
© Texas Instruments 1996 1

Optimizing Composer
Multi-Platform Oracle Applications

Session 750

Rebecca Lawson
Texas Instruments

© Texas Instruments 1996 2

Overview

• Objective
• Technical environment
• Oracle tuning approach
• Summary

© Texas Instruments 1996 3

Objective

• To enable application
developers to improve
performance of
Composer-generated
Oracle applications
targeting multiple
platforms

Oracle

© Texas Instruments 1996 4

Technical Environment

Windows 3.1
Applications

Composer GUI
Runtime 5.31
Oracle Global

Logon

Sequent/Dynix
Oracle 7.1.4
Applications
Composer

Batch

SQL*NET
Database

Server

SQL*NETOpenVMS
Applications

Composer Batch

© Texas Instruments 1996 5

Shared Database

 Encyclopedia

Composer
Model

Oracle
Database

Server
Specify DSD

defaults,
To Varchar,

Generate DDL

Conversion Program

DBAssist

© Texas Instruments 1996 6

 Encyclopedia

OpenVMS IT

Sequent/Dynix IT

Windows
IT/AIK

Construction Toolset
Construction Client

Generate & Install Code

Integration
Test

Model

© Texas Instruments 1996 7

Oracle Tuning Approach

• Installing and configuring Oracle
• Application design
• Data access methods
• Memory allocation tuning
• Tuning disk I/0
• CPU usage tuning
• Tuning resource contention

© Texas Instruments 1996 8

Installing and Configuring Oracle

• For initial install, review
Oracle default settings

• Review application
parameters with system
DBA
– Determine concurrent

transactions–rollback
segments

© Texas Instruments 1996 9

Application Design

• Data modeling guidelines
• Design considerations
• Construction options
• Assessing performance

© Texas Instruments 1996 10

Data Modeling Guidelines

• Modifying vs. Referencing relationships
– Modifying – generates a SELECT for UPDATE

when reading the table to ensure referential
integrity on foreign key fields.

– Referencing – generates SELECT without
update. Referential integrity is ensured by the
application. Can be used for optional
relationships with low risk for updates in
foreign key field.

• Minimize joins – Denormalization

© Texas Instruments 1996 11

Design Considerations

• Action diagrams
• Optimization of SQL statements
• Selecting the optimizer
• Technical design
• Using External Action Blocks

(EABs)
• Distributed Processing vs.

Remote Data Access (RDA)

© Texas Instruments 1996 12

Action Diagrams–GUI List Box
• READ EACH... SORTED BY

– May sort on table – index may be ignored
unless all of the attributes in the sorted by
clause are contained in a single index in the
same sequence & are defined as not null in the
DSD

• READ EACH...WHERE...SORTED BY
– Where clause forces new index path, resulting

in table scan and sort
• READ EACH.....WHERE index column(s) > value

– Optimizer will choose index if the attribute
defined in value is contained in an index in
specified sequence (< or >)

© Texas Instruments 1996 13

Action Diagrams–Batch
• Persistent Views

– Used to reduce reads by maintaining currency
on data

– Set persistent view locked only for update and
delete

• Starve views – reference only required fields
• Reduce view matching

– Create group view with cardinality of one to
match views between action diagrams instead of
matching multiple views

• High performance view passing
• Checkpoint/restart logic to increase commit level or

use EAB to issue commit

© Texas Instruments 1996 14

Optimization of SQL Statements

• Oracle optimizes all SELECT, INSERT,
UPDATE, and DELETE statements

• Evaluates expressions and conditions
containing constants

• Original statements may be transformed to
equivalent joins

• Merges the view’s query into the original
statement, or the original statement into the
view’s query, then optimizes the result

© Texas Instruments 1996 15

Selecting the Optimizer

• Rule-Based – determines a retrieval path by
applying a set of pre-programmed rules

• Cost-Based – uses physical table
characteristics to perform the access path
calculations

• Use EAB to dynamically set/reset optimizer

External _set_opt

** Insert user defined code here

EXEC SQL
SET optimizer_mode = choose

© Texas Instruments 1996 16

Rule-Based

• Fixed set of rules
• Oracle V6 – not planned for future Oracle releases
• Consistent results
• Rules can be coded in action diagrams
• Order of entity types in READ statements can be

used to determine index used
– Fewer row tables first

© Texas Instruments 1996 17

Cost-Based

• Three options available in cost-based:
– Choose optimizer chooses optimal path
– First Row optimizes for singleton select
– All Rows optimizes for multiple rows returned

• Recommended by Oracle
• Varying set of rules by

release
• Requires statistics

© Texas Instruments 1996 18

Technical Design

• Tune Oracle indexes
• Index design
• Sequential indexes
• Update generated DDL
• Define Oracle roles

© Texas Instruments 1996 19

Tuning Oracle Indexes

• Design optimal identifiers – short, numeric,
unique

• Customize Entry Points (EPs)
– Review entry points – add or delete
– Reorder fields in records in data model
– Reorder fields in entry point

