer.parameter.httprequest.
headers=User-Agent

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired header names.

introscope.agent.transactiontracer.parameter.httprequest.parameters

Usage Specifies HTTP request parameter data to capture. Use a comma
separated list.

Options

Default Commented out; generic parameters.

Example #introscope.agent.transactiontracer.parameter.httprequest.
parameters=parameter1,parameter2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired parameter names.

introscope.agent.transactiontracer.parameter.httpsession.attributes

Usage Specifies HTTP session attribute data to capture. Use a comma
separated list.

Options

Default Commented out; generic parameters.

132  .NET Agent Properties

CA Wily Introscope .NET Agent

Example #introscope.agent.transactiontracer.parameter.httpsession.
attributes=attribute1,attribute2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
desired parameter names.

introscope.agent.transactiontracer.userid.key

Usage User-defined key string.

Options

Default Commented out; generic parameters.

Example #introscope.agent.transactiontracer.parameter.httpsession.
attributes=attribute1,attribute2

Notes The IntroscopeAgent.profile contains a commented out
statement that sets the value of this property to a null value. The
user may optionally uncomment the statement and supply the
correct value if, in your environment, user IDs are accessed using
HttpServletRequest.getHeader or
HttpServletRequest.getValue.

For more information, see
introscope.agent.transactiontracer.userid.method, below.

introscope.agent.transactiontracer.userid.method

Usage Specifies the HttpRequest.getRemoteUser method to specify User
IDs.

Options Allowable values are:
 HttpContext.User.Identity.Name
 HttpContext.Request.Uri.UserInfo
 HttpRequest.Headers.Get
 HttpContext.Session.Contents

Default Commented out; see options above.

Example The IntroscopeAgent.profile includes a commented out property
definition for each of the allowable values.

Notes Uncomment the appropriate statement, based on whether user ID is
accessed by getRemoteUser, getHeader, or getValue.

introscope.agent.transactiontrace.componentCountClamp

Usage Limiting the number of traces.

Options

Default 5000

Example introscope.agent.transactiontrace.componentCountClamp=5000

Notes  This property is dynamic. You can change the configuration of this
property during run time and the change will be picked up
automatically.

 When the set limit is reached, warnings appear in the log, and the
trace stops.

introscope.agent.transactiontracer.parameter.httpsession.attributes

URL grouping  133

.NET Agent Guide

URL grouping
These properties are for configuring URL Groups for frontend metrics. For more
information, see Using URL Groups on page 84.

introscope.agent.urlgroup.keys

Usage Configuration settings for Frontend naming.

Options

Default Default

Example introscope.agent.urlgroup.keys=default

Notes If a URL address belongs to two URL Groups, the order in which you
list the keys for the URL Groups in this property is important. The
URL Group defined by the narrower pattern should precede the URL
Group specified by the broader pattern.

For example, if the URL Group with key alpha contains a single
address, and the URL Group with key beta includes all addresses on
the network segment that contains the address in the first URL
Group, alpha should precede beta in the keys parameter.

introscope.agent.urlgroup.group.default.pathprefix

Usage Configuration settings for Frontend naming.

Options

Default *

Example introscope.agent.urlgroup.group.default.pathprefix=*

Notes

introscope.agent.urlgroup.group.default.format

Usage Configuration settings for frontend naming.

Options

Default Default

Example introscope.agent.urlgroup.group.default.format=default

Notes

134  .NET Agent Properties

CA Wily Introscope .NET Agent

Additional Configuration of Application Parameters  135

APPENDIX B

Additional Configuration of Application
Parameters

The .NET framework permits configuration of application specific parameters
using an optional XML format file with a .config extension

For ASP.NET applications, Web.config is the main file for application settings and
configuration. This file is stored in the application root directory.

For other .NET executables, the configuration file is named the same as the
application appended with an additional .config extension. The file is stored in
the same directory as the application executable. For example, for testapp.exe,
the optional configuration file would be testapp.exe.config .

It is possible to add Introscope specific configuration to the .config file. For
example, parameters can be set that enable individual applications to reference
their own instance of the IntroscopeAgent.profile file (to permit different
applications to have different agent configurations), as well as to enable cross-
process transaction correlation for web services.

To add specific properties to the .config file:

1 Open the application configuration file.

2 Add a sectionGroup and a section to your application configuration file. Name
them as follows:

<configuration>
<configSections>

<sectionGroup>
<sectionGroup name="com.wily.introscope.agent">
<section name="env.parameters"
type="System.Configuration.NameValueSectionHandler" />

</sectionGroup>

136  Additional Configuration of Application Parameters

CA Wily Introscope .NET Agent

3 Add new properties to the env.parameters section. For example:

<com.wily.introscope.agent>
<env.parameters>

<add key="com.wily.introscope.agentProfile"
value="e:\\junkyard\\dotnettest\\Agent.profile" />

</env.parameters>
</com.wily.introscope.agent>

For an example, see sample.exe.config.

» Note Configuration files are not required for .NET Agent installation.

Index  137

INDEX

Index

Symbols
.exe 35
.NET 1.1 32
.NET 1.1 Framework 26
.NET 2.0 32
.NET 2.0 Framework 26
.NET 3.0 Framework 26
.NET 3.5 Framework 26
.NET Agent profile location 44
.NET CLR Exceptions 43
.NET CLR Interop 43
.NET Directory Services 48
.NET Framework

Versions 26
.NET Framework 1.1.4 27
.NET Framework 2.0 27
.NET Messaging 48
.NET Remoting 48

Numerics
32-bit applications 26

A
Adminitrators group 43
ADO.NET 48
Agent

Agent-to-Enterprise Manager
Connection Properties 39

Configuration
.pbds 22
Data Collection 22
Enterprise Manager connection 21
Logging 21
verbose mode 69
Virtual Agent 21

configuration

visibility vs. overhead 19
Configuration requirements 19
Default Domain 15
Directories and Files 31
Directory

install 31
UninstallerData 32
User Permissions for 37
wily 32

IntroscopeAgent.profile 32
logging.config.xml 32
ProbeBuilder Directives 32
ProbeBuilder Lists 32
Sample.exe.config 32

wily\bin 33
wily.Agent.dll 33
wily.Agent.pdb 33
wily.AutoProbe.dll 33
wily.AutoProbe.pdb 33
wily.AutoProbeConnector.dll 33
wily.AutoProbeConnector.pdb 33

wily\ext 33
wily.LeakHunter.ext.dll 33
wily.LeakHunter.ext.pdb 33
wily.ProbeBuilder.ext.dll 33
wily.ProbeBuilder.ext.pdb 33
wily.SQLAgent.ext.dll 33
wily.SQLAgent.ext.pdb 33

wily\hotdeploy 33
unconfigure 34

wily\logs 34
DLLs 45
idle time 11
Instantiation 13
lifecycle 11
Name 41

138  Index

CA Wily Introscope .NET Agent

Define 42
Profile Location 44
redirecting output to a file 70
startup and AutoProbe execution 12
startup process 11
Uninstall 45
verbose mode 69

agent
previous version 27

agent extensions 34
installing 34
version number 34

Agent failover
Domain/User configuration 79

agent installer 29, 101
GUI mode 29

response file 30
silent mode 29, 30

Agent Logging
Log4net 69

agent naming 21, 41
automatic 41
properties 42

agent profile 78
Agent Socket Rate Metrics 69
agent-cluster 76
AgentName 44
agent-specifier 75
AMD64 26
application pool 14
application pools 40, 41
ASP.NET 48, 53, 75
ASPNET user 44
aspnet_wp.exe 28, 37, 41
ASPNETTracing 50
assemblyIdentity 35
automatic agent naming

log files 70
automatic instrumentation 40
Automatically Generated Response File 30
autonaming 21, 42
AutoProbe 34, 37, 40, 71

log file 71
startup process 11

AutoProbe.DefaultDomain.log 71
Average Response Time 54
Average tracer 57

B
backend SQL calls 94
Backends 75
backends 84
BackendTracer 90
Blame points 90
blame reporting 83
Blame tracers 90
BlamePoint metrics 54
BlamePointTracer 54, 115

group metrics 115
Boundary Blame 84, 90, 91

disable 91

C
clamp 94
class 53, 55
CLR 10
CLR Exceptions 43
CLR Interop 43
CLR profiler 40
clustered applications 74
Collector Enterprise Manager 27
Combined counter tracer 58
combining custom tracers 58
Concurrent Invocations 54
configuration 18
configuration requirements 19
connection metrics 68
ConnectionStatus 68
ContextUtilTracing 50
Counter tracer 58
custom directives 53
custom metric host 68
custom PBDs 33
custom tracers 53

common 54
custom Tracers. See ProbeBuilder Directives
CustomerProcessName 44

D
dead metric 115
Default Domain 15
default domain 71
Default domain logs 71
default-full.pbl 32, 50
default-typical.pbl 32, 50
directive 55