• Customize generated indexes
– Update default indexes defined for each

identifier

© Texas Instruments 1996 20

Index Design

• User-designed
– Create indexes to optimize access paths

defined in READ statements
• Consider a composite instead of two

inefficient indexes
– Ex: Last name, first name combined

instead of separate indexes on both fields
– Oracle tries to combine indexes whenever

possible during execution

© Texas Instruments 1996 21

Sequential Indexes
• Next sequential

– Code sets value in sequential order
• Oracle SEQUENCE

– Optimal method of using a sequential
identifier

– Allow generation of numbers for
system-assigned identifiers

– Sequence cache controlled in Oracle
data dictionary

– Use EAB to retrieve value for
sequence stored in database

© Texas Instruments 1996 22

Update Generated DDL
• Split tables and indexes into separate

tablespaces
• Add storage clause information based on

entity type properties
– Minimum occurrences
– Maximum occurrences
– Average number of occurrences
– Expected growth rate

• Declarative data integrity constraints
• DBMS-enforced referential integrity

© Texas Instruments 1996 23

Defining Oracle Roles

• Use the Client/Server
Encyclopedia to
determine roles for
Oracle application

• Query Public Interface
views for each action
diagram to determine
entity actions

© Texas Instruments 1996 24

Using EABs

• Use EABs in a Composer application for:
– Sequential key assignment
– Set/reset optimizer goal
– Optimize SQL – utilize HINTS
– Array processing – read multiple rows

»Composer-generated Pro*C repeats
single read

»Faster method is to read multiple
rows into array

© Texas Instruments 1996 25

Distributed Processing vs.
Remote Data Access

• Remote Data Access
– Limited number of users
– Processing in client application
– Access to Oracle via SQL*Net
– Results in heavy data traffic
– Over network

• Distributed Processing
– Optimal for large number of users
– Oracle processing distributed to server

application on database server

© Texas Instruments 1996 26

Construction Options–Windows
• Modify script files

– Modify IDW*****.SCR files precompiler
options

– DOS limit on length of command line is
256 characters

– Oracle RDA
– Advanced Installation Kit (AIK)

• Use to control parsing of SQL statements
– RELEASE_CURSOR=NO
– HOLD_CURSOR=YES
– MAXOPENCURSORS=100

© Texas Instruments 1996 27

Construction Options–Batch

• Modify script files
– Customize script file – update

precompiler options
– Load into target configuration database
– Regenerate install scripts

• Use to control parsing of SQL statements
– RELEASE_CURSOR=NO
– HOLD_CURSOR=YES
– MAXOPENCURSORS=100

© Texas Instruments 1996 28

Assessing Performance

• Define performance levels
– Application performance
– Oracle engine performance
– SQL*Net/communications
– System performance

• Set goals
• “Just the facts, ma’am”

© Texas Instruments 1996 29

System Performance

• UNIX commands
– System Activity Report – sar
– Processor Status – ps

• Processing time – Oracle vs.
application

• Contention with other users
• Assess data file disk activity

© Texas Instruments 1996 30

Data Access Methods

• Explain plan
• SQL*Trace

– Use EAB to turn trace on for
Composer application

• TKPROF
– Review TKPROF report to look for:

»Joins
»Cursor reparsing
»Sorts

© Texas Instruments 1996 31

Tuning Memory Management
• Tune number of database buffers and redo

buffers
• Tune data dictionary cache – Version 6
• Tune shared pool size – Version 7
• Reduce swapping and paging

– Swapping – swap memory pages to disk
when physical memory becomes
constrained

– Paging – move individual processes to
disk when physical memory becomes
constrained

© Texas Instruments 1996 32

Tuning Disk I/O

• Distribute I/O and applications across
drives & controllers

• Tune number of database writers
• Check for large disk request queues

– sar report details disk statistics
across entire server

– Determine location of
data/indexes/redo logs

• Check for disk and tablespace
fragmentation

© Texas Instruments 1996 33

HP/Oracle CSE Data Placement

CSE & Oracle
Software

Rollback
 Segments

Indexes

DOBJ Indexes

DASC

Logs

Tables

DOBJ

DASC Indexes

Controller 1 Controller 2

© Texas Instruments 1996 34

Tuning CPU Usage

• Balance CPU loads
• Reorganize usage

patterns
• Example: use batch

programs to offload
system-intensive
Composer C/SE
programs to off-hours

© Texas Instruments 1996 35

Tuning Resource Contention

• Determine contention
bottlenecks

• Assess contention based on
number of users

• Assess contention
background vs. client/server
applications

© Texas Instruments 1996 36

Summary

• Determine application
performance goals

• Assess impact of tuning
database on different types
of applications

• Utilize optimal target platform

© Texas Instruments 1996 37

Optimizing Composer
Multi-Platform Oracle Applications

Session 750

Rebecca Lawson
Texas Instruments