Index  139

.NET Agent Guide

Directive & Tracer Type Definitions 63
directive type 53
directives 48
DirectoryServicesTracing 51
disk space 26
DLL 45
domain 75
dotnet.pbd 32, 49, 90

E
Enterprise Manager 11, 27, 39, 40, 48, 68, 71,

74, 75, 76, 78, 79, 100
Backup 78
channel connection 40
clustered 27
Collector 27
communication channel 39
connection 27
Connection Properties 39
failover 27
IP address 39
listen port 39
socket factory 39

Enterprise Services 48
ErrorDetector 49
Errors Per Interval 54
errors.pbd 32, 49
Explicit Interface Implementation 62
explicit interface implementation 62
extension installation errors 35

F
failback 79
failover 27, 78

connection order 79
to primary Enterprise Manager 79

Frontends 75
FrontendTracer 90
fully-qualified metric name 54

G
GAC 32
gacutil 32
GC Heap 75

H
Hibernate 101
historical query interface 68

host name
case sensitive 27

hotdeploy directory 34, 52, 53
unconfigure 34

hotdeply directory 53

I
IIS 26, 28, 37, 42, 45, 53

application pools 40
versions 26
Worker Process

NETWORK SERVICE 38
IIS 5 37, 41

ASP.NET application 40
IIS 5.0 28
IIS 5.0 compatibility mode 28
IIS 5.1 28
IIS 6 37

ASP.NET application 40
IIS 6.0 28
IIS Administration Service 45
IIS application 35
IIS application pools

instrumenting 41
IIS user 37
IIS user permissions

Windows 2000 43
Windows 2003 42
XP 42

IIS Version 5.00.2195.6620 26
IIS Version 5.1 26
IIS Version 6.0 26
IIS Version 7.0.6000.16386 26
IIS worker process 37
implementation lifecycle 18
Install 20
Installation

Automatically Generated Response File 30
GUI Mode 29
in Silent mode 30

launching silent mode installer 31
Manually Configured Sample Response File

30
installer 29

GUI mode 29
response file 30

silent mode 29, 30
instantiation 13

140  Index

CA Wily Introscope .NET Agent

instrument 48
instrumentation 40

automatic 40
instrumented 10
Intel64 26
Internet Information Services. See IIS
Introscope Domain 21
Introscope for Microsoft .NET 10

deployment 10
Introscope Investigator 27
introscope8.0windowsAgent_dotNET.exe 29
IntroscopeAgent.profile 33, 39, 40, 41, 42, 44,

53, 69, 85, 91, 104, 105, 106
properties 39

Introscope-enabling
ProbeBuilding 10

Investigator 27, 43, 44, 54, 68, 109

J
Java Agent 100

K
Keyword-Based Substitution

Tracers
Custom

Keyword-Based Substitution 59
Keyword-based substitution 59

L
LeakHunter 75
log messages 21
Log4Net 70
Log4net 69

Agent settings 69
documentation 69

logging.config.xml 69, 70

M
machine.config 35, 36
Managed code 27
managed components 28
Manager of Managers (MOM) 27
Manually Configured Sample Response File 30
MessagingTracing 51
MessagingTransactionTracing 51
method 53, 56
metric aging 115
metric explosion 115

metric-name 56
Metric-name-based 60
Metric-Name-Based Parameters 60
Metrics 11
metrics 18
metric-specifier 75, 76
Microsoft knowledge base article 43
MSSQLSERVER2005 44

N
name 75
nativeskip.pbd 32, 49, 61
NETWORK SERVICE 38
Network Sockets 48
non-IIS applications 40
normalized statement 100
NotDisplayed 43

O
Overview tab 68

P
PageInfoTracer 90
PBD 22, 32, 34, 48, 52

custom 53
default files 48

PBL 32, 33, 52
Per interval counter tracer 58
PerfMon 37, 42, 43, 44, 75

filter 43
limit metric volume 44
Metrics 43

filter by Agent and Process 43
PerfMon metrics 22, 42
performance monitoring 37
Performance Monitoring. See PerfMon
per-socket bandwidth 69
pre-production environments 19
previous version 27
ProbeBuilder 48

log 71
ProbeBuilder Directive 22, 47

defaults 49
ProbeBuilder Directives 48

.NET Traced Components 48
applying directives 52
custom Tracers

combining 61

Index  141

.NET Agent Guide

creating 53
examples 57

average tracer 57
combined counter tracer 58
counter tracer 58
per interval counter tracer 58
rate tracer 57

Explicit Interface Implementation 62
keywords

skip 61
modifying

Tracer groups
adding classes to 52
turning on or off 51

only defined methods traced 62
Tracer groups

adding classes to 52
default 50
turning on or off 51, 52

updating probes 52
ProbeBuilder List

defaults 50
ProbeBuilder logs 71
ProbeBuilding 22
production environments 19
profile location 44
properties

files 111

R
Rate tracer 57
redirect output

Agent settings 70
registry entries 32
regular expression 108
RemotingClientProxyTracing 50
RemotingWebServiceTracing 51
Responses Per Interval 54

S
SampleResponseFile.AgentForDotNet.txt 30
ServicedComponentTracing 50
set logfile details 69
Signature Differentiation 58
Silent mode 30

launching silent mode installer 31
single-metric tracers 58
Skip Directives 61

Skips 61
skips 58
SmartStor 54
SMTP Mail 48
socket calls 84
socket connection 40
Socket metrics 22
SocketTracing 50
Software Requirements 26
SQL Agent 22, 84, 100

Blame metrics 109
normalized statement 100
SQL Metrics

Average Query Roundtrip Time (ms) 110
connection count 109

statement metrics 108
SQL normalizer 108
SQL query 100
SQL Server 26
SQL Server 2000 Version 8.00.2039 SP4 26
SQL Server 2005 Version 9.00.1399.06 26
SQL statement 84, 101
SQL statement normalization 101
SQL statements 100
sqlagent.pbd 32, 49, 90
SQLAgentCommands 51
SQLAgentConnections 51
SQLAgentDataReaders 51
SQLAgentTransactions 51
SQLBackendTracer 90
Stall Count 54
Stall Event Reporting 22
Stand alone applications 40
SuperDomain 21
system clock 48

T
tailor data collection 19
Task Manager 28, 37
Thread Pool 75
toggles-full.pbd 32, 49, 50, 52
toggles-typical.pbd 32, 49, 50, 52
Tracer arguments 55
tracer definitions 55
Tracer groups 50

adding classes to 52
tracer groups

turn on or off 51

142  Index

CA Wily Introscope .NET Agent

Tracer-Group 55
Tracer-name 56
Tracers

advanced custom
creating 58

advanced single-Metric 58
Blame Technology and 58
BlamePointTracer 56
ConcurrentInvocationCounter 56
Custom

Metric-Name-Based Parameters 60
Signature Differentiation 58
Skips 61

default Tracer Groups 50
DumpStackTraceTracer 57
examples 57
IdentifyAnnotatedClassAs 61
MethodTimer 57
names 56
PerIntervalCounter 57
Syntax 55
toggle files 50
TraceAnnotatedMethodsIfFlagged 62

tracers 90
transaction

clamp 94
infinitely expanding 94

Transaction Tracer 94
component clamp 94

Transaction Tracing Behavior 22

U
Uninstall 45
URL Group 84

advanced naming 87
define 85
keys 85
membership 86
name 86

URL Groups for Blame Reporting 22
User

Permissions 38
Running the Application 37

user authorization token 37
user permissions 20

V
verbose mode 69

running Agent in 69
verify minimum user permissions 38
Virtual Agent 21, 74

requirements 74

W
w3wp.exe 28, 37, 41
w3wp.exe.config 35
Web Services 48
web.config 35
WebLogic 114
WebMailTracing 51
webservices.pbd 32, 49
WebServicesClientTracing 50
WebServicesProducerTracing 50
WebSphere 114
What’s Interesting event 68
wily directory 53
Wily Technology Community site 63
wily/ext directory 101
wily\hotdeploy 34
wily\hotdeploy directory 52
wilypermissions utility 37, 42
wilypermissions.exe 37
wilyregtool 32
Windows 26

Windows 2000 environments 28
Windows 2000 44
Windows 2000 5.000.2195 – SP4 26
Windows 2003 43
Windows 2008 Server Enterprise SP1 32-bit 26
Windows 2008 Server Enterprise SP1 64-bit 26
Windows Explorer 38
Windows Server 2003 Enterprise Edition – SP1

26
Windows Server 2003 Enterprise Edition – SP2

26
Windows System Properties 44
Windows Task Manager 38
Windows XP Professional 2002 – SP2 26
Worker Process 13, 28, 38
worker process 37
Workstation 54, 109

X
x64 26, 29
x86 26, 29
x86 Framework 2.0 37

Index  143

.NET Agent Guide

XADataSources 110

	.NET Agent Guide
	Table of Contents
	Installation Requirements and Options
	The .NET Agent Overview
	.NET Agent overview
	The .NET Agent operating environment
	The lifecycle of the .NET Agent and AutoProbe
	How the .NET Agent works with your applications
	.NET Agent instantiation
	.NET Agent instance in the default domain

	.NET Agent Implementation
	The .NET Agent implementation overview
	Demonstrate Introscope functionality
	Determine configuration requirements
	Define .NET Agent configuration
	Evaluate .NET Agent performance overhead
	Validate and deploy .NET Agent configuration

	Implementing the .NET Agent
	Basic implementation

	.NET Agent configuration options
	Communications with Enterprise Manager
	.NET Agent naming
	Virtual Agents
	Logging
	Introscope domains and permissions
	ProbeBuilder Directives (PBDs)
	Data collection and reporting

	Installing the .NET Agent
	Before you start
	Agent implementation planning
	Software requirements
	Previous agents
	Enterprise Manager connection information
	Verify IIS application operations
	Reducing startup time

	Installing the .NET Agent
	Installing the .NET Agent in GUI mode
	Installing the .NET Agent in silent mode
	.NET Agent installation directories and files
	Installing agent extensions

	User permissions for .NET Agent directory
	The wilypermissions utility
	Determine the user running the application
	Verify minimum user permissions

	Connecting to the Enterprise Manager
	Configuring instrumentation
	Instrumenting specific processes and applications
	Instrumenting application pools

	.NET Agent name options
	Create profiles for each application
	Define an agent name

	Performance monitoring (PerfMon) metric collection
	IIS permissions
	Tailoring PerfMon metric collection
	Filtering PerfMon metrics by .NET Agent and process

	.NET Agent profile location
	Uninstalling the .NET Agent

	ProbeBuilder Directives
	ProbeBuilder Directives overview
	Components traced by default PBDs
	Default ProbeBuilder Directive (PBD) files
	Default ProbeBuilder List (PBL) files
	Default tracer groups and toggles files
	Turning tracer groups on or off
	Adding classes to an existing tracer group

	Applying ProbeBuilder Directives
	Custom locations and permissions

	Creating custom tracers
	Common custom tracer example
	Tracer syntax
	Custom method tracer examples

	Creating advanced custom tracers
	Advanced single-metric tracers
	Skip directives
	Combining custom tracers
	Notes about specific tracers
	Explicit interface implementation
	Instrumenting and inheritance
	Supplementary information on directives and tracers

	Operation and Management
	Monitoring and Logging
	Configuring .NET Agent connection metrics
	Turning off socket metrics in the .NET Agent profile
	Configuring .NET Agent logging options
	Running the .NET Agent in verbose mode
	Changing the .NET Agent log file location
	.NET Agent log files and automatic agent naming
	Default domain logs

	Managing ProbeBuilder logs
	AutoProbe log name and location

	Virtual Agents
	Understanding Virtual Agents
	Virtual Agent requirements
	Configuring Virtual Agents

	.NET Agent Failover
	Understand .NET Agent failover
	Define backup Enterprise Managers
	Define failover connection order
	Configure failback to primary Enterprise Manager
	Failover and domain\user configuration

	Tailoring and Extending Data Collection
	Configuring Boundary Blame
	Understanding Boundary Blame
	Using URL Groups
	URL Group properties
	Sample URL Groups
	Defining URL Groups

	Using Blame tracers to mark Blame points
	Blame tracers
	Blame tracers in standard PBDs

	Disabling Boundary Blame

	Transaction Tracer Options
	Controlling transaction trace sampling
	Transaction Trace component clamp

	Transaction Tracer options
	Enable collection of filter parameters
	Filter transaction traces by user ID
	Filter transaction traces by HTTP request data

	Disable the capture of stalls as events

	Configure the Introscope SQL Agent
	The SQL Agent overview
	The SQL Agent files
	SQL statement normalization
	How poorly written SQL statements create metric explosions
	SQL statement normalization options
	Default SQL statement normalizer
	Custom SQL statement normalizer
	Regular expression SQL statement normalizer
	Command-line SQL statement normalizer

	Turning off statement metrics
	Turning off Blame metrics
	SQL metrics

	.NET Agent Properties
	.NET Agent to Enterprise Manager connection
	.NET Agent failover
	.NET Agent metric clamp
	.NET Agent naming
	Agent metric aging
	Configuring agent metric aging

	Agent thread priority
	AutoProbe
	ChangeDetector configuration
	Default domain configuration
	Error Detector
	Extensions
	LeakHunter configuration
	Logging
	Performance monitoring configuration
	Process name
	Restricting instrumentation configuration
	Socket metrics
	SQL Agent
	Stall metrics
	Transaction tracing
	URL grouping

	Additional Configuration of Application Parameters
	Index

